In nature, sulfur can be found as the pure element and as sulfide and sulfate minerals. Elemental sulfur crystals are commonly sought after by mineral collectors for their brightly colored polyhedron shapes. Being abundant in native form, sulfur was known in ancient times, mentioned for its uses in ancient Greece, China and Egypt. Sulfur fumes were used as fumigants, and sulfur-containing medicinal mixtures were used as balms and antiparasitics. Sulfur is referenced in the Bible as brimstone in English, with this name still used in several nonscientific terms. Sulfur was considered important enough to receive its own alchemical symbol. It was needed to make the best quality of black gunpowder, and the bright yellow powder was hypothesized by alchemists to contain some of the properties of gold, which they sought to synthesize from it. In 1777, Antoine Lavoisier helped convince the scientific community that sulfur was a basic element, rather than a compound.
Elemental sulfur was once extracted from salt domes where it sometimes occurs in nearly pure form, but this method has been obsolete since the late 20th century. Today, almost all elemental sulfur is produced as a byproduct of removing sulfur-containing contaminants from natural gas and petroleum. The element's commercial uses are primarily in fertilizers, because of the relatively high requirement of plants for it, and in the manufacture of sulfuric acid, a primary industrial chemical. Other well-known uses for the element are in matches, insecticides and fungicides. Many sulfur compounds are odiferous, and the smell of odorized natural gas, skunk scent, grapefruit, and garlic is due to sulfur compounds. Hydrogen sulfide produced by living organisms imparts the characteristic odor to rotting eggs and other biological processes.
Sulfur is an essential element for all life, and is widely used in biochemical processes. In metabolic reactions, sulfur compounds serve as both fuels and respiratory (oxygen-replacing) materials for simple organisms. Sulfur in organic form is present in the vitamins biotin and thiamine, the latter being named for the Greek word for sulfur. Sulfur is an important part of many enzymes and in antioxidant molecules like glutathione and thioredoxin. Organically bonded sulfur is a component of all proteins, as the amino acids cysteine and methionine. Disulfide bonds are largely responsible for the mechanical strength and insolubility of the protein keratin, found in outer skin, hair, and feathers, and the element contributes to their pungent odor when burned.
Amorphous or "plastic" sulfur is produced by rapid cooling of molten sulfur—for example, by pouring it into cold water. X-ray crystallography studies show that the amorphous form may have a helical structure with eight atoms per turn. The long coiled polymeric molecules cause the brownish substance to be elastic, and in bulk this form has the feel of crude rubber. This form is metastable at room temperature and gradually reverts to crystalline molecular allotrope, which is no longer elastic. This process happens within a matter of hours to days, but can be rapidly catalyzed.
When sulfide minerals are precipitated, isotopic equilibration among solids and liquid may cause small differences in the δS-34 values of co-genetic minerals. The differences between minerals can be used to estimate the temperature of equilibration. The δC-13 and δS-34 of coexisting carbonates and sulfides can be used to determine the pH and oxygen fugacity of the ore-bearing fluid during ore formation.
In most forest ecosystems, sulfate is derived mostly from the atmosphere; weathering of ore minerals and evaporites contribute some sulfur. Sulfur with a distinctive isotopic composition has been used to identify pollution sources, and enriched sulfur has been added as a tracer in hydrologic studies. Differences in the natural abundances can be used in systems where there is sufficient variation in the 34S of ecosystem components. Rocky Mountain lakes thought to be dominated by atmospheric sources of sulfate have been found to have different δ34S values from lakes believed to be dominated by watershed sources of sulfate.
Sulfur, usually as sulfide, is present in many types of meteorites. Ordinary chondrites contain on average 2.1% sulfur, and carbonaceous chondrites may contain as much as 6.6%. It is normally present as troilite (FeS), but there are exceptions, with carbonaceous chondrites containing free sulfur, sulfates and other sulfur compounds. The distinctive colors of Jupiter's volcanic moon Io are attributed to various forms of molten, solid and gaseous sulfur.
On Earth, elemental sulfur can be found near hot springs and volcanic regions in many parts of the world, especially along the Pacific Ring of Fire; such volcanic deposits are currently mined in Indonesia, Chile, and Japan. Such deposits are polycrystalline, with the largest documented single crystal measuring 22×16×11 cm. Historically, Sicily was a large source of sulfur in the Industrial Revolution.
Significant deposits of elemental sulfur, believed to have been (and are still being) synthesised by anaerobic bacteria on sulfate minerals like gypsum, exist in salt domes along the coast of the Gulf of Mexico, and in evaporites in eastern Europe and western Asia. Native sulfur may be produced by geological processes alone. Fossil-based sulfur deposits from salt domes have until recently been the basis for commercial production in the United States, Poland, Russia, Turkmenistan, and Ukraine. Such sources are now of secondary commercial importance, and most are no longer worked.
Common naturally-occurring sulfur compounds include the sulfide minerals, such as pyrite (iron sulfide), cinnabar (mercury sulfide), galena (lead sulfide), sphalerite (zinc sulfide) and stibnite (antimony sulfide); and the sulfates, such as gypsum (calcium sulfate), alunite (potassium aluminium sulfate), and barite (barium sulfate). On Earth, just as upon Jupter's moon Io, elemental sulfur occurs naturally in volcanic emissions, including emissions from hydrothermal vents.
Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.
The sulfur oxides form numerous oxyanions with the formula SOn2–. Sulfur dioxide and sulfites () are related to the unstable sulfurous acid (H2SO3). Sulfur trioxide and sulfates () are related to sulfuric acid. Sulfuric acid and SO3 combine to give oleum, a solution of pyrosulfuric acid (H2S2O7) in sulfuric acid. :: Peroxides convert sulfur into unstable such as S8O, a sulfoxide. Peroxymonosulfuric acid (H2SO5) and peroxydisulfuric acids (H2S2O8), made from the action of SO3 on concentrated H2O2, and H2SO4 on concentrated H2O2 respectively.
Thiosulfate salts (), sometimes referred as "hyposulfites", used in photographic fixing (HYPO) and as reducing agents, feature sulfur in two oxidation states. Sodium dithionite, (), contains the more highly reducing dithionite anion. Sodium dithionate (Na2S2O6) is the first member of the polythionic acids (H2SnO6), where n can range from 3 to many.
Some of the main classes of sulfur-containing organic compounds include the following:
Some inorganic compounds with carbon–sulfur bonds are known. Carbon disulfide, a volatile colorless liquid at standard conditions, is structurally similar to carbon dioxide; it is used as a solvent to make polymers. Whereas carbon monoxide is highly stable, carbon monosulfide is unstable and has only been observed as a gas and in the interstellar medium.
Organosulfur compounds are responsible for the some of the unpleasant odors of decaying organic matter. They are used in the odoration of natural gas and cause the odor of garlic and skunk spray. Not all organic sulfur compounds smell unpleasant at all concentrations: the sulfur-containing monoterpenoid grapefruit mercaptan in small concentrations is responsible for the characteristic scent of grapefruit, but has a generic thiol odor at larger concentrations. Sulfur mustard, a potent vesicant, was used in World War I as a disabling agent.
Sulfur can be used in organics as a structural component to harden synthetic polymers, in a way similar to the biological use of disulfide bridges to reinforce proteins (see biological below). In the most common type of industrial "curing" or hardening and strengthening of natural rubber, elemental sulfur is heated with the rubber to the point that chemical reactions form disulfide bridges between isoprene units of the polymer. This process, patented in 1843, historically changed rubber into a major industrial product. The process was named vulcanization after the Roman god of the forge and volcanism, in honor of both the heat and sulfur used. Although vulcanization is applied to other polymers, and sometimes with crosslinking agents other than sulfur, variants of sulfur/rubber vulcanization continue to be used in producing automobile tires and other elastomer products.
A natural form of sulfur known as shiliuhuang was known in China since the 6th century BC and found in Hanzhong. By the 3rd century, the Chinese discovered that sulfur could be extracted from pyrite. Chinese Daoists were interested in sulfur's flammability and its reactivity with certain metals, yet its earliest practical uses were found in traditional Chinese medicine. A Song Dynasty military treatise of 1044 AD described different formulas for Chinese black powder, which is a mixture of potassium nitrate (), charcoal, and sulfur.
Early alchemists gave sulfur its own alchemical symbol which was a triangle at the top of a cross. In traditional medical skin treatment which predates modern era of scientific medicine, elemental sulfur has been used mainly as part of creams to alleviate various conditions such as scabies, ringworm, psoriasis, eczema and acne. The mechanism of action is not known, although elemental sulfur does oxidize slowly to sulfurous acid, which in turn (through the action of sulfite) acts as a mild reducing and antibacterial agent.
In the late 18th century, furniture makers used molten sulfur to produce decorative inlays in their craft. Because of the sulfur dioxide produced during the process of melting sulfur, the craft of sulfur inlays was soon abandoned. Molten sulfur is sometimes still used for setting steel bolts into drilled concrete holes where high shock resistance is desired for floor-mounted equipment attachment points. Pure powdered sulfur was used as a medicinal tonic and laxative. With the advent of the contact process, the majority of sulfur today is used to make sulfuric acid for a wide range of uses, particularly fertilizer.
However, the IUPAC adopted the spelling sulfur in 1990, as did the Royal Society of Chemistry Nomenclature Committee in 1992. The Qualifications and Curriculum Authority for England and Wales recommended its use in 2000, and it now appears in GCSE exams. The Oxford Dictionaries note that "In chemistry... the -f- spelling is now the standard form in all related words in the field in both British and US contexts"
In Latin, the word is variously written sulpur, sulphur, and sulfur (the Oxford Latin Dictionary lists the spellings in this order). It is an original Latin name and not a Classical Greek loan, so the ph variant does not denote the Greek letter φ (phi). Sulfur in Greek is thion (θείον), whence comes the prefix thio-. The simplification of the Latin words p or ph to an f appears to have taken place towards the end of the classical period.
When silver-based photography was widespread, sodium and ammonium thiosulfate were widely used as "fixing agents." Sulfur is a component of gunpowder.
Plant requirements for sulfur are equal to or exceed those for phosphorus. It is one of the major nutrients essential for plant growth, root nodule formation of legumes and plants protection mechanisms. Sulfur deficiency has become widespread in many countries in Europe. Because atmospheric inputs of sulfur will continue to decrease, the deficit in the sulfur input/output is likely to increase, unless sulfur fertilizers are used.
Magnesium sulfate, known as Epsom salts when in hydrated crystal form, can be used as a laxative, a bath additive, an exfoliant, magnesium supplement for plants, or (when in dehydrated form) as a desiccant.
===Fungicide and pesticide=== Elemental sulfur is one of the oldest fungicides and pesticides. Dusting sulfur, elemental sulfur in powdered form, is a common fungicide for grapes, strawberry, many vegetables and several other crops. It has a good efficacy against a wide range of powdery mildew diseases as well as black spot. In organic production, sulfur is the most important fungicide. It is the only fungicide used in organically farmed apple production against the main disease apple scab under colder conditions. Biosulfur (biologically produced elemental sulfur with hydrophilic characteristics) can be used well for these applications.
Standard-formulation dusting sulfur is applied to crops with a sulfur duster or from a dusting plane. Wettable sulfur is the commercial name for dusting sulfur formulated with additional ingredients to make it water miscible. It has similar applications and is used as a fungicide against mildew and other mold-related problems with plants and soil.
Elemental sulfur powder is used as an "organic" (i.e. "green") insecticide (actually an acaricide) against ticks and mites. A common method of use is to dust clothing or limbs with sulfur powder.
Diluted solutions of lime sulfur (made by combinding calcium hydroxide with elemental sulfur in water, are used as a dip for pets to destroy ringworm (fungus), mange and other dermatoses and parasites.
In plants and animals, the amino acids cysteine and methionine contain most of the sulfur. The element is thus present in all polypeptides, proteins, and enzymes that contain these amino acids. Disulfide bonds (S-S bonds) formed between cysteine residues in peptide chains are very important in protein assembly and structure. These covalent bonds between peptide chains confer extra toughness and rigidity. For example, the high strength of feathers and hair is in part due to their high content of S-S bonds and their high content of cysteine and sulfur. Eggs are high in sulfur because large amounts of the element are necessary for feather formation, and the characteristic odor of rotting eggs is due to hydrogen sulfide. The high disulfide bond content of hair and feathers contributes to their indigestibility and to their characteristic disagreeable odor when burned.
Homocysteine and taurine are other sulfur-containing acids that are similar in structure, but which are not coded by DNA, and are not part of the primary structure of proteins. Many important cellular enzymes use prosthetic groups ending with -SH moieties to handle reactions involving acyl-containing biochemicals: two common examples from basic metabolism are coenzyme A and alpha-lipoic acid. Two of the 13 classical vitamins, biotin and thiamine contain sulfur, with the latter being named for its sulfur content. Sulfur plays an important part, as a carrier of reducing hydrogen and its electrons, for cellular repair of oxidation. Reduced glutathione, a sulfur-containing tripeptide, is a reducing agent through its sulfhydryl (-SH) moiety derived from cysteine. The thioredoxins, a class of small protein essential to all known life, using neighboring pairs of reduced cysteines to act as general protein reducing agents, to similar effect.
Methanogenesis, the route to most of the world's methane, is a multistep biochemical transformation of carbon dioxide. This conversion requires several organosulfur cofactors. These include coenzyme M, CH3SCH2CH2SO3–, the immediate precursor to methane.
The so-called sulfate-reducing bacteria, by contrast, "breathe sulfate" instead of oxygen. They use sulfur as the electron acceptor, and reduce various oxidized sulfur compounds back into sulfide, often into hydrogen sulfide. They can grow on a number of other partially oxidized sulfur compounds (e. g. thiosulfates, thionates, polysulfides, sulfites). The hydrogen sulfide produced by these bacteria is responsible for some of the smell of intestinal gases (flatus) and decomposition products.
Sulfur is absorbed by plants via the roots from soil as the sulfate and transported as a phosphate ester. Sulfate is reduced to sulfide via sulfite before it is incorporated into cysteine and other organosulfur compounds. :SO42– → SO32– → H2S → cysteine
The burning of coal and/or petroleum by industry and power plants generates sulfur dioxide (SO2), which reacts with atmospheric water and oxygen to produce sulfuric acid (H2SO4) and sulfurous acid (H2SO3). These acids are components of acid rain, which lower the pH of soil and freshwater bodies, sometimes resulting in substantial damage to the environment and chemical weathering of statues and structures. Fuel standards increasingly require sulfur to be extracted from fossil fuels to prevent the formation of acid rain. This extracted sulfur is then refined and represents a large portion of sulfur production. In coal fired power plants, the flue gases are sometimes purified. In more modern power plants that use synthesis gas the sulfur is extracted before the gas is burned.
Hydrogen sulfide is as toxic as hydrogen cyanide and kills by the same mechanism, although hydrogen sulfide is less likely to result in surprise poisonings from small inhaled amounts, due to its more disagreeable warning odor. However, although very pungent at first awareness to the human nose, hydrogen sulfide quickly deadens the sense of smell, so potential victims breathing larger and larger quantities of it may be unaware of its presence until severe symptoms occur (these can then quickly lead to death).
Category:Article Feedback Pilot Category:Chalcogens Category:Chemical elements Category:Native element minerals Category:Dietary minerals Category:Inorganic polymers Category:Nonmetals Category:Pyrotechnic fuels Category:Agricultural chemicals * Category:Biology and pharmacology of chemical elements Category:Anti-acne preparations Category:Orthorhombic minerals
af:Swawel ar:كبريت an:Ixufre ast:Azufre gn:Itaysy ay:Asuphri az:Kükürd bn:গন্ধক zh-min-nan:Liû-hông be:Сера bs:Sumpor bg:Сяра ca:Sofre cv:Кӳкĕрт cs:Síra co:Zolfu cy:Sylffwr da:Svovl de:Schwefel dv:ސަލްފަރު nv:Łeetsoii et:Väävel el:Θείο myv:Палыкандал es:Azufre eo:Sulfuro eu:Sufre fa:گوگرد hif:Sulfur fr:Soufre fur:Solfar ga:Sulfar gv:Sulfur gl:Xofre hak:Liù-vòng ko:황 haw:Sulufura hy:Ծծումբ hi:गंधक hsb:Syrik hr:Sumpor io:Sulfo id:Belerang os:Сондон is:Brennisteinn it:Zolfo he:גופרית jv:Welirang kn:ಗಂಧಕ ka:გოგირდი sw:Sulfuri kv:Тэг ht:Souf ku:Kibrît la:Sulphur lv:Sērs lb:Schwiefel lt:Siera lij:Sorfano li:Solfer jbo:sliri hu:Kén mk:Сулфур ml:ഗന്ധകം mi:Pungatara mr:सल्फर mn:Хүхэр my:ကန့် nah:Tlequiquiztlālli mrj:Сера nl:Zwavel ja:硫黄 no:Svovel nn:Svovel nov:Sulfre oc:Sofre uz:Oltingugurt pnb:گندھک nds:Swevel pl:Siarka pt:Enxofre ro:Sulf qu:Salina ru:Сера sa:गन्धकः stq:Swieuwel sq:Sulfuri scn:Sùrfuru si:ගෙන්දගම් simple:Sulfur sk:Síra sl:Žveplo sr:Сумпор sh:Sumpor su:Walirang fi:Rikki sv:Svavel tl:Asupre ta:கந்தகம் te:గంధకము th:กำมะถัน tr:Kükürt uk:Сірка ur:گندھک ug:گۈڭگۈرت vi:Lưu huỳnh vls:Sulfer (element) war:Asupre yi:שוועבל yo:Sulfur zh-yue:硫 zh:硫This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.