Magma is a complex high-temperature fluid substance. Temperatures of most magmas are in the range 700 °C to 1300 °C (or 1300 °F to 2400 °F), but very rare carbonatite melts may be as cool as 600 °C, and komatiite melts may have been as hot as 1600 °C. Most are silicate mixtures.
Environments of magma formation and compositions are commonly correlated. Environments include subduction zones, continental rift zones, mid-ocean ridges and hot spots. Despite being found in such widespread locales, the bulk of the Earth's crust and mantle is not molten. Rather, most of the Earth takes the form of a rheid, a form of solid that can move or deform under pressure. Magma, as liquid, preferentially forms in high temperature, low pressure environments within several kilometers of the Earth's surface.
Magma compositions may evolve after formation by fractional crystallization, contamination, and magma mixing. By definition rock formed of solidified magma is called igneous rock.
While the study of magma has historically relied on observing magma in the form of lava outflows, magma has been encountered in situ three times during drilling projects—twice in Iceland, and once in Hawaii.
When rocks melt they do so incrementally and gradually; most rocks are made of several minerals, all of which have different melting points, and the physical/chemical relationships controlling melting are complex. As a rock melts, its volume changes. When enough rock is melted, the small globules of melt (generally occurring in between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent partial melting may be sufficient to cause melt to be squeezed from its source.
Melts can stay in place long enough to melt to 20% or even 35%, but rocks are rarely melted in excess of 50%, because eventually the melted rock mass becomes a crystal and melt mush that can then ascend en masse as a diapir, which may then cause further decompression melting.
Rock types produced by small degrees of partial melting in the Earth's mantle are typically alkaline (Ca, Na), potassic (K) and/or peralkaline (high aluminium to silica ratio). Typically, primitive melts of this composition form lamprophyre, lamproite, kimberlite and sometimes nepheline-bearing mafic rocks such as alkali basalts and essexite gabbros or even carbonatite.
Pegmatite may be produced by low degrees of partial melting of the crust. Some granite-composition magmas are eutectic (or cotectic) melts, and they may be produced by low to high degrees of partial melting of the crust, as well as by fractional crystallization. At high degrees of partial melting of the crust, granitoids such as tonalite, granodiorite and monzonite can be produced, but other mechanisms are typically important in producing them.
For instance, a series of basalt flows are assumed to be related to one another. A composition from which they could reasonably be produced by fractional crystallization is termed a parental melt. Fractional crystallization models would be produced to test the hypothesis that they share a common parental melt.
At high degrees of partial melting of the mantle, komatiite and picrite are produced.
When magma cools it begins to form solid mineral phases, some of them settles at the bottom of the magma chamber forming cumulates that might form mafic layered intrusions. Magma that cools slowly within a magma chamber usually ends up as forming bodies of plutonic rocks such as gabbro, diorite and granite depending on the composition of the magma, while if the magma is erupted it forms volcanic rocks such as basalt, andesite and rhyolite (the extrusive equivalents of gabbro, diorite and granite respectively).
Before and during volcanic eruptions, volatiles such as CO2 and H2O partially leave the melt through a process known as exsolution. Magma with low water content becomes increasingly viscous. If massive exsolution occurs when magma heads upwards during a volcanic eruption, the resulting eruption is usually explosive.
Viscosity is a key melt property in understanding the behaviour of magmas. More silica-rich melts are typically more polymerized, with more linkage of silica tetrahedra, and so are more viscous. Dissolution of water drastically reduces melt viscosity. Higher-temperature melts are less viscous.
Generally speaking, more mafic magmas, such as those that form basalt, are hotter and less viscous than more silica-rich magmas, such as those that form rhyolite. Low viscosity leads to gentler, less explosive eruptions.
Characteristics of several different magma types are as follows: :Ultramafic (picritic) ::SiO2 < 45% ::Fe-Mg >8% up to 32%MgO ::Temperature: up to 1500°C ::Viscosity: Very Low ::Eruptive behavior: gentle or very explosive (kimberilites) ::Distribution: divergent plate boundaries, hot spots, convergent plate boundaries; komatiite and other ultramafic lavas are mostly Archean and were formed from a higher geothermal gradient and are unknown in the present
:Mafic (basaltic) ::SiO2 < 50% ::FeO and MgO typically < 10 wt% ::Temperature: up to ~1300°C ::Viscosity: Low ::Eruptive behavior: gentle ::Distribution: divergent plate boundaries, hot spots, convergent plate boundaries
:Intermediate (andesitic) ::SiO2 ~ 60% ::Fe-Mg: ~ 3%th ::Temperature: ~1000°C ::Viscosity: Intermediate ::Eruptive behavior: explosive or effusive ::Distribution: convergent plate boundaries, island arcs
:Felsic (rhyolitic) ::SiO2 >70% ::Fe-Mg: ~ 2% ::Temp: < 900°C ::Viscosity: High ::Eruptive behavior: explosive or effusive ::Distribution: common in hot spots in continental crust (Yellowstone National Park) and in continental rifts
The presence of volatile phases in a rock under pressure can stabilize a melt fraction. The presence of even 0.8% water may reduce the temperature of melting by as much as 100 °C. Conversely, the loss of water and volatiles from a magma may cause it to essentially freeze or solidify.
Also a major portion of all magma is silica, which is a compound of silicon and oxygen. Magma also contains gases, which expand as the magma rises. Magma that is high in silica resists flowing, so expanding gases are trapped in it. Pressure builds up until the gases blast out in a violent, dangerous explosion. Magma that is relatively poor in silica flows easily, so gas bubbles move up through it and escape fairly gently.
Category:Petrology Category:Volcanology Category:Igneous rocks
af:Magma am:ቅልጥ አለት ar:صهارة an:Magma ast:Magma be:Магма be-x-old:Магма bs:Magma bg:Магма ca:Magma (vulcanisme) cs:Magma da:Magma de:Magma et:Magma el:Μάγμα es:Magma eo:Magmo eu:Magma fa:تفتال (زمینشناسی) fr:Magma (géologie) fur:Magma gl:Magma ko:마그마 hr:Magma id:Magma is:Bergkvika it:Magma he:מאגמה ka:მაგმა kk:Магма sw:Magma ht:Magma la:Magma lv:Magma lb:Magma lt:Magma hu:Magma ms:Magma nl:Magma (gesteente) new:माग्मा ja:マグマ no:Magma nn:Magma nds:Magma (Vulkan) pl:Magma pt:Magma ro:Magmă ru:Магма simple:Magma sk:Magma sl:Magma sr:Магма sh:Magma su:Magma fi:Magma sv:Magma ta:கற்குழம்பு tt:Магма th:หินหนืด tg:Магма tr:Magma uk:Магма ur:میگما vi:Macma vls:Magma zh:岩漿This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.