In Britain the Great Western Railway, designed by Isambard Kingdom Brunel, pioneered broad gauge from 1838 with a gauge of , and retained this gauge until 1892. A number of harbours also used railways of this gauge for construction and maintenance. These included Portland Harbour and Holyhead Breakwater, which used a locomotive for working sidings. As it was not connected to the national network, this broad-gauge operation continued until the locomotive wore out in 1913.
It became apparent that standardization on a single gauge throughout a rail transport system was advantageous. Rolling stock did not need to match the gauge exactly; a difference of a few millimeters could be coped with, so that interoperability on systems with gauges only slightly different was possible.
While the parliament of the United Kingdom of Great Britain and Ireland was initially prepared to authorise lines built to the broad gauge of , it was eventually rejected by the Gauge Commission in favour of all railways in the British Isles being built to standard gauge of , this being the gauge with the highest route-mileage. Ireland, using the same criteria, was allocated a different standard gauge, Irish gauge. Broad-gauge lines in Britain were gradually converted to dual gauge or standard gauge from 1864, and finally the last of Brunel's broad gauge was converted over a single weekend in 1892.
Many countries have broad-gauge railways. Ireland (see History of rail transport in Ireland) and some parts of Australia (see History of rail transport in Australia) and Brazil have a gauge of , but Luas, the Dublin light rail system, is built to standard gauge. Russia and the other former Soviet Republics use a (originally ) gauge while Finland continues to use the gauge inherited from Imperial Russia (the two standards are close enough to allow full interoperability between Finland and Russia).
In 1839 the Netherlands started its railway system with two broad-gauge railways. The chosen gauge was after a visit of engineers to England and a large consignment of Brunel's lighter bridge rail removed from his "Bath Road" was imported for the construction. This was applied between 1839 and 1866 by the Hollandsche IJzeren Spoorweg-Maatschappij (HSM) for its Amsterdam-The Hague-Rotterdam line and between 1842 and 1855, firstly by the Dutch state, but soon by the Nederlandsche Rhijnspoorweg-Maatschappij, for its Amsterdam-Utrecht-Arnhem line. But the neighboring countries Prussia and Belgium already used standard gauge, so the two companies had to regauge their first lines. In 1855, NRS regauged its line and shortly afterwards connected to the Prussian railways. The HSM followed in 1866. There are replicas of one broad-gauge 2-2-2 locomotive (''De Arend'') and three carriages in the Dutch Railway Museum in Utrecht. These replicas were built for the 100th anniversary of the Dutch Railways in 1938–39.
The Baltic states have received funding from the European Union to build new lines with standard gauge. Portugal and the Spanish ''Renfe'' system use a gauge of called "Ancho Ibérico" in Spanish or "Bitola Ibérica" in Portuguese (see Iberian gauge & Rail gauge); there are plans to convert to standard gauge. In India, Pakistan and Bangladesh, a gauge of is widespread. This is also used by the Bay Area Rapid Transit (BART) system of the San Francisco Bay Area. In Toronto, Canada the gauge for TTC subways and streetcars was chosen in 1861, years after the establishment of 'standard gauge' in Britain, but well before 'standard gauge' in the US and Canada. Toronto uses a unique gauge of , an "overgauge" originally stated to 'allow horse-drawn wagons to use the rails', but with the practical effect of precluding the use of standard-gauge equipment in the street. In 1861, the province was supplying subsidies only to broad 'provincial gauge' railways.
The value of interoperability was initially not obvious to the industry. The standardization movement was gradual; over time the value of a proprietary gauge diminished, being replaced by the idea of charging money for equipment used on other railroad lines.
The use of a non-standard gauge precludes interoperability of rolling stock on railway networks. On the GWR the gauge was supposed to allow high speed, but the company had difficulty with locomotive design in the early years, losing much of the advantage, and rapid advances in permanent way and suspension technology allowed standard-gauge speeds to approach broad-gauge speeds within a decade or two. On the and gauges, the extra width allowed bigger inside cylinders and greater power, a problem solvable by using outside cylinders and higher steam pressure on standard gauge. In the event, the most powerful engines on standard gauge in North America and Scandinavia far exceeded the power of any broad-gauge locomotive.
However, broad gauge remained the most prevalent gauge across the Indian Subcontinent, reaching right across from Iran into Pakistan to Burma and Kashmir to Sri Lanka. After independence, the Indian Railways adopted as the standard Indian gauge, and began Project Unigauge to convert metre-gauge and narrow-gauge lines to this gauge. Some of the newer specialized rail projects in India, such as the Konkan Railway and the Delhi Metro, use Indian gauge. There was a move to use standard gauge for the Delhi Metro, but the decision was made to use Indian gauge to maintain compatibility with the rest of the rail network. The decision was later changed and several new lines, including the Airport Express Line, use standard gauge. The new Bangalore Metro, Mumbai Metro, and Hyderabad Metro systems, all in planning or under construction , will be on standard gauge.
Because of the broad gauge, trains in India can carry standard shipping containers double-stacked on standard flatcars, which is more economical than single containers, but standard-gauge railways in North American and elsewhere must use special double-stack cars to lower the center of gravity and reduce the loading gauge.
The Irish gauge of is used in Ireland and parts of Australia and Brazil. A severe disadvantage of Irish Gauge in Australia was it was too close to standard gauge to allow safe and effective dual gauge with a third rail, such as between Victoria and New South Wales. There was endless argument about the impractibility of third rail, especially turnouts, even of the Brennan Switch.
Russian gauge or CIS gauge is the second most widely used gauge in the world, and spans the whole of the former Soviet Union/CIS bloc including the Baltic states and Mongolia. Finland uses 1524 mm. The difference is clearly lower than the tolerance margin, so through running is feasible. Care must however be taken when servicing international trains because the wear profile of the wheels differs from that of trains that run on domestic tracks only.
The original standard of was approved on September 12, 1842 with re-standardisation to 1520 mm taking place during the 1960s.
In the early days of rail transport in the US, railroads tended to be built out of coastal cities into the hinterland, and systems did not connect. Each builder was free to choose its own gauge, although the availability of British-built locomotives encouraged some railroads to be built to standard gauge. As a general rule, southern railroads were built to one or another broad gauge, mostly , while northern railroads that were not standard-gauge tended to be narrow-gauge. Most of the original track in Ohio was built in Ohio gauge, and special ''compromise cars'' were able to run on both this track and standard-gauge track. When American railroads' track extended to the point that they began to interconnect, it became clear that a single nationwide gauge was desirable.
In 1886, the southern railroads agreed to coordinate changing gauge on all their tracks. After considerable debate and planning, most of the southern rail network was converted from gauge to gauge, nearly the standard of the Pennsylvania Railroad, over two remarkable days beginning on Monday, May 31, 1886. Over a period of 36 hours, tens of thousands of workers pulled the spikes from the west rail of all the broad gauge lines in the South, moved them east and spiked them back in place. The new gauge was close enough that standard-gauge equipment could run on it without difficulty. By June 1886, all major railroads in North America were using approximately the same gauge. The final conversion to true standard gauge took place gradually as track was maintained.
In modern uses, certain isolated occurrences of non-standard gauges can still be found, such as the Pennsylvania trolley gauge. The Bay Area Rapid Transit (BART) system in the San Francisco Bay Area chose gauge. The San Francisco cable cars use a narrow gauge of .
These applications might use double track of the country's usual gauge to provide the necessary stability and axle load. These applications may also use much heavier than normal rails, the heaviest rails for actual trains being about .
Category:Track gauge by size Category:Broad gauge railways
als:Breitspur da:Bredspor de:Breitspurbahn fr:Voie large ko:광궤 hi:ब्रॉड गेज nl:Breedspoor ja:広軌 no:Bredspor pl:Kolej szerokotorowa pt:Bitola larga sk:Širokorozchodná železnica sv:Bredspår uk:Широка коліяThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.