Although the following trends generally hold true, different organizations may have different numerical specifications for the six fuel grades. The boiling point and carbon chain length of the fuel increases with fuel oil number. Viscosity also increases with number, and the heaviest oil has to be heated to get it to flow. Price usually decreases as the fuel number increases.
Number 1 fuel oil is a volatile distillate oil intended for vaporizing pot-type burners. It is the kerosene refinery cut that boils off right after the heavy naphtha cut used for gasoline. Older names include coal oil, stove oil and range oil.
Number 2 fuel oil is a distillate home heating oil. Trucks and some cars use similar diesel fuel with a cetane number limit describing the ignition quality of the fuel. Both are typically obtained from the light gas oil cut. Gas oil refers to the process of distillation. Crude oil is heated, becomes a gas and then condenses.
Number 3 fuel oil was a distillate oil for burners requiring low-viscosity fuel. ASTM merged this grade into the number 2 specification, and the term has been rarely used since the mid 20th century.
Number 4 fuel oil is a commercial heating oil for burner installations not equipped with preheaters. It may be obtained from the heavy gas oil cut.
Number 5 fuel oil is a residual-type industrial heating oil requiring preheating to 170 - 220 °F (77 - 104 °C) for proper atomization at the burners. This fuel is sometimes known as Bunker B. It may be obtained from the heavy gas oil cut, or it may be a blend of residual oil with enough number 2 oil to adjust viscosity until it can be pumped without preheating.
Number 6 fuel oil is a high-viscosity residual oil requiring preheating to 220 - 260 °F (104 - 127 °C). Residual means the material remaining after the more valuable cuts of crude oil have boiled off. The residue may contain various undesirable impurities including 2 percent water and one-half percent mineral soil. This fuel may be known as residual fuel oil (RFO), by the Navy specification of Bunker C, or by the Pacific Specification of PS-400.
Bunker fuel is technically any type of fuel oil used aboard ships. It gets its name from the containers on ships and in ports that it is stored in; in the days of steam they were coal bunkers but now they are bunker fuel tanks. The Australian Customs and the Australian Tax Office define a bunker fuel as the fuel that powers the engine of a ship or aircraft. Bunker A is No. 2 fuel oil, bunker B is No. 4 or No. 5 and bunker C is No. 6. Since No. 6 is the most common, "bunker fuel" is often used as a synonym for No. 6. No. 5 fuel oil is also called navy special fuel oil or just navy special; No. 5 or 6 are also called furnace fuel oil (FFO); the high viscosity requires heating, usually by a recirculated low pressure steam system, before the oil can be pumped from a bunker tank. In the context of shipping, the labeling of bunkers as previously described is rarely used in modern practice.
Table of fuel oils | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | Alias| | Alias | Type | Chain Length | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No. 1 fuel oil | No. 1 distillate | No. 1 diesel fuel | Distillate | 9-16 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No. 2 fuel oil | No. 2 distillate | No. 2 diesel fuel | Distillate | 10-20 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No. 3 fuel oil | No. 3 distillate | No. 3 diesel fuel | Distillate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No. 4 fuel oil | No. 4 distillate | No. 4 residual fuel oil | Distillate/Residual | 12-70 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No. 5 fuel oil | No. 5 residual fuel oil | Heavy fuel oil | Residual | 12-70 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No. 6 fuel oil | No. 6 residual fuel oil | Heavy fuel oil | Residual | 20-70 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Uses |
Oil has many uses; it heats homes and businesses and fuels trucks, ships and some cars. A small amount of electricity is produced by diesel, but it is more polluting and more expensive than natural gas. It is often used as a backup fuel for peaking power plants in case the supply of natural gas is interrupted or as the main fuel for small electrical generators. In Europe the use of diesel is generally restricted to cars (about 40%), SUVs (about 90%), and trucks and buses (virtually all). The market for home heating using fuel oil, called heating oil, has decreased due to the widespread penetration of natural gas. However, it is very common in some areas, such as the Northeastern United States. |
|
Residual fuel oil is less useful because it is so viscous that it has to be heated with a special heating system before use and it contains relatively high amounts of pollutants, particularly sulfur, which forms sulfur dioxide upon combustion. However, its undesirable properties make it very cheap. In fact, it is the cheapest liquid fuel available. Since it requires heating before use, residual fuel oil cannot be used in road vehicles, boats or small ships, as the heating equipment takes up valuable space and makes the vehicle heavier. Heating the oil is also a delicate procedure, which is inappropriate to do on small, fast moving vehicles. However, power plants and large ships are able to use residual fuel oil. |
|
Residual fuel oil was used more frequently in the past. It powered boilers, railroad steam locomotives and steamships. Locomotives now use diesel; steamships are not as common as they were previously due to their higher operating costs (most LNG carriers use steam plants, as "boil-off" gas emitted from the cargo can be used as a fuel source); and most boilers now use heating oil or natural gas. However, some industrial boilers still use it and so do a few old buildings, including in New York City. The city estimates that the 1% of its buildings that burn fuel oils No. 4 and No. 6 are responsible for 86% of the soot pollution generated by all buildings in the city. New York has made the phase out of these fuel grades part of its environmental plan, PlaNYC, because of concerns for the health effects caused by fine particulates. |
|
Residual fuel's use in electricity generation has also decreased. In 1973, residual fuel oil produced 16.8% of the electricity in the United States. By 1983, it had fallen to 6.2%, and , electricity production from all forms of petroleum, including diesel and residual fuel, is only 3% of total production. The decline is the result of price competition with natural gas and environmental restrictions on emissions. For power plants, the costs of heating the oil, extra pollution control and additional maintenance required after burning it often outweigh the low cost of the fuel. Burning fuel oil, particularly residual fuel oil, also produces much darker smoke and uniformly higher Carbon Dioxide emissions than natural gas, which affects the community's perception. |
|
Heavy fuel oils continue to be used in the boiler "lighting up" facility in many coal-fired power plants. Although on an enormous scale, this use is analogous to lighting kindling to start a fire; without performing this simple function it is difficult to begin the large-scale combustion process. |
|
The chief drawback to residual fuel oil is its high initial viscosity, particularly in the case of No. 6 oil, which requires a correctly engineered system for storage, pumping, and burning. Though it is still usually lighter than water (with a specific gravity usually ranging from 0.95 to 1.03) it is much heavier and more viscous than No. 2 oil, kerosene, or gasoline. No. 6 oil must, in fact, be stored at around heated to – before it can be easily pumped, and in cooler temperatures it can congeal into a tarry semisolid. The flash point of most blends of No. 6 oil is, incidentally, about . Attempting to pump high-viscosity oil at low temperatures was a frequent cause of damage to fuel lines, furnaces, and related equipment which were often designed with lighter fuels in mind. |
|
(For comparison, BS2869 Class G Heavy Fuel Oil behaves in similar fashion, requiring storage at , pumping at around and finalising for burning at around / .) |
|
Most of the facilities which historically burned No. 6 or other residual oils were industrial plants and similar facilities constructed in the early or mid 20th century, or which had switched from coal to oil fuel during the same time period. In either case, residual oil was seen as a good prospect because it was cheap and readily available, even though it provided less energy per volume-unit than lighter fuels. Most of these facilities have subsequently been closed and demolished, or have replaced their fuel supplies with a simpler one such as gas or No. 2 oil. The high sulfur content of No. 6 oil—up to 3% by weight in some extreme cases—had a corrosive effect on many heating systems (which were usually designed without adequate corrosion protection in mind), shortening their lifespans and increasing the polluting effects. This was particularly the case in furnaces that were regularly shut down and allowed to go cold; the internal condensation produced sulfuric acid. |
|
Environmental cleanups at such facilities are frequently complicated by the use of asbestos insulation on the fuel feed lines. No. 6 oil is very persistent, and does not degrade rapidly. Its viscosity and stickiness also make remediation of underground contamination very difficult, since it reduces the effectiveness of methods such as air stripping. |
|
When released into water, such as a river or ocean, residual oil tends to break up into patches or tarballs—mixtures of oil and particulate matter such as silt and floating organic matter- rather than form a single slick. An average of about 5-10% of the material will evaporate within hours of the release, primarily the lighter hydrocarbon fractions. The remainder will then often sink to the bottom of the water column. |
|
Maritime |
Shipping>maritime field another type of classification is used for fuel oils: | * MGO (Marine gas oil) - roughly equivalent to No. 2 fuel oil, made from distillate only | * MDO (Marine diesel oil) - A blend of heavy gasoil that may contain very small amounts of black refinery feed stocks, but has a low viscosity up to 12 cSt so it need not be heated for use in internal combustion engines | * IFO (Intermediate fuel oil) A blend of gasoil and heavy fuel oil, with less gasoil than marine diesel oil | * MFO (Marine fuel oil) - same as HFO (just another "naming") | * HFO (Heavy fuel oil) - Pure or nearly pure residual oil, roughly equivalent to No. 6 fuel oil |
|
Marine diesel oil contains some heavy fuel oil, unlike regular diesels. Also, marine fuel oils sometimes contain waste products such as used motor oil. |
|
Standards and classification |
Calculated Carbon Aromaticity Index>CCAI and Calculated Ignition Index | * IFO 380 - Intermediate fuel oil with a maximum viscosity of 380 Centistokes | * IFO 180 - Intermediate fuel oil with a maximum viscosity of 180 Centistokes | * LS 380 - Low-sulphur (<1.5%) intermediate fuel oil with a maximum viscosity of 380 Centistokes | * LS 180 - Low-sulphur (<1.5%) intermediate fuel oil with a maximum viscosity of 180 Centistokes | * MDO - Marine diesel oil. | * MGO - Marine gasoil. |
|
The [[density is also an important parameter for fuel oils since marine fuels are purified before use to remove water and dirt from the oil. Since the purifiers use centrifugal force, the oil must have a density which is sufficiently different from water. Older purifiers had a maximum of 991 kg/m3; with modern purifiers it is also possible to purify oil with a density of 1010 kg/m3. |
|
The first British standard for fuel oil came in 1982. The latest standard is ISO 8217 from 2005. The ISO standard describe four qualities of distillate fuels and 10 qualities of residual fuels. Over the years the standards have become stricter on environmentally important parameters such as sulfur content. The latest standard also banned the adding of used lubricating oil (ULO). |
|
Some parameters of marine fuel oils according to ISO 8217 (3. ed 2005): |
|
Marine Distillate Fuels | ||||||
Parameter | Unit | Limit| | DMX | DMA | DMB | DMC |
Density at 15°C | kg/m3 | Max | - | 890.0 | 900.0 | 920.0 |
Viscosity at 40°C | mm²/s | Max | 5.5 | 6.0 | 11.0 | 14.0 |
Viscosity at 40°C | mm²/s | Min | 1.4 | 1.5 | - | - |
Water | % V/V | Max | - | - | 0.3 | 0.3 |
Sulfur1 | % (m/m) | Max | 1.0 | 1.5 | 2.0 | 2.0 |
Aluminium + Silicon2 | mg/kg | Max | - | - | - | 25 |
Flash point3 | °C | Min | 43 | 60 | 60 | 60 |
Pour point, Summer | °C | Max | - | 0 | 6 | 6 |
Pour point, Winter | °C | Max | - | -6 | 0 | 0 |
Cloud point | °C | Max | -16 | - | - | - |
Calculated Cetane Index | Min | 45 | 40 | 35 | - |
# Max sulfur content is 1.5% in designated areas. (since 1-07-2010 1% is max). # The aluminium+silicon value is used to check for remains of the catalyst after catalytic cracking. Most catalysts contains aluminium or silicon and remains of catalyst can cause damage to the engine. # The flash point of all fuels used in the engine room should be at least 60°C (DMX is used for things like emergency generators and not normally used in the engine room).
Marine Residual Fuels | ||||||||||||
Parameter | Unit| | Limit | RMA 30 | RMB 30 | RMD 80 | RME 180 | RMF 180 | RMG 380 | RMH 380 | RMK 380 | RMH 700 | RMK 700 |
Density at 15°C | kg/m3 | Max | 960.0 | 975.0 | 980.0 | 991.0 | 991.0 | 991.0 | 991.0 | 1010.0 | 991.0 | 1010.0 |
Viscosity at 50°C | mm²/s | Max | 30.0 | 30.0 | 80.0 | 180.0 | 180.0 | 380.0 | 380.0 | 380.0 | 700.0 | 700.0 |
Water | % V/V | Max | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Sulfur1 | % (m/m) | Max | 3.5 | 3.5 | 4.0 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
Aluminium + Silicon2 | mg/kg | Max | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Flash point3 | °C | Min | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Pour point, Summer | °C | Max | 6 | 24 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Pour point, Winter | °C | Max | 0 | 24 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
# Max sulfur content is 1.5% in designated areas. (since 1-07-2010 1% is max). # The aluminium+silicon value is used to check for remains of the catalyst after catalytic cracking. Most catalysts contains aluminium or silicon and remains of catalyst can cause damage to the engine. # The flash point of all fuels used in the engine room should be at least 60°C.
Category:Petroleum products Category:Oils Category:IARC Group 2B carcinogens Category:Liquid fuels
bg:Маз?т de:Schweröl et:Kütteõli es:Fueloil eo:Mazuto fa:ماز?ت io:Gazolino id:Minyak bakar it:Olio combustibile he:מזו? lt:Fuel-oil nl:Stookolie ja:重油 nn:Semidiesel pt:Óleo combustível ru:Флот?кий маз?т fi:Polttoöljy sv:Tjockolja ta:எரிநெய் th:น้ำมันเตาThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.