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Introduction to Games

Game theory is a slighttly oddly defined subject matter. A game is any decision
problem where the outcome depends on the actions of more than one agent,
as well as perhaps on other facts about the world. Game Theory is the study of
what rational agents do in such situations. You might think that the way to figure
that out would be to come up with a theory of how rational agents solve decision
problems, i.e., figure out Decision Theory, and then apply it to the special case
where the decision problem involves uncertainty about the behaviour of other
rational agents. Indeed, that is really what I think. But historically the theory
of games has diverged a little from the theory of decisions. And in any case,
games are an interesting enough class of decision problems that they are worthy
of attention because of their practical significance, even if they don’t obviously
form a natural kind.

Let’s start with a very simple example of a game. Each player in the game is to
choose a letter, A or B. After they make the choice, the player will be paired with
a randomly chosen individual who has been faced with the very same choice.
They will then get rewarded according to the following table.

o If they both choose A, they will both get £1

e If they both choose B, they will both get £3

e If one chooses A, and the other B, the one who chose A will get £5, and the
one who chose B will get £0.

We can represent this information in a small table, as follows. (Where possible,
we’ll use uppercase letters for the choices on the rows, and lowercase letters for
choices on the columns.)

Choosea Choose b
Choose A £1,£1 £5, £0
Choose B £0, £5 £3,£3

We represent one player, imaginatively called Row, or R, on the rows, and the
other player, imaginatively called Column, or C on the columns. A cell of the
table represents the outcomes, if R chose to be on that row, and C chose to be in
that column. There are two monetary sums listed in each cell. We will put the
row player’s outcome first, and the column player’s outcome second. You should
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verify that the table represents the same things as the text. (Actually you should
do this for two reasons. One, it’s good to make sure you understand what the
tables are saying. Two, I'm really sloppy with details, so there’s a far from zero
chance I’ve got the table wrong.)

Now let’s note a few distinctive features of this game.

e Whatever C does, R gets more money by choosing A. If C chooses a, then
R gets £1 if she chooses A, and £0 if she chooses B; i.e., she gets more if she
chooses A. And if C chooses b, then R gets £5 if she chooses A, and £3 if
she chooses B; i.e., she gets more if she chooses A.

e Since the game is symmetric, that’s true for C as well. Whatever R does,
she gets more money if she chooses a.

e But the players collectively get the most money if they both choose B.

So doing what maximises the players’ individual monetary rewards does not max-
imise, indeed it minimises, their collective monetary rewards.

I’ve been careful so far to distinguish two things: the monetary rewards each
player gets, and what is best for each player. More elegantly, we need to distin-
guish the outcomes of a game from the payoffs of a game. The outcomes of
the game are things we can easily physically describe: this player gets that much
money, that player goes to jail, this other player becomes President of a failing
Middle Eastern dictatorship, etc. The payoffs of a game describe how well off
each player is with such an outcome. Without knowing much about the back-
ground of the players, we don’t know much about the payoffs.

Let’s make this explicit by looking at four ways in which the agents may value
the outcomes of the game. The first way is that agents simply prefer that their
monetary payoff is as high as possible. If that’s the way the players value things,
then the game looks as follows.

Game 1 Choosea Chooseb
Choose A 1,1 5,0
Choose B 0,5 3,3

Whenever we just put numbers in a table, we assume that they stand for utils.
And we assume that players are constantly trying to maximise utils. We’ll come
back to this assumption presently. But first, let’s note that it doesn’t require
that players only care about their own well-being. We could change the game,
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while keeping the outcome the same, if we imagine that R and C are parts of a
commune, where all money is shared, and they both know this, so both players
utility is given by how much money is added to the commune in a give outcome.
That will give us the following game.

Game 2 Choosea Chooseb
Choose A 2,2 5,5
Choose B 5,5 6,6

In Game 1, the players face the following awkward circumstance. Each individual
will be made better off by playing A rather than B, no matter what happens, but
were they both to have played B, they would both be better off than if they’d
both played A. That’s not true in Game 2; here what is good for each player is
good for the collective.

You might note that I've started numbering the games, and that I didn’t num-
ber the initial description of the outcomes. There’s a reason for this. Technically,
we’ll say that a game is specified by setting out what moves, or as we’ll sometimes
call them, strategies are available for each player, and what the payoffs are for each
player, given the moves that they make. (And, perhaps, the state of the world; for
now we’re just looking at games where only moves matter for payoffs. And we’re
only looking for now at games where each player makes a simultaneous choice of
strategy. We’ll return to how general an account this is in a little while.) Specify-
ing the outcome of a game in physical terms doesn’t give us a unique game. We
need to know more to get a genuine game specification.

There are yet more ways we could imagine the outcomes being mapped into a
particular payoff matrix; i.e., a game. Imagine that the players have the following
values. First, they care a lot about how much money goes to the two of them
together. So the first determinant of their payoff is the sum of the money paid
to each player. Second, they care a lot about agreement. If the two players play
different strategies, that is equivalent to a cost of £5 to them. So here is the payoff
table for players with those values.

Game 3 Choosea Chooseb
Choose A 2,2 0,0
Choose B 0,0 6,6
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Something new happens in Game 3 which we haven’t seen before. What is best
for the players to do depends on what the other players do. In Game 1, each
player was best off playing A, no matter what the other player did. In Game 2,
each player was best off playing B, no matter what the other player did. But in
Game 3, the best move for each player is to play what the other player does. If R
plays A, then C gets 2 if she plays a, and 0 if she plays b. If R plays B, then C gets
6 if she plays b, and 0 if she plays a. There’s no single best strategy for her, until
she knows what R does.

We can mix and match these. Let’s look at what the game is like if R has the
egotistic preferences from Game 1, and C has the obsession with agreement of

the players in Game 3.
Game 4 Choosea Chooseb
Choose A 1,2 5,0
Choose B 0,0 3,6

You should confirm this, but what I've attempted to do here is have the first
number in each cell, i.e., R’s payoff, copy the matching cell in Game 1, and the
second number in each cell, i.e., C’s payoff, copy the matching cell in Game 3.
We will come back in a little while to what to say about Game 4, because it is
more complicated than the other games we’ve seen to date. First, let’s make three
philosophical asides on what we’ve seen so far.

Prisoners’ Dilemma

Game 1 is often called a Prisoners’ Dilemma. There is perhaps some termi-
nological confusion on this point, with some people using the term “Prisoners’
Dilemma” to pick out any game whose outcomes are like those in the games we’ve
seen so far, and some using it only to pick out games whose payoffs are like those
in Game 1. Following what Simon Blackburn says in “Practical Tortoise Rais-
ing”, I think it’s not helpful to use the the term in the first way. So I'll only use it
for games whose payoffs are like those in Game 1.

And what I mean by payoffs like those in Game 1 is the following pair of
features.

e Each player is better off choosing A than B, no matter what the other
player does.
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e The players would both be better off if they both chose B rather than both
chose A.

You might want to add a third condition, namely that the payoffs are symmetric.
But just what that could mean is a little tricky. It’s easy to compare ontcomes of
different players; it’s much harder to compare payoffs. So we’ll just leave it with
these two conditions.

It is often very bad to have people in a Prisoners’ Dilemma situation; ev-
eryone would be better off if they were out of it. Or so it might seem at first.
Actually, what’s really true is that the two players would be better off if they were
out of the Prisoners’ Dilemma situation. Third parties might stand to gain quite
alot from it. (If ’'m paying out the money at the end of the game, I prefer that the
players are in Game 1 to Game 2.) We’ll come back to this point in a little. There
are several ways we could try and escape a Prisoners’ Dilemma. We’ll mention
four here, the first two of which we might naturally associate with Adam Smith.

The first way out is through compassion. If each of the players cares exactly
as much about the welfare of the other player as they do about themselves, then
we’ll be in something like Game 2, not Game 1. Note though that there’s a
limit to how successful this method will be. There are variants of the Prisoners’
Dilemma with arbitrarily many players, not just two. In these games, each player
is better off if they choose A rather than B, no matter what the others do, but all
players are better off if all players choose B rather than A. It stretches the limit
of compassion to think we can in practice value each of these players’s welfar
equally to our own.

Moreover, even in the two player game, we need exact match of interests to
avoid the possibility of a Prisoners’ Dilemma. Let’s say that R and C care about
each other’s welfare a large amount. In any game they play for money, each
players’ payoff is given by the number of pounds that player wins, plus 90% of
the number of pounds the other player wins. Now let’s assume they play a game
with the following outcome structure.

Choosea  Choose b
Choose A £9.50, £9.50  £20, £0
Choose B £0, £20 £10, £10

So we’ll have the following payoff matrix.
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Game 5 Choosea  Choose b
Choose A 18.05, 18.05 20, 18
Choose B 18, 20 19, 19

And that’s still a Prisoners’ Dilemma, even though the agents are very compas-
sionate. So compassion can’t do all the work. But probably none of the other
‘solutions’ can work unless compassion does some of the work. (That’s partially
why Adam Smith wrote the Theory of Moral Sentiments before going on to eco-
nomic work; some moral sentiments are necessary for economic approaches to
work.)

Our second way out is through contract. Let’s say each party contracts with
the other to choose B, and agrees to pay £ 2.50 to the other if they break the
contract. Assuming that this contract will be enforced (and that the parties know
this), here is what the outcome table now looks like.

Choosea  Choose b
Choose A £1,£1  £2.50, £2.50
Choose B £2.50, £2 £3,£3

Now if we assume that the players just value money, those outcomes generate the
following game.

Game 6 Choosea Chooseb
Choose A 1,1 2.5,2.5
Choose B 25,25 3,3

Interestingly, the game looks just like the original Prisoners’ Dilemma as played
between members of a commune. Basically, the existence of side contracts is
enough to turn capitalists into communists.

A very closely related approach, one which is typically more efficient in
games involving larger numbers of players, is to modify the outcomes, and hence
the payoffs, with taxes. A striking modern example of this involves congestion
charges in large cities. There are many circumstances where each person would
prefer to drive somewhere than not, but if everyone drives, we’re all worse off
than if everyone took mass transit (or simply stayed home). The natural solution
to this problem is simply to put a price on driving into the congested area. If
the price is set at the right level, those who pay the charge are better off than if
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the charge was not there, since the amount they lose through the charge is gained
back through the time they save.

In principle, we could always avoid Prisoners’ Dilemma situations from aris-
ing through judicious use of taxes and charges. But it’s hard to get the numbers
right, and even harder to do the enforcement. So sometimes states will try to
solve Prisoners’ Dilemma situations with regulation. We see this in Beijing, for
example, when they try to deal with congestion not by charging people money
to enter the city, but by simply banning (certain classes of) people from driving
into the city on given days. At a more abstract level, you might think of ethical
prohibitions on ‘free-riding’ as being ways of morally regulating away certain op-
tions. If choosing B is simply ruled out, either by law or morality, there’s clearly
no Prisoners’ Dilemma!

Having said that, the most important kind of regulation around here con-
cerns making sure Prisoners’ Dilemma situations survive, and are not contracted
away. Let the two players be two firms in a duopoly; i.e., they are the only firms
to provide a certain product. It is common for there to be only two firms in
industries that require massive capital costs to startup, e.g., telecommunications
or transport. In small towns (like St Andrews!) , it is common to have only two
firms in more or less every sphere of economic life. In such cases there will usu-
ally be a big distance between the prices consumers are prepared to pay for the
product, and the lowest price that the firm could provide the product and still
turn a profit. Call these prices High and Low.

If the firms only care about maximising profit, then it looks like setting prices
to High is like choosing B in Game 1, and setting prices to Low is like choosing A
in that game. The two firms would be better off if each of them had High prices.
But if one had High prices, the other would do better by undercutting them, and
capturing (almost) all the market. And if both had Low prices, neither would be
better off raising prices, because (almost) everyone would desert their company.
So the firms face a Prisoners’ Dilemma.

As Adam Smith observed, the usual way businesses deal with this is by agree-
ing to raise prices. More precisely, he says,

People of the same trade seldom meet together, even for merriment
and diversion, but the conversation ends in a conspiracy against the
public, or in some contrivance to raise prices.
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And that’s not too surprising. There’s a state where they are both better off than
the state where they can compete. If by changing some of the payoffs they can
make that state more likely to occur, then they will. And that’s something that
we should regulate away, if we want the benefits of market competition to accrue
to consumers.

The final way to deal with a Prisoners” Dilemma is through iteration. But
that’s a big, complicated issue, and one that we’ll come back to much later in
these notes.

Payoffs and consequentialism

As we’ve stressed so far, there is a difference between outcomes and payoffs. An
agent’s payoff may be quite high, even if their outcome looks terrible, if the result
of the game involves something they highly value. For instance, if one player
values the wealth of the other player, an outcome that involves the other player
ending up with lots of money will be one where the payoffs to both players are
high.

In that respect the theory does not assume selfishness on the part of agents. It
does assume that agents should try to get what they value, but that doesn’t seem
too big a constraint at first, assuming that agents are allowed to value anything.
But in practice things are a little more complicated.

The model game theorists are using here is similar to the model that many
ethicists, from G. E. Moore onward, have used to argue that any (plausible) ethi-
cal theory has a consequentialist form. To take one example, let’s assume that we
are virtue ethicists, and we think ethical considerations are ‘trumps’, and we are
playing a game that goes from time ¢, to time ¢;. Then we might say the payoff
to any agent at ¢, is simply how virtuously they acted from ¢, to ¢,. Since agents
are supposed to be as virtuous as possible, this will give us, allegedly, the right
evaluation of the agent’s actions from ¢, to ;.

Does this work in general? It certainly doesn’t work as a theory of moral
motivation, or indeed of any other kind of motivation. But consequentialism
isn’t really meant to be a theory of motivation. Utilitarians do not think that
agents should aim to maximise utility as such. They think agents should do the
things that, as a matter of fact, maximise utility. But a bigger worry is how this
theory of value intersects with a theory of rational action under uncertainty. To
settle this, we’d have to offer a theory of action under moral uncertainty, and
we’re not going to do that here. But we will note that there’s a big issue here,
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and one that isn’t easily settled by being liberal about what agents can value. (If
you’re interested in this topic, look up articles on whether moral theories can
be consequentialized. The American spelling is because it is primarily Americans
who are interested in this question, its Moorean origins notwithstanding!)

Knowledge and Dominance

Here’s what looks like a very simple game.

Game 7 Choosea Chooseb
Choose A 20,20 10, 1
Choose B 1,10 1,1

It seems clear that both players should choose A. After all, whatever the other
player does, they are better off with A. And the two of them are collectively
better off both choosing A, so any Prisoners’ Dilemma related doubts that we
had are not operational here.

But let me tell you a bit more about the background to this game. The payoffs
are just payments in pounds. Each player values only their own winnings, and
values each pound equally, so the function from outcomes to payoffs is easy. And
it’s really true that those are the payoffs the players will get if they choose either
A or B. But the players don’t know this. What they do know is that a fair coin is
about to be tossed 10 times. They also know that if the coin comes down heads
every time, then the payoffs are as above. Finally, they know that if the coin
comes down tails even once, and either of them chooses A, then neither player
will get any money. So the full table looks more like this.

Game 8  Choose a Choose a Choose b
& 10 Heads & at least 1 Tail
Choose A & 10 Heads 20, 20 0,0 10, 1
Choose A & at least 1 Tail 0,0 0,0 0,0
Choose B 1,10 0,0 1,1

And now choosing A looks like a crazy gamble, since the odds are overwhelming
that the coin will fall tails at least once. It seems then that Game 7 somehow
misrepresents the situation facing the players. The table in Game 7 makes it look
like it is best to choose A, but really in the situation facing the players, the smart
move is to choose B.
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What, though, is wrong with the representation of Game 7? It isn’t that
anything written on the table is false. Those really are the payouts the players
will get, since the coin does, as a matter of fact, land heads 10 times in a row.
What’s wrong, at least on standard views, is that the players don’t know that
Game 7 represents the payoffs correctly. At a minimum, when we write a payoff
matrix down, we assume that each player knows that the matrix is correct.

Sometimes, indeed often, we will make stronger assumptions than that. For
instance, we’ll almost always assume that each player knows that the other player
knows the table is correct. And we’ll often assume that each player knows that.
And we’ll often assume that each player knows that. And we’ll often assume that
each player knows that. And so on. But the basic assumption is that each player
knows the table is correct.

Given that assumption, we infer that players should never play a dominated
strategy. A dominated strategy is, roughly, a strategy such that some other strat-
egy can do better, no matter how other things are. In other words, if a player
knows that strategy s, will do better than s,, then it is irrational for her to do s,.

Those familiar with recent debates in epistemology will recognise this as a
form of the Knowledge-Action Principle, which says that knowledge is sufficient
for action. This principle plays a central role in work by John Hawthorne and
Jason Stanley, and by Jeremy Fantl and Matthew McGrath. But it has also been
the subject of some criticism. Orthodox game theory, and for that matter de-
cision theory, incorporates this version of the Knowledge-Action principle, via
the principle that dominated actions should not be chosen. Those who want to
reject the Knowledge-Action principle will have to either do without orthodox
game and decision theory, or find some other way to reinterpret game matricies
so that the injunction against choosing dominated options makes sense.

It’s important to be careful about what we mean by a dominated strategy.
Here is a more careful definition.

Strong Domination A strategy s, strongly dominates strategy s, for player 7 iff
for any combination of moves by other players, and states of the external
world, playing s, provides a greater payoff than playing s,, assuming other
players make those moves, and the world is that way.

Strongly Dominated A strategy is strongly dominated iff some other strategy,
available to the same player, strongly dominates it.
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There is a potential scope ambiguity in the description of a strongly dominated
strategy that it is important to be clear about. The claim is 7ot that a strategy is
strongly dominated if no matter what else happens, some strategy or other does
better than it. It is that a strategy is dominated if some particular strategy does
better in every circumstance. We can see the difference between these two ideas
in the following game.

Game9 |/ r

U 30 00
M 2,0 2,0
D 0,0 3,0

Consider this game from R’s perspective; who is choosing as always the rows.
Her options are Up, Middle and Down. C is choosing the columns; her choices
are left or right. (I hope the ambiguity between r for Right and R for Row is not
too confusing. It should be very hard in any given context to get them mixed up,
and hopefully the convention we’ve adopted about cases will help.)

Notice that Middle is never the best outcome for R. If C chooses Left, R
does best choosing Up. If C chooses Right, R does best choosing Down. But
that does not mean Middle is dominated. Middle would only be dominated if
one particular choice was better than it in both circumstances. And that’s not
true. Middle does better than Up in one circumstance (when C chooses Right)
and does better than Down in another circumstance (when C chooses Left).

Indeed, there are situations where Middle might be uniquely rational. We
need to say a bit more about expected utility theory to say this precisely, but
consider what happens when R suspcts C is just going to flip a coin, and choose
Left if it comes up Heads, and Right if it comes up Tails. (Since literally nothing
is at stake for C in the game, this might be a reasonable hypothesis about what C
will do.) Then it maximises R’s expected return to choose Middle. We’ll come
back to this notion a lot.

So far we’ve talked about the notion of strong dominance. We also need a
notion of weak dominance. Roughly, strategy s, weakly dominates strategy s, if
s, can do better than s,, and can’t do worse. More formally,

Weak Domination A strategy s, weak dominates strategy s, for player i iff for
some combination of moves by other players, and states of the external
world, playing s, provides a greater payoff than playing s,, assuming other
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players make those moves, and the world is that way, and for all combina-
tion of moves by other players, and states of the external world, playing s,
provides at least as high a payoff as playing s,, assuming other players make
those moves, and the world is that way,

Weakly Dominated A strategy is weakly dominated iff some other strategy,
available to the same player, weakly dominates it.

It does seem plausible that agents should prefer any strategy over an alternative
that it weakly dominates. This leads to distinctive results in games like the fol-
lowing.

Game 10 4« b
A 1,1 0,0
B 0,0 0,0

In this game, choosing A does not strongly dominate choosing B for either player.
The game is symmetric, so from now on we’ll just analyse it from R’s perspective.
The reason choosing A does not strongly dominate is is that if C chooses &, then
choosing A leads to no advantage. R gets O either way.

But choosing A does weakly dominate choosing B. A does better than B in
one circumstance, namely when C chooses 4, and never does worse. So a player
who shuns weakly dominated options will always choose A rather than B in this
game.
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A rational player, we’ve argued, won’t choose dominated strategies. Now let’s
assume, as is often the case, that we’re playing a game where each player knows
that the other player is rational. In that case, the players will not only decline to
play dominated strategies, they will decline to play strategies that only produce
the best outcomes if the other player adopts a dominated strategy. This can be
used to generate a prediction about what people will, or at least should, do in
various game. We can see this going back to a variant of Prisoners’ Dilemma
from earlier on.

Game 4 Choosea Chooseb
Choose A 1,2 5,0
Choose B 0,0 3,6

If we look at things from C’s perspective, neither strategy is dominated. She
wants to choose whatever R chooses. But if we look at things from R’s perspec-
tive, things are a little different. Here there is a strongly dominating strategy,
namely choosing A. So C should really think to herself that there’s no way R,
who is rational, is going to choose B. Given that, the table really looks like this.

Game 4 Choosea Chooseb
Choose A 1,2 5,0

I’ve put the prime there to indicate it is officially a different game. But really all
I’ve done is delete a dominated strategy that the other player has. Now it is clear
what C should do. In this ‘reduced’ game, the one with the dominated strategy
deleted, there is a dominant strategy for C. It is choosing a. So C should choose
a.

The reasoning here might have been a little convoluted, but the underlying
idea is easy enough to express. R is better off choosing A, so she will. C wants to
choose whatever R chooses. So C will choose a as well.

Let’s go through a small variant of this game which might, after redescription,
look fairly familiar.

Game 11/ r
U 1,1 10010
D 0,0 1000, 1
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Just as in Game 4, R has a dominant strategy. It is to choose Up. (Again, 'm
labelling just using the first letter of the description of the move.) And given that
R will choose Up, the best thing for C to do is choose /. So it looks like we
should end up in the top-left corner of the table, just like in Game 4.

Those of you who have taken some decision theory should recognise Game
11. It is just Newcomb’s problem, with some assumptions about the payoffs. (If
you don’t know what Newcomb’s Problem is, skip the next couple of paragraphs.
We’ll discuss Newcomb’s problem in more detail later in the notes.) R in this
case 1s the human player, who is usually the focus of attention in decision theory
classes. Her payoffs here are just her payments in the usual statement of the game,
divided by 1000. Up is her choosing both boxes, and Down is her choosing one
box.

C is the demon. The demon isn’t usually treated as a player in decision the-
oretic versions of the puzzle, but she clearly has views, and preferences. The
demon wants to predict the move that the player makes. So we’ve represented
her payoffs that way. Left is her predicting two boxes, Right is her predicting
one box. And if she gets the prediction right, she gets a payoff of 1, if she gets it
wrong, she gets a payoff of 0.

So Newcomb’s problem is just a simple game, and it can be solved by noting
that one player has a dominating strategy, and the other player, i.e., the demon,
has a dominating strategy under the assumption that this dominating strategy is
played.

We can use the idea of removing dominating strategies to illustrate some puz-
zling features of a couple of other games. I won’t do tables for these games,
because they’d be much too big. The first is a location game that has many appli-
cations.

Game 12

Two trucks have to choose where they will sell ice-cream on a par-
ticular beach. There are 11 locations to choose from, which we’ll
number 0, 1, ..., 9, 10. Spot O is at the left end of the beach, Spot 10
is at the right end of the beach, and the other spots are equally spaced
in between. There are 10 people at each location. Each of them will
buy ice-cream. If one truck is closer, they will buy ice-cream from
that truck. If two trucks are equally close, then 5 of them will buy
ice-cream from one truck, and 5 from the other. Each truck aims to
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maximise the amount of ice-cream it sells. Where should the trucks
end up?

Let’s start by looking at a fragment of the payoff matrix. The payoffs are numbers
of ice-creams sold. We’ll call the players R for Row and C for column, as usual,
and just use the number 7 for the strategy of choosing location 7.

0 1 2 3 4
0 55,55 10,100 15,95 20,90 25,85
1 100,10 55,55 20,90 25,95 30,80

I’ll leave it as an exercise to confirm that these numbers are indeed correct. But
there’s something already from the numbers that we can see. No matter what C
selects, R is better off picking 1 than 0. If C picks 0 or 1, she is a lot better off;
she sells 45 more ice-creams. And if C picks a higher number, she is a bit better
off; she sells 5 more ice-creams. So picking 1 dominates picking 2.

Let’s look at the opposite corner of the matrix.

6 7 8 9 10
9 ... 30,80 25,85 20,90 55,55 100,10
10 ... 25,85 20,80 15,95 10,100 55,55

Again, there should be a pattern. No matter what C does, R is better off picking
9 than 10. In most cases, this leads to selling 5 more ice-creams. If C also picks
9 or 10, the picking 9 gives R a big advantage. The argument here was obviously
symmetric to the argument about picking 0 or picking 1, so I'll stop concentrat-
ing on what happens when both players select high numbers, and focus from here
on the low numbers.

So there is a clear conclusion to be drawn from what we’ve said so far.

e Spot 0 is dominated by Spot 1, and Spot 10 is dominated by Spot 9. So
if R is rational, she won’t pick either of those spots. Since the game is
symmetric, if C is rational, she won’t pick either of those spots either.

Now let’s turn to the comparison between Spot 1 and Spot 2. Again, we’ll just
look at a fragment of the matrix.
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0 1 2 3 4 5
1 100,10 55,55 20,90 25,95 30,80 35,75
295,15 90,20 55,55 30,80 35,75 40,70

The pattern is also clear. If C selects any number above 2, then R sells 5 more
ice-creams by picking 2 rather than 1. If C selects either 1 or 2, then R sells 35
more ice-creams by picking 2 rather than 1. But if C selects O, then R sells 5 fewer
ice-creams by picking 2 rather than 1. So picking 2 does 7ot dominate picking 1.

But note the only circumstance when picking 2 is worse than picking 1 is if
C picks 0. And picking O is, for C, a strongly dominated strategy. So picking 2 is
sure to do better than picking 1 if C does not play a strongly dominated strategy.
Assuming C is rational, we can represent this by deleting from the game matrix
C’s dominated options. Here’s what the top left corner of the game matrix looks
like when we do that.

1 2 3 4 5
1 55,55 20,90 25,95 30,80 35,75
2 90,20 55,55 30,80 35,75 40,70

And now it looks like picking 1 is dominated. This teaches us another lesson
about the game.

o If we ‘delete’ the option of picking either 0 or 10 for C, then picking 2
dominates picking 1 for R. In other words, if R knows C is rational, and
hence won’t pick a dominated option, then picking 2 dominates picking 1
for R, relative to the space of epistemically possible moves in the game. For
similar reasons, if R knows C is rational, then picking 8 dominates picking
9. And if C knows R is rational, then picking either 1 or 9 is dominated
(by 2 and 8 respectively).

Summarising what we know so far,

e If the players are rational, they won’t pick 0 or 10.
e If the players know the other player is rational, they also won’t pick 1 or 9.
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Let’s continue down the matrix. For simplicity, we’ll leave off columns 0 and 10,
since they are dominated, and we have deleted those as possible options.

1 2 3 4 5
2 90,20 55,55 30,80 35,75 40,70
3 85,25 80,30 55,55 40,70 45,65

Picking 3 doesn’t guite dominate picking 2. In most circumstances, R does better
by picking 3 rather than 2. But she does a little worse if C picks 1. But wait! We
just had an argument that C shouldn’t pick 1. Or, at least, if C knows that R is
rational, she shouldn’t pick 1. Let’s assume that C does know that R is rational,
and R in turn knows that fact, so she can use it in reasoning. That means she
knows C won’t pick 1. So she can delete it from consideration too. And once she
does, picking 3 dominates picking 2, relative to the reduced space of epistemically
possible outcomes.

I haven’t belaboured the point as much as in the previous paragraphs, but
hopefully the following conclusion is clear.

e If the players know that the players know that the other player is rational,
they won’t pick 2 or 8.

And you can see where this is going. Once we rule out each player picking 2 or 8,
then picking 4 dominates picking 3, so picking 3 should be ruled out. And pick-
ing 7 should be ruled out for symmetric reasons. But once 3 and 7 are ruled out,
picking 5 dominates picking either 4 or 6. So both players will end up picking 5.

And that s, in the standard economic textbooks, a nice explanation of why
we see so much ‘clustering’ of shops. (For instance, why so often there are several
petrol stations on one corner, rather than spread over town.) Of course the full
explanation of clustering is more common, but it is nice to see such a simple
model deliver such a strong outcome.

This process is called the Iterative Deletion of Dominated Strategies. More
precisely, what we’ve used here is the strategy of iteratively deleting strongly
dominated strategies. This is a powerful technique for solving games that don’t,
at first glance, admit of any easy solution.

But it is worth reminding ourselves just how strong the assumptions that we
used were. The standard terminology here can be a little confusing. After all, it
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isn’t that picking 4 dominates, in any sense, picking 3. What’s really true is that if
we quantify over a restricted range of choices for C, then picking 4 is better for
R than picking 3, no matter which choice from that range, C chooses. And that’s
a good reason to pick 4 rather than 3, provided that R knows that C will make a
pick in that range. From that perspective, it’s instructive to complete the list of
lessons that we were compiling about the game.

e If the players are rational, they won’t pick 0 or 10.

e If the players know the other player is rational, they also won’t pick 1 or 9.

e If the players know that the players know that the other player is rational,
they also won’t pick 2 or 8.

e If the players know that the players know that the players know that the
other player is rational, they won’t pick 3 or 7.

e If the players know that the players know that the players know that the
players know that the other player is rational, they also won’t pick 4 or 6,
i.e., they will pick 5

There are a lot of assumptions built in to all of this. It would be nice to have a
way of summarising them. The standard approach traces back to David Lewis’s
Convention.

Common Knowledge In a game, it is common knowledge that p if each player
knows it, each player knows that each player knows it, each player knows
that each player knows that each player know it, and so on.

In many, but not all, games, we assume common knowledge of the rationality
of the players. In Game 12, common knowledge of rationality makes picking 5
rationally mandatory.

There is a fun story that is usually told to illustrate the importance of com-
mon knowledge.

Slapville

In Slapville, it is culturally required to slap oneself if one is in public
with a dirty face. Larry, Curly and Moe are in a room together,
fortunately one without mirrors. Each of them has a dirty face, but
they can’t see their own faces, they can only see the other faces. And
each face is dirty. Inspector Renault walks into the room and says,



Itevated Dominance 19

“I'm shocked! Someone in this room has a dirty face.” After a long
delay, Larry, Curly and Moe each slap themselves in the face (thereby
getting dirty hands as well as dirty faces). Why?

One way to be puzzled by Slapville is to start with the concept of mutual knowl-
edge. It is mutual knowledge that p if everyone in the game knows that p. In
Slapville, it is mutual knowledge that someone has a dirty face. It is even, modulo
Williamsonian concerns, mutual knowledge* that someone has a dirty face. (By
S knows* that p, I mean S knows that p, and S knows that § knows p, and §
knows that § knows that § knows that p, and so on.) So you might wonder what
difference Renault’s statement makes. After all, just like his namesake, he’s just
voicing something everyone already knew.

But it wasn’t common knowledge that someone has a dirty face. Consider
things from Larry’s perspective. He knows someone has a dirty face. He can see
Curly and Moe’s dirty faces. And he knows that everyone knows that someone
has a dirty face. He clearly knows it; he can see Curly and Moe. And Curly
knows it; he can see Moe. And Moe knows it; he can see Curly.

But he doesn’t know that everyone knows that everyone knows that someone
has a dirty face. For all he knows, only Curly and Moe have dirty faces. If that’s
true, the only dirty face Curly knows about is Moe’s. So for all Larry knows that
Curly knows, only Moe has a dirty face. And if only Moe has a dirty face, then
Moe doesn’t know that someone has a dirty face. So for all Larry knows that
Curly knows, Moe doesn’t know that someone has a dirty face.

Or at least, that’s the situation before Renault speaks. Once Renault speaks,
it becomes common knowledge that someone has a dirty face. (Assume that it is
common knowledge that Renault speaks the truth, at least when he is shocked.)
Now let’s trace back the consequences.

Consider again the world where only Moe has a dirty face. In that world,
once Renault speaks, Moe slaps himself. That’s because he learns that he has a
dirty face by putting together the clean faces he can see with the fact that someone
has a dirty face. (I've been assuming here that it is common knowledge that only
Larry, Curly and Moe were in the room to start with. Hopefully that hasn’t been
too distracting, but it is crucial here.)

Now as a matter of fact, Moe does not immediately slap himself. That suffices
to teach everyone something. In particular, it teaches them they were not in the
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world where only Moe has a dirty face. Of course, they each already knew that,
but it is now clear to everyone that they all know it.

Consider next the world where only Curly and Moe have dirty faces. From
Curly’s perspective in that world, there are two possibilities. Either he and Moe
have dirty faces, or only Moe has a dirty face. But we just ruled out that only
Moe has a dirty face. So if we were in the world where only Curly and Moe have
a dirty face, then Curly should slap himself.

But Curly doesn’t slap himself yet. (I'll leave the question of precisely why
he doesn’t as an exercise; it should be clear given what we’ve said so far.) So that
rules out the possibility that we’re in the world where only Curly and Moe have
dirty faces. But Larry knew to start with that we were either in the world where
all of them have dirty faces, or in the world where only Curly and Moe have dirty
faces. So they must be in the world where they all have dirty faces.

At this stage Larry realises this, and slaps himself in the face. At roughly the
same time, Curly and Moe also slap themselves in the face. And it’s all because of
the difference between mutual knowledge and common knowledge.

Strong and Weak Dominance

The assumption of common knowledge of rationality is a really strong assump-
tion though. The following game makes this very clear.

Game 13

Everyone in a large group selects an integer between 1 and 100 inclu-
sive. The winner of the game is the person whose number is cloest
to 2/3 of the average of all of the numbers selected. That is, the payotf
for the player who selects closest to 2/3 of the average is 1. (If there is
a tie between 7 players, their payotf is 1/n.) The payoff for everyone
else is 0.

This game can be played with any number of players, but we’ll keep things sim-
ple by assuming there are just 10. This still gives us too big a game table. We
need 10 dimensions, and 100'° cells. The latter is not too demanding; but a 10-
dimensional representation is tricky on paper. So we’ll just describe states of the
game.

The first thing to note about the game is that a particular player, let’s call her
P, can’t win if she selects a number between 68 and 100. That’s because those
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numbers can’t be 2/3 of the average unless the average is greater than 100. And, of
course, the average can’t be greater than 100. So those choices are dominated for
P.

But we have to be rather careful here. What choice dominates picking, say,
70? We might say that 60 dominates it. After all, 60 could be the best possible
play, while 70 could not. But in most circumstances, 60 and 70 will have the same
payoff, namely 0. Unless the average is close to 90, or no one else picks around
60, P’s payotf will be 0 whether she picks 60 or 70. And the same goes for any
alternative to picking 70.

This is all to say that no alternative pick strongly dominates picking 70. But
several picks do weakly dominate it. For instance, picking 64 does. Note that
picking 70 can never do better than picking 64, because even if everyone else
picks 100, if one player picks 64, the average will be 96.4, so 64 will be closest to
2/3 of the average. So any circumstance where 70 will be a winning play must be
one where everyone else picks more than 70. But in those circumstances, picking
64 will win as well. Conversely, picking 64 could do better than picking 70. If
everyone else picks 65, picking 64 will win, and picking 70 will lose. So 64 weakly
dominates 70. And as we can see, all that really mattered for that argument was
that 70 was always going to be higher than 2/3 of the average, so it would be
weakly dominated by some numbers that could be closer to 2/3 of the average.

Again, let’s list the lessons as we learn them.

e Any selection above 67 is weakly dominated.
e Since rational players do not play weakly dominated strategies, it is irra-
tional to pick any number above 67.

We will, much later on, come back to the assumption that playing weakly dom-
inated strategies is irrational. I think it is true, though it deserves a more careful
treatment than we’ll give it here. Let’s just assume for now it is true.

Now we showed a way that P can win while playing 60. But it has to be said,
that it isn’t a particularly likely way. It requires the average of the selections to be
nearly 90. And that requires a lot of other people to pick high numbers. That is,
it requires other people to pick weakly dominated strategies. And that’s not very
plausible, assuming those other people are rational.

Let’s assume, then, that P knows that the other players are rational, and hence
will not choose weakly dominated strategies. So no other player will choose
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a number greater than 67. Then the average of what everyone picks can’t be
greater than 67. So 2/3 of the average can’t be greater than 45. So once we remove
the weakly dominated strategies, any selection greater than 45 can’t be optimal
(i-e., it must be considerably greater than 2/3 of the average), and we can give an
argument similar to the above argument that it is weakly dominated.

As in the ice-cream game, the trick here is to delete dominated strategies.
Once you do that, it is as if you are playing a different game. And in that game,
more strategies are in turn dominated. That’s because they are strategies that
only made sense to play on the assumption that other people played dominated
strategies. And, really, it isn’t very plausible to assume that people will play
dominated strategies. So we should delete the dominated strategies in this new
game as well.

And once we do that, we’ll find yet more strategies become dominated. Let’s
say we delete the strategies between 46 and 67. Now the most the average can be is
45. So 2/5 of the average can’t be more than 30. So any pick greater than 30 can’t
be optimal, and so is weakly dominated, so should be deleted. But once those
picks are deleted, the average can’t be greater than 30, so 2/3 of the average can’t
be greater than 20, so any pick greater than 20 can’t be optimal, and is weakly
dominated, so should be deleted. And so on, until every pick greater than 1 is
deleted. That’s the next lesson from the game.

e The only strategy that survives the iterated deletion of weakly dominated
strategies is to select 1.

So it seems rational players, who are playing the game with other rational players,
should choose 1 right?

Not so fast! Here’s a little tip for anyone playing this game in a large enough
group. If you pick 1 you will lose with a probability more or less equal to 1.
Just what number will win is harder to predict without knowing more about the
group’s features, but it won’t be 1. Why not? Is it because there are irrational
players in any group?

Not necessarily. What’s really going on is that the assumptions needed to get
to 1 are incredibly strong. Let’s go through the argument for getting to 1 in some
more detail.

o At the start, 2/3 of the average is at most 67.
e If everyone knows that, and is rational, 2/3 of the average is at most 45.
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If everyone knows that, and is rational, 2/3 of the average is at most 30.
If everyone knows that, and is rational, 2/3 of the average is at most 20.
If everyone knows that, and is rational, 2/3 of the average is at most 13.
If everyone knows that, and is rational, 2/3 of the average is at most 9.
If everyone knows that, and is rational, 2/3 of the average is at most 6.
If everyone knows that, and is rational, 2/3 of the average is at most 4.
If everyone knows that, and is rational, 2/3 of the average is at most 3.

If everyone knows that, and is rational, 2/3 of the average is at most 2.

If everyone knows that, and is rational, 2/3 of the average is at most 1.

Note that at every stage we need to make one more assumption about what the
players know. By the end we’ve assumed that everyone knows that everyone
knows that everyone knows that everyone knows that everyone knows that ev-
eryone knows that everyone knows that everyone knows that everyone knows
that everyone knows that everyone is rational. (There are 10 iterations of ‘ev-
eryone knows that’ in that sentence, in case you’d rather not count.) And that’s
really not a plausible assumption.

To put this in perspective, imagine a variant of the Slapville story where there
aren’t just 3 people, Larry, Curly and Moe, but 10 people. (Perhaps we add the
7 dwarves to the 3 stooges.) And they all have dirty faces. And none of them
can see their own face, but Inspector Renault says that at least one of them has
a dirty face. It is hard to imagine that this will make any difference at all. For
one thing, the computations required to process the new common knowledge
are horrendously difficult. (In a way, this is a denial that the players are perfectly
rational, but it also brings out what a strong assumption that is already.) To
assume that they can be done, and that everyone knows they can be done, and
everyone knows that everyone knows they can be done, and so on for 8 more
steps, is absurd.

Puzzles about Weak Domination

There is something very odd about choosing strategies that are strongly domi-
nated. And from that, we can naturally deduce that we should delete strategies
that are strongly dominated. The iterative deletion of strongly dominated strate-
gies requires not just rationality, but common belief in rationality through as
many iterations as there are steps of deletion. Sometimes that will be an implau-
sible assumption, but it often seems reasonable enough in practice.
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Weak domination, however, generates principles that are both more puzzling
and harder to justify. Some people argue that weakly dominated strategies are
perfectly rational to play in games like this one, which we might think of as
Weak Prisoners’ Dilemma.

Game 14 / r
U 1,1 100, 0
D 0,100 100, 100

D is weakly dominated by U. But if R is confident that C will play 7, then it
may be rational to play D. And there’s good reason to think that C will play r;
the bottom-right corner is a good place for them to both end up. So you might
think it is rational to play a weakly dominated strategy.

If we start iteratively deleting weakly dominated strategies, we get even less
plausible outcomes.

Game 15 [ m r
T 2,2 100,0 0,90
M 0,100 100,100 100,95
B 0,9 95, 100 95,95

Since B and r are weakly dominated by M and m respectively, we can delete
them. And now we’re back in a small variant of Game 14, where deleting weakly
dominated strategies leads to the (7,/) equilibrium. But here it is even more
attractive to play (M,m). For one thing, it is an equilibrium in an important
sense that we’ll talk more about later. The important sense is that given what
the other player is doing, neither player can do better by changing. So if each
player thinks the other player will play their half of (M, m), it makes sense for
each player to play their half of (M, m). All that’s true of the (D, R) equilibrium
in Game 14. But in Game 14, the players couldn’t do worse by changing their
strategies if they are wrong about what the other players will play. Here they
might. We’ll have much more to say about this later, but there is an even stronger
argument that (M, m) is a rational pair of plays in this game than there was that
(D, R) was a rational pair of plays in Game 14. For roughly these reasons, Robert
Stalnaker argues that there is a good sense of rationality (what he calls perfect
rationality) which requires playing (U, L) in Game 14, but which is compatible
with playing (M, m) in Game 15.
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There are other puzzles with iteratively deleting weakly dominated strategies.
Surprisingly, it can turn out that the order in which we delete strategies makes a
big difference. This point is made in Elon Kohlberg and Jean-Francois Mertens’s
1986 Econometrica paper “On the Strategic Stability of Equilibria”. (Thanks to
Daniel Rothschild for pointing this out to me.) Here is (a minor variation on)
the example they use.

Game 16 | r

T 2,2 2,2
M 1,0 0,1
B 0,1 1,0

Since B is dominated, it won’t be chosen. But once we eliminate B, then for C, r
(weakly) dominates /, so only r survives iterative deletion of weakly dominated
strategies.

But wait! We could also reason as follows. Since M is dominated, it won’t be
chosen. But once we eliminate M, then for C, [ (weakly) dominates 7, so only /
survives iterative deletion of weakly dominated strategies. What is going on?

Kohlberg and Mertens suggest that we should focus on strategies that survive
some process of iterative deletion. Since for player 2, there is an iterative deletion
path that / survives, and an iterative deletion path that r survives, then both
strategies really survive iterative deletion.

You might be tempted by an alternative take on this example. Perhaps it
was wrong to either delete M or to delete B. Perhaps we should say that when
we are deleting strategies, the right thing to do is to delete all strategies that are
dominated at a stroke. So we should simultaneously delete M and B, and then it
will be clear that both L and R survive. This won’t avoid the problem though, as
we can see by a simple three player game.

Game 17

There are three players, 1, 2 and 3. They can each choose one of two
options, which we’ll label A and B. For player 1 and 2, the payotf
structure is easy, they get 2 if they pick A, and 1 if they pick B. For
player 3, it is a little more complicated. Player 3 gets:

e 2if both players 1 and 2 pick A
e 0if both players 1 and 2 pick B



26 Itevated Dominance

e 1if players 1 and 2 make opposite picks, and player 3 picks the
same thing as player 1.

e 0if players 1 and 2 make opposite picks, and player 3 picks the
same thing as player 2.

One way we could analyse this is by saying that since B is dominated for both
players 1 and 2, they won’t pick it. And since player 3’s choice doesn’t matter if
both player 1 and 2 pick A, then it doesn’t matter what player 3 picks. But there
are other ways we could go as well.

Since B is (strongly) dominated for player 1, we can rule it out. Now player
3 faces the following choice, assuming player 1 picks A. (We’ll write player 3’s
choices on the rows, and player 2’s on the columns, and put player 3’s payoft

first.)

a b
A 2,2 1,1
B 2,2 0,1

Now A weakly dominates B, so it is uniquely rational, we might think, for player
3 to pick A.

But wait! Since b is (strongly) dominated for player 2, we can rule it out.
Now player 3 faces the following choice, assuming player 2 picks A. (We’ll write
player 3’s choices on the rows, and player 1’s on the columns, and put player 3’s

payoff first.)
a b
A 2,2 0,1
B 2,2 1,1

Now B weakly dominates A, so it is uniquely rational, we might think, for player
3 to pick B.

Now it looks like even we delete every dominated strategy that a player has
when we get to that player in the analysis, the order in which we do the deletions
still matters. Note though that none of the analysis we’ve just done seems to
undermine the intuitive verdict that player 3 could rationally choose either A or
B. She is going to get 2 whatever she chooses, since the other players will both
choose A. So this doesn’t undermine Kohlberg and Mertens’s conclusion that
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if there is some path of strategy deletion that leads to a strategy being available
and no more deletions being possible, then it is (for these purposes) rationally
acceptable to choose that strategy.

Four Normative Statuses

We will spend a lot of time in these notes on various normative statuses that
strategies in a game can have. We have, in effect, already seen four such statuses.

NSD That is, Not Strongly Dominated.
NWD That is, Not Weakly Dominated.

NSDAI That is, That is, Not Strongly Dominated After Iterations. In other
words, it is still there after we repeatedly delete strongly dominated strate-
gies until only undominated strategies remain.

NWDAI That is, That is, Not Weakly Dominated After Iterations. In other
words, it is still there after we repeatedly delete weakly dominated strate-
gies until only undominated strategies remain.

We can place these from weakest to strongest in the following lattice, with weak-
est being on the bottom.

NWDAI

S

NWD NSDAI

\/

NSD

That table actually encodes a lot of distinct claims. Let’s go through them all,
noting which ones are obvious, and proving the ones that aren’t.

All NWD strategies are NSD
This follows from the fact that strong domination entails weak dom-

ination, so deleting weakly dominated strategeis will delete strongly
dominated strategies.
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All NWDALI strategies are NSDAI

This is true for more or less the same reason. Formally proving this
is a little tricky, since you have to be careful about how the different
iterative steps interact with the definitions of dominance, but it can
be proven by induction on the number of iterative steps. We won’t
do the proof here, but you can show that any strategy that is deleted
by step 7 of the process of iteratively deleting strongly dominated
strategies will also be deleted by step 7 of the process of iteratively
deleting weakly dominated strategies.

All NSDALI strategies are NSD
Obvious.

All NWDALI strategies are NWD

Also obvious.

Some NSD strategies are not NWD

In Game 13, the strategy of picking 90 is not strongly dominated, as

we showed above, but is weakly dominated. So it is NSD, but not
NWD.

Some NWD strategies are not NWDAI

In Game 13, the strategy of picking 60 is not weakly dominated, as
we showed above, but as we also showed, it does not survive the
iterative deletion process. Indeed, it is deleted at the second step.

Some NSD strategies are not NSDAI

In Game 12, the strategy of choosing location 1 is not strongly dom-
inated. But it does not survive the iterative deletion process. Indeed,
it is deleted at the second step.

Some NSDALI strategies are not NWDAI

In Game 13, no strategy is strongly dominated, so all strategies are

NSDALI But many strategies, indeed all but one, are not NWDALI.
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Some NSDALI strategies are not NWD

Similarly in Game 13, some strategies, like choosing 90, aren’t NWD.
But as we just showed, they are NSDAL

Some NWD strategies are not NSDAI

In Game 12, the only weakly dominated strategies are choosing 0 and
10. But the only NSDALI strategy is 5. So any other strategy is NWD
but not NSDAL

29
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Games and Time

So far we’ve looked just at games where each player makes just one move, and
they make it simultaneously. That might not feel like most games that you know
about. It isn’t how we play, for instance, chess. Instead, most games involve
players making multiple moves, and these moves taking place in time. Here is
one simple such game. It’s not very interesting; you won’t have fun games nights
playing it. But it is useful to study.

Game 18

There are two players, who we’ll call A and B. First A moves, then B,
then finally A moves again. Each move involves announcing a num-
ber, 1 or 2. A wins if after the three moves, the numbers announced
sum to 5. B wins otherwise.

This is a simple zero-sum game. The payoff is either 1 to A and 0 to B, or 1 to B
and 0 to A. For simplicity, we’ll describe this as A winning or B winning. We’ll
soon be interested in games with draws, which are a payoff of 1/2 to each player.
But for now we’re looking at games that someone wins.

Before we go on, it’s worth thinking about how you would play this game
from each player’s perspective. The formal approach we’ll eventually take is
pretty similar, I think, to the way one thinks about the game.

Normal Form and Extensive Form

Figure 3.1 is the extensive form representation of Game 18. We will use W to
denote that A wins, and £ to denote that B wins.

To read what’s going on here, start at the node that isn’t filled in, which in
this case is the node at the bottom of the tree. The first move is made by A.
She chooses to play either 1 or 2. If she plays 1, we go to the left of the chart,
and now B has a choice. She plays either 1 or 2, and now again A has a choice.
As it turns out, A has the same choice to make whatever B does, though there
is nothing essential to this. This is just a two-player game, though there is also
nothing essential to this. We could easily have let it be the case that a third player
moved at this point. Or we could have made it that who moved at this point
depended on which move B had made. The extensive form representation allows
for a lot of flexibility in this respect.
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Figure 3.1: Game 18

At the top of the diagram is a record of who won. In the more general form,
we would put the payoffs to each player here. But when we have a simple zero-
sum game, it is easier to just record the payoffs to one player. You should check
that the description of who wins and loses in each situation is right. In each case,
A wins if 2 is played twice, and 1 once.

The extensive form representation form is very convenient for turn taking
games. But you might think that it is much less convenient for games where
players move simultaneously, as in Prisoners’ Dilemma. But it turns out that we
can represent that as well, through a small notational innovation. Figure 3.2 is
the game tree for Prisoners’ Dilemma.

1,1 (5,0) ©,5) (3,3)

Figure 3.2: Prisoners’ Dilemma
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The crucial thing here is the dashed line between the two nodes where P2 (short
for Player 2) moves. What this means is that P2 doesn’t know which of these
nodes she is at when she moves. We normally assume that a player knows what
moves are available to her. (Interesting philosophical question, which hasn’t been
much explored: What happens when we drop this assumption?) So we normally
only put this kind of dashed line in when it connects two nodes at which the same
player moves, and the available moves are the same. When we put in notation
like this, we say that the nodes that are connected form an information set. If
we don’t mark anything, we assume that a node is in a degenerate information
set, one that only contains itself.

Strictly speaking, you could regard this tree as a representation of a game
where Player 1 goes first, then Player 2 moves, but Player 2 does not know Player
1’s move when she moves. But that would be reading, I think, too much into the
symbolic representation. What’s crucial is that we can represent simultaneous
move games in extensive form.

There is a philosophical assumption in this notational convention that we
might want to come back to later on. It is usual to use dashed lines, like I've done,
or circles or ovals to represent that for all Player 2 knows, she is at one of the
connected nodes. But drawing circles around a set of possibilities is only a good
way to represent Player 2’s uncertainty if we assume quite a lot about knowledge.
In particular, it is only good if we assume that which nodes are epistemically
open for Player 2 is independent of which node, within that group, she is at. In
formal terms, it amounts to assuming that knowledge is an S5 modality. This
isn’t actually a true assumption, and it makes for some interesting complications
to game theory if we drop it. But for now we’ll follow orthodoxy and assume we
can use representaions like these dashed lines to represent uncertainty.

These representations using graphs are knows as extensive form representa-
tions of games. The represenations using tables that we’ve used previously are
known as normal form or strategic form representations. The idea is that any
game really can be represented as game of one simultaneous move. The ‘moves’
the players make are the selections of strategies. A strategy in this sense is a plan
for what to do in any circumstance whatsoever.

Let’s do this for the Game 18. A strategy for A has three variables. It must
specify what she does at the first move, what she does at the second move if B
plays 1, and what she does at the second move if B plays 2. (We’re assuming here
that A will play what she decides to play at the first move. It’s possible to drop
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that assumption, but it results in much more complexity.) So we’ll describe A’s
strategy as a8y, where « is her move to begin with, 3 is what she does if B plays
1, and y is what she does if B plays 2. A strategy for B needs to only have two
variables: what to do if A plays 1, and what to do if A plays 2. So we’ll notate her
strategy as &'¢, where & is what she does if A plays 1, and ¢ is what she does if A
plays 2. So A has 8 possible strategies, and B has 4 possible strategies. Let’s record
the giant table listing the outcomes if thye play each of those strategies.

Game 18 11 12 21 22
111 £ £ L L
112 £ L W W
121 £ L L L
122 £ L W W
21 £ W L W
212 L L L L
21 W W W w
222 W L W L

There is something quite dramatic about this representation. We can see what A
should play. If her strategy is 221, then whatever strategy B plays, A wins. So
she should play that; it is a (weakly) dominant strategy. This isn’t completely
obvious from the extended form graph.

Here’s a related fact. Note that there are only 8 outcomes of the extended
form game, but 32 cells in the table. Each outcome on the tree is represented
by multiple cells of the table. Let’s say we changed the game so that it finishes
in a draw, represented by D, if the numbers picked sum to 3. That just requires
changing one thing on the graph; the £ in the top-left corner has to be changed
to a D. But it requires making many changes to the table.

Game 18’ 11 12 21 22
111 2 D L L
112 2 D W W
121 L L L L
122 L L W W
210 £ W L W
212 L L L L
2T W ow o w w
222 W L W L
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In part because of this fact, i.e., because every change to the value assignment in
the extensive form requires making many changes in the values on the normal
form, it isn’t a coincidence that there’s a row containing nothing but W. The
following claim about our game can be proved.

Assign % and L in any way you like to the eight outcomes of the
extended form game. Then draw table that is the normal form rep-
resentation of the game. It will either have a row containing nothing
but W, i.e., a winning strategy for A, or a column containing nothing
but £, i.e., a winning strategy for B.

We will prove this in the next section, but first we will look at how to ‘solve’
games like Game 18.

Backwards Induction

The way to think through games like Game 18 is by working from top to bottom.
A moves last. Once we get to the point of the last move, there is no tactical
decision making needed. A knows what payoff she gets from each move, and she
simply will take the highest payoff (assuming rationality.)

So let’s assume she does that. Let’s assume, that is, that A does play her best
strategy. Then we know three things about what will happen in the game.

e If A plays 1, and B plays 2, A will follow with 2.
e If A plays 2, and B plays 1, A will follow with 2.
e If A plays 2, and B plays 2, A will follow with 1.

Moreover, once we make this assumption there is, in effect, one fewer step in
the game. Once B moves, the outcome is determined. So let’s redraw the game
using that assumption, and just listing payoffs after the second move. This will
be Figure 3.3

Now we can make the same assumption about B. Assume that B will simply
make her best move in this (reduced) game. Since B wins if A loses, B’s best move
is to get to L. This assumption then, gives us just one extra constraint.

e If A plays 1, B will follow with 1.
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Figure 3.4: Game 18 with last two moves assumed

And, once again, we can replace B’s actual movement with a payoff of the game
under the assumption that B makes the rational move. This gives us an even
simpler representation of the game that we see in Figure 3.4.

And from this version of the game, we can draw two more conclusions, as-
suming A is rational.

e A will play 2 at the first move.
o A will win.

Let’s put all of that together. We know A will start with 2, so her strategy will be
of the form 28y. We also know that B doesn’t care which strategy she chooses
at that point, so we can’t make any further reductions. But we do know that if
A plays 2 and B plays 1, A will follow with 2. So A’s strategy will be of the form
22y. And we know that if A plays 2 and B plays 2, then A will play 1. So A’s
strategy will be 221, as we saw on the table.

Note that, as in Game 13, the use of backwards induction here hides a multi-
tude of assumptions. We have to assume each player is rational, and each player
knows that, and each player knows that, and so on for at least as many iterations
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as there are steps in the game. If we didn’t have those assumptions, it wouldn’t be
right to simply replace a huge tree with a single outcome. Moreover, we have to
make those assumptions be very modally robust.

We can see this with a slight variant of the game. Let’s say this time that the
left two outcomes are D. So the graph looks like Figure 3.5.

Figure 3.5: Game 18”

Now we assume that A makes the optimal move at the last step, so we can
replace the top row of outcomes with the outcome that would happen if A moves

optimally. This gets us Figure 3.6.

Figure 3.6: Game 18" with last move assumed

Now assume that A plays 1 on the first round, then B has to move. From
3.6 it looks like B has an easy choice to make. If she plays 1, she gets a draw, if
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she plays 2, then A wins, i.e., she loses. Since drawing is better than losing, she
should play 1 and take the draw.

But why think that playing 2 will lead to A winning? The argument that it did
depending on assuming A is perfectly rational. And assuming B is in a position
to make this choice, that seems like an unlikely assumption. After all, if A were
perfectly rational, she’d have chosen 2, and given herself a chance to force a win.

Now you might think that even if A isn’t perfectly rational, it still is crazy to
leave her with an easy winning move. And that’s probably a sufficient reason for
B to accept the draw, i.e., play 1. But the argument that B should regard playing
2 as equivalent to choosing defeat seems mistaken. B knows that A isn’t perfectly
rational, and she shouldn’t assume perfect rationality from here on out.

We will come back to this point, a lot, in subsequent discussions of backwards
induction. Note that it is a point that doesn’t really arise in the context of normal
form games. There we might wonder about whether common knowledge of
rationality is a legitimate assumption at the start of the game. But once we’ve
settled that, we don’t have a further issue to decide about whether it is still a
legitimate assumption at later stages of the game.

Value of Games

Consider games with the following characteristics.

e A and B take turns making moves. We will call each point at which they
make a move, or at which the game ends, a node of the game.

e At each move, each player knows what moves have been previously made.

e At each move, the players have only finitely many possible moves open.

e The players’ preferences over the outcomes are opposite to one another. So
if A prefers outcome o, to 0,, then B prefers 0, to 0, and if A is indifferent
between o, and o,, then B is indifferent between them as well.

e A’s preferences over the outcomes are complete; for any two outcomes,
she either prefers the first, or prefers the second, or is indifferent between
them.

There is a finite limit to the total number of possible moves in the game.

The finiteness assumptions entail that there are only finitely many possible out-
comes. So we can order the outcomes by A’s preferences. (Strictly speaking, we
want to order sets of outcomes that are equivalence classes with respect to the
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relation that A is indifferent between them.) Assign the outcome A least prefers
the value 0, the next outcome the value 1, and so on.

Now we recursively define the value of a node as follows.

e The value of a terminal node, i.e., a node at which the game ends, is the
payoff at that node.

e The value of any node at which A makes a choice is the greatest value of
the nodes between which A is choosing to move to.

e The value of any node at which B makes a choice is the least value of the
nodes between which B is choosing to move to.

Finally, we say that the value of the game is the value of the initial node, i.e., the
node at which the first choice is made. We can prove a number of things about
the value of games. The proof will make crucial use of the notion of a subgame.
In any extensive form game, a subgame of a game is the game we get by treating
any perfect information node as the initial node of a game, and including the rest
of the game ‘downstream’ from there.

By a perfect information node, I mean a node such that when it is reached, it
is common knowledge that it is reached. That’s true of all the nodes in most of
the games we’re looking at, but it isn’t true in, for instance, the extensive form
version of Prisoners” Dilemma we looked at. Nodes that are in non-degenerate
information sets, i.e., information sets that contain other nodes, can’t trigger
subgames. That’s because we typically assume that to play a game, players have
to know what game they are playing.

Note that a subgame is really a game, just like a subset is a set. Once we’re
in the subgame, it doesn’t matter a lot how we got there. Indeed, any game we
represent is the consequence of some choices by the agent; they are all subgames
of the game of life.

The value of a game is the value of one of the terminal nodes

We prove this by induction on the length of games. (The length of a
game is the maximum number of moves needed to reach a terminal
node. We’ve only looked so far at games where every path takes
the same number of moves to reach a conclusion, but that’s not a
compulsory feature of games.)
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If the game has zero moves, then it has just one node, and its value
is the value of that node. And that node is a terminal node, so the
value is the value of a terminal node.

Now assume that the claim is true for any game of length & or less,
and consider an arbitrary game of length k& + 1 The first node of
the game consists of a choice about which path to go down. So the
value of the initial node is the value of one of the subsequent nodes.
Once that choice is made, we are in a subgame of length k£, no matter
which choice is made. By the inductive hypothesis, the value of that
subgame is the value of one of its terminal nodes. So the value of the
game, which is the value of one of the immediate subsequent nodes
to the initial node, is the value of one of its terminal nodes.

A can guarantee that the outcome of the game is at least the value of the
game.

Again, we prove this by induction on the length of games. It is trivial
for games of length 0. So assume it is true for all games of length at
most k, and we’ll prove it for games of length & + 1. The initial node
of such a game is either a move by A or a move by B. We will consider
these two cases separately.

Assume that A makes the first move. Then the value of the initial
node is the maximum value of any immediate successor node. So
A can select to go to the node with the same value as the value of
the game. Then we’re in a subgame of length £. By the inductive
assumption, in that game A can guarantee that the outcome is at least
the value of the subgame. And since the value of that node is the
value of the subgame, so it is also the value of the initial node, 1.e.,
the value of the initial game. So by choosing that node, and starting
that subgame, A can guarantee that the outcome is at least the value
of the game.

Now assume that B makes the first move. B can choose the node
with the least value of the available choices. Then, as above, we’ll be
in a subgame in which (by the inductive hypothesis) B can guarantee
has an outcome which is at most its value. That is, B can guarantee
the outcome of the game is at most the value of the initial node of
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the subgame. And since B can guarantee that that subgame is played,
B can guarantee that the game has an outcome of at most its value.

B can guarantee that the outcome of the game is at most the value of the
game.

The proof of this exactly parallels the previous proof, and the details
are left as an exercise.

Let’s note a couple of consequences of these theorems.

First, assume that the rationality of each player is common knowledge, and
that it is also common knowledge that this will persist throughout the game.
Then the kind of backwards induction argument we used is discussing Game 18
will show that the outcome of the game will be the value of the game. That’s
because if A is rational and knows this much about B, the outcome won’t be
lower than the value, and if B is rational and knows this much about A, the
outcome won’t be greater than the value.

Second, these theorems have many applications to real-life games. Both chess
and checkers, for instance, satisfy the conditions we listed. The only condition
that is not immediately obvious in each case is that the game ends in finite time.
But the rules for draws in each game guarantee that is true. (Exercise: Prove this!)
Since these games end with White win, Black win or draw, the value of the game
must be one of those three outcomes.

In the case of checkers, we know what the value of the game is. It is a draw.
This was proved by the Chinook project at the University of Alberta. We don’t
yet know what the value of chess is, but it is probably also a draw. Given how
many possible moves there are in chess, and in principle how long games can go
on, it is hard to believe that chess will be ‘solved” any time soon. But advances
in chess computers may be able to justify to everyone’s satisfaction a particular
solution, even if we can’t prove that is the value of chess.
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We have done as much as we can for now by merely thinking about dominance.
We need to look at games where there is no dominant option. To do this requires
taking a small detour into orthodox decision theory.

Crash Course in Probability Theory and Decision Theory
Probability

We’ll start by going over the notion of probability that is used in decision theory.
The best way to think about probability functions is by thinking about measure
functions. Intuitively, a measure function is a non-negative additive function.
That is, it is a function which only takes non-negative values, and where the
value of a whole is equal to the sum of the value of the (non-overlapping) parts.
In principle the domain of a measure function could be the size of any set, but
we’ll only consider functions with finite domains for now.

Such functions are frequently used in the real world. Consider, for instance,
the functions from regions to their population and land mass. This table lists the
(very approximate) population and land mass for England, Scotland, Wales and
Northern Ireland.

Population Land Mass
(Millions)  (Thousands of mi?)
England 50 50
Scotland 5 30
Wales 3 8

Northern Ireland

The nice thing about tables like this is that they give you a lot of information im-
plicitly. You don’t need a separate table to tell you that the combined population
of England and Scotland is 55 million, or that the combined land mass of Eng-
land and Wales is 58,000 square miles. Those (approximate) facts follow from the
facts listed on the table, as well as the fact that populations and land masses are
additive. Once you know the population of the parts, you know the population
of the whole.

The next notion we need is that of a normalised measure function. A nor-
malisted measure is a measure where every function takes the value assigned to
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the largest whole is 1. We often use this notion when talking about proportions.
Here is a table listing, again approximately, the portion of the UK population
and land mass in each of the four countries.

Population ~ Land Mass
(Proportion)  (Proportion)

England 0.84 0.54

Scotland 0.08 0.32

Wales 0.05 0.09

Northern Ireland 0.03 0.05

The way we turn the regular measure function into a normalised measure is by
dividing each value on the earlier table by the value of whole. So the land mass
of England is (about) 50,000 mi?, and the land mass of the UK is (about) 93,000
mi?, and 50.000/93,000 is about 0.54. So that’s why we right 0.54 in the top right cell
of the normalised measure table.

The last notion we need is that of a possibility space, or more formally, a field
of propositions. Although these terms might be unfamiliar, the notion should be
very familiar; it is just what we represent with a truth table. We will identify, for
these purposes, propositions with sets of possible worlds. Then a field of proposi-
tions is a set of propositions such that whenever A and B are in the set, so are =4
and A A B. This is, of course, just what we see with truth tables. Whenever you
can represent two propositions on a truth table, you can represent their conjunc-
tion and each of their negations. Just like with truth-tables, we’ll only consider
finite fields. It’s possible to extend this to cover any set-sized partition of possibil-
ity space, but we’ll ignore such complications for now. (Philosophers sometimes
write as if the restriction to set-sized partitions is unnecessary, and a probabil-
ity function could assign a probability to any portion of possibility space. That
would involve a serious deviation for mathematical orthodoxy, unless the space
of possible worlds is set-sized.)

A Probability function is just a normalised measure on a possibility space.
That is, it is a function satisfying these two conditions, where A and B are any
propositions, and 7 is a logical truth.

e 0<Pr(A)<1=Pr(7T)
e If A and B are disjoint, then Pr(A V B) = Pr(A) + Pr(B).
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We normally suppose that any rational agent has credences over the space of
(salient) epistemic possibilities, and these credences form a probability function.

In any finite field of propositions, there will be some atoms. These are propo-
sitions such that no stronger consistent proposition is in the field. (Some, but not
all, infinite fields are atomic.) We will use these atoms a lot. I’ll use the variable
w to range over atoms, reminding us that for practical purposes, atoms behave a
lot like worlds. They aren’t worlds, of course; they only settle the truth values
of a handful of propositions. But they are divisions of possibility space that are
maximally precise for present purposes. That is, they are being treated as worlds.
On a pragmatist approach to modality, there’s no more to being a world than to
be treated as a world in the right circumstances, and thinking about probability
encourages, I think, such a pragmatist approach.

Conditional Probability

So far we’ve talked simply about the probability of various propositions. But
sometimes we’re not interested in the absolute probability of a proposition, we’re
interested in its conditional probability. That is, we’re interested in the proba-
bility of the proposition assuming or conditional on some other proposition ob-
taining.

It isn’t too hard to visualise how conditional probability works if we think
of a possibility space simply as a truth table, so a measure ove a possibility space
is simply a measure over on the truth table. Here’s how we might represent
a simple probability function, defined over the Boolean combinations of three
propositions, if we’re thinking about things this way.

p q

T T T || 0.0008
T T F | 0.008
T F T 0.08
T F F 0.8
F T T | 0.0002
F T F | 0.001
F F T 0.01
F F F 0.1
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If we assume that something , call it B is true, then we should ‘zero out’, i.e.
assign probability O, to all the possibilities where B doesn’t obtain. We’re now
left with a measure over only the B-possibilities. The problem is that it isn’t a
normalised measure. The values will only sum to Pr(B), not to 1. We need to
renormalise. So we divide by Pr(B) and we get a probability back. In a formula,
we’re left with

Assume now that we’re trying to find the conditional probability of p given g in
the above table. We could do this in two different ways. First, we could set the
probability of any line where ¢ is false to 0. So we will get the following table.

0.0008
0.008

0.0002
0.001

T A A AAY

M H AT H A AR

o A AT A
o

The numbers don’t sum to 1 any more. They sum to 0.01. So we need to divide
everything by 0.01. It’s sometimes easier to conceptualise this as multiplying by
1/Pr(g), i.e. by multiplying by 100. Then we’ll end up with:

0.08
0.8

0.02
0.1

o ] = 1Y

e I B R T R QS

RS QRS TR RC R | P
(@]
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And since p is true on the top two lines, the ‘new’ probability of p is 0.88. That
is, the conditional probability of p given ¢ is 0.88. As we were writing things
above, Pr(p|q) =0.88.

Alternatively we could just use the formula given above. Just adding up rows
gives us the following numbers.

Pr(p Aq) 0.0008 + 0.008 = 0.0088
Pr(g) = 0.0008 4 0.008 +0.0002 4 0.001 = 0.01

Then we can apply the formula.

Pr(pAq)

Pr(q)
0.0088

0.01
= 0.88

Pr(plq)

Bayes Theorem

This is a bit of a digression from what we’re really focussing on in game theory,
but it’s important for understanding how conditional probabilities work. It is of-
ten easier to calculate conditional probabilities in the ‘inverse’ direction to what
we are interested in. That is, if we want to know Pr(A|B), it might be much easier
to discover Pr(B|A). In these cases, we use Bayes Theorem to get the right result.
I’ll state Bayes Theorem in two distinct ways, then show that the two ways are

ultimately equivalent.

Pr(B|A)Pr(A)
Pr(B)
Pr(B|A)Pr(A)
Pr(B|A)Pr(A)+ Pr(B|-~A)Pr(—A)

Pr(A|B)

These are equivalent because Pr(B) = Pr(B|A)Pr(A) 4+ Pr(B|-~A)Pr(—A). Since
this is an independently interesting result, it’s worth going through the proof of
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it. First note that

Pr(AAB)
Pr(B|A)Pr(A) = W Pr(A)

= Pr(AAB)

_ Pr(=AAB)
Pr(B|-A)Pr(-A) = T(AﬁPr(ﬁA)

= Pr(-AAB)
Adding those two together we get

Pr(B|A)Pr(A)+ Pr(B|—A)Pr(=A) = Pr(AAB)+Pr(—=AAB)
Pr((AAB)V(—AAB))
= Pr(B)

The second line uses the fact that A A B and —=A A B are inconsistent. And the
third line uses the fact that (A A B) V (—A A B) is equivalent to A. So we get a nice
result, one that we’ll have occasion to use a bit in what follows.

Pr(B) = Pr(B|A) Pr(A) + Pr(B|-A) Pr(—A)

So the two forms of Bayes Theorem are the same. We’ll often find ourselves in a
position to use the second form.

One kind of case where we have occasion to use Bayes Theorem is when we
want to know how significant a test finding is. So imagine we’re trying to decide
whether the patient has disease D, and we’re interested in how probable it is that
the patient has the disease conditional on them returning a test that’s positive for
the disease. We also know the following background facts.

e In the relevant demographic group, 5% of patients have the disease.

e When a patient has the disease, the test returns a position result 80% of the
time

e When a patient does not have the disease, the test returns a negative result
90% of the time

So in some sense, the test is fairly reliable. It usually returns a positive result
when applied to disease carriers. And it usually returns a negative result when
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applied to non-carriers. But as we’ll see when we apply Bayes Theorem, it is
very unreliable in another sense. So let A be that the patient has the disease,
and B be that the patient returns a positive test. We can use the above data to
generate some ‘prior’ probabilities, i.e. probabilities that we use prior to getting
information about the test.

e Pr(A)=0.05, and hence Pr(—A) =0.95
e Pr(B]|A)=0.8
e Pr(B|-A)=0.1

Now we can apply Bayes theorem in its second form.

Pr(B|A)Pr(A)
Pr(B|A)Pr(A) +Pr(B|—A)Pr(—A)
0.8 x 0.05

0.08 x 0.054+0.1x0.95
0.04

0.04+40.095
0.04

0.135
~ 0.296

Pr(A|B) =

So in fact the probability of having the disease, conditional on having a positive
test, is less than 0.3. So in that sense the test is quite unreliable.

This is actually a quite important point. The fact that the probability of B
given A is quite high does not mean that the probability of A given B is equally
high. By tweaking the percentages in the example I gave you, you can come up
with cases where the probability of B given A is arbitrarily high, even 1, while
the probability of A given B is arbitrarily low.

Confusing these two conditional probabilities is sometimes referred to as the
Prosecutors’ fallacy, though it’s not clear how many actual prosecutors are guilty
of it! The thought is that some prosecutors start with the premise that the prob-
ability of the defendant’s blood (or DNA or whatever) matching the blood at the
crime scene, conditional on the defendant being innocent, is 1 in a billion (or
whatever it exactly is). They conclude that the probability of the defendant be-
ing innocent, conditional on their blood matching the crime scene, is about 1 in
a billion. Because of derivations like the one we just saw, that is a clearly invalid
move.
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Expected Value

One very convenient notion to define using a probability function is that of an
expected value. Say that a random variable is any function from possibilities
to real numbers. We usually designate random variables with capital letters. So
expressions like X = x, which you’ll often see in probability textbooks, means
that the random variable X takes real value x.

The expected value of a random variable is calculated using the following
formula.

E(X)=> Pr(w)X(w)

Remember that w is a variable that ranges over atoms. So the summation here is
over the atoms in the field. Pr(w) is the probability of that atom obtaining, and
X (w) is the value of the random variable at w. Here’s a worked example to make
it clearer.

Let our random variable X be the number of children of the next person to
walk through the door. Let’s assume that the department contains 10 people; 2
of whom have three children, 3 of whom have two children, 3 of whom have
one child, and 2 are childless. Each member of the department is equally likely
to walk through the door, and no one else is going to. So the probability of any
given member of the department walking through the door is 1/10. Then the
expected value of X, i.e., E(X), is:

1/10x 34+ 1/10 x 3+
1/10x 24+ 1/10x 24+ 1/10 X 24+
1/lox 14 1/10x 14+ 1/10x 14+

1/lox0+4+1/10x0=1.5

Note that the expected value of X is not the value we ‘expect’, in the ordinary
sense, X to take. We can be pretty sure that X’s value will be an integer, so it
won’t be 1.5, for instance! That is to say, ‘expected value’ is a term of art.

As well as ‘absolute’ expected values, we can also define conditional expected
values, as follows:
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E(X|p)= D Pr(w|p)X(w)

I won’t go through the proof of this, but it turns out that conditional expected
values satisfy a nice theorem. Let {py,..., p,} be a partition of possibility space.

Then the following holds.

EX)= S Pr(p)E(X|p)

1=1

Here are a few of immediate corrollaries of that result.

EX)-E(Y)=EX -Y)

= S Pr(p,E(X]p) — E(Y]y)
i=1

=D Pr(p,)E(X =Y)p,))
1=1

Often we know more about the difference between two expected values than we
do about the absolute value of either. For instance, if we are comparing the ex-
pected values of taking and declining a small bet, we can figure out which action
has a higher expected value without figuring out the expected value of either,
which presumably depends on all sorts of facts about how our life might (proba-
bly) go. But as long as we can work out the difference in expected value between
the two acts conditional on each p;, and the probability of each p;, we can work
out at least which has a higher expected value, and by how much.

Orthodox Decision Theory

Given all that, it is fairly easy to summarise orthodox decision theory.

e Rational agents have a credence function over salient alternatives that is
identical to some probability function Pr.

e Rational agents also have a real-valued utility function U over salient out-
comes.

e The rational action for such an agent to do is the action that maximises
expected utility, i.e., maximises the expected value of U relative to that
function Pr.
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Lexicographic Utility

Some authors suggest a small modification to this theory. This modification plays
a prominent role in some recent work on game theory by Robert Stalnaker, so it
will be useful to cover it now.

Let’s say that the expected utility of two possible actions & and 3 are identi-
cal. But there are some possible states of the world that are live (in some salient
sense), despite having probability 0. On every one of those states, a does better
than . Now how an action does on a probability O event makes no difference
to its expected utility, so this feature doesn’t increase a’s expected utility. But it
seems to be useful to know as a tie-breaker. Say that « is barely better than [ iff
they have the same expected utility, there are some live probability 0 events on
which « is better than 3, and no live probability 0 events on which [ is better
than a.

So we can define a new concept. Say that an action is rational iff there is
no alternative action with a higher expected utility. And say that an action is
perfectly rational iff it is rational, and there is no action that is barely better
than it. Perfect rationality helps resolve some puzzles about infinite chains of
events, and gives us a motivation for not choosing weakly dominated options.

Assume that a fair coin will be flipped a countable infinity of times. Let AH
be the proposition that all the flips land heads, and EH the proposition that all
the even numbered flips (i.e., the second, fourth etc.) land heads. An agent has the
choice between a, which is accepting a gift of a bet that pays £1,000,000 if EH,
3, which is accepting a gift of a bet that pays £1,000,000 if AH, and y, which is
to decline both gifts. All three options have an expected return of 0, since the
probability of a coin landing heads on each of an infinity of flips is 0. But « is
barely better than 3, since if EH is true, it returns £1,000,000, while 3 still has
an expected return of 0. And /3 is barely better than y, since it returns £1,000,000
it AH, while y still returns nothing.

On weak dominance, consider again Game 14.

Game 14 / r
U 1,1  100,0
D 0,100 100, 100
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Assume that the row player thinks the probability that C will play » is 1. Then
whether she plays U or D doesn’t affect her rationality; she has an expected
return of 100 either way. But it’s a live possibility, in what seems to be the right
sense, that C will play /. And if so, U does better than D. So U is barely better
than D, and is the only perfectly rational play.

Best Responses

Let’s return now to game theory, because we at last have the tools to illustrate a
more subtle concept than domination.

Best Response A strategy s; is a best response for player : iff there is some prob-
ability distribution Pr over the possible strategies of other players such that
playing s; maximises i’s expected payoff, given Pr. (Note that we’re using
‘maximise’ in such a way that it allows that other strategies do just as well;
it just rules out other strategies doing better.)

Let’s look at an example of this, using a game we have already seen.

Game9 |/ r

U 3,0 0,0
M 2,0 2,0
D 0,0 3,0

We will just look at things from the perspective of R, the player who chooses the
row. What we want to show is that a// three of the possible moves here are best
responses.

It is clear that U is a best response. Set Pr(/) = 1,Pr(r) = 0. Then E(U) =
3,E(M) = 2,E(D) = 0. It is also clear that D is a best response. Set Pr(/) =
0,Pr(r)=1. Then E(U)=0,E(M)=2,E(D)=3.

The striking thing is that M can also be a best response. Set Pr(/) =Pr(r) =
1/2. Then E(U) = E(D) = 3/2. But E(M) = 2, which is greater than 3/2. So if R
thinks it is equally likely that C will play either / or , then R maximises expected
utility by playing M. Of course, she doesn’t maximise actual utility. Maximising
actual utility requires making a gamble on which choice C will make. That isn’t
always wise; it might be best to take the safe option.

It’s very plausible that agents should play best responses. If a move is not a
best response, then there is no way that it maximises expected utility, no matter
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what one’s views of the other players are. And one should maximise expected
utility. So we have a new normative status to add to our list.

BR That is, is a Best Response.

Here is the updated graph of how these norms relate.

NWDAI
NWD NSDAI BR

NSD

There are quite a few claims made in this graph; let’s go through the proofs of
them.

All BR strategies are NSD

If s is strictly dominated by s’, then the expected value of playing s’
is greater than the expected value of playing s, no matter which strat-
egy you think one’s partners will play. So s is not a best response;
s’ is better. Hence any strategy that is a best response is not strictly
dominated.

Some strategies are NWDAI, and hence NSDAI, NWD and NSD, but not
BR

Consider this variant on Game 9.

Game 19 |/ r
U 3,3 0,0
M 1,1 1,1
D 0,0 3,3
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Consider things from R’s perspective. The probability that C will
play / is x, for some x, and the probability that she will play r is
1—x. So E(U)=3x,E(D)=3(1—x)and E(M)=1. I M is to
be a best response, then we must have E(M) > E(U), and E(M) >
E(D). The first condition entails that 1 > 3x, i.e., x < 1/3. The
second condition entails that 1 > 3(1—x), i.e., x > 2/3. But these two
conditions can’t both be satisfied, so M is not a best response under

any circumstances.

But nor is M even weakly dominated. Since M sometimes does bet-
ter than U, and sometimes does better than D, it is not dominated
by either. Moreover, neither of C’s strategies is weakly dominated
by the other. So eliminating weakly dominated strategies removes
no strategies whatsoever from the game. Hence M is NWDAI, and
hence NSDAI, NWD and NSD, but it 1s not BR.

Some BR strategies are not NSDAI, and hence not NWDAI

Consider the following game, whose payoffs will be explained below.

Game 20 0 1 2 3
o 99 6,11.1 4,9.2 2,7.3
1 11.1,6 71,71 41,92 21,92
2 92,4 92,41 52,52 22,73
3 73,2 73,21 73,22 33,33

The idea is that R and C will ‘play’ three rounds of Prisoners’ Dil-
emma. They have to specify their strategy in advance, and, to make
things easy, they only have four options. Their strategy must be of
the form “Tit-for-tat-minus-»”, for n € {0, 1,2,3}. The strategy “Tit-
for-tat” in an iterated Prisoners’ Dilemma is the strategy of playing
B in the first game, then in any subsequent game, playing whatever
one’s partner played in the previous game. The strategy “Tit-for-tat-
minus-»” is the strategy of playing Tit-for-tat until there are » moves
to go, at which point one plays A the rest of the way.

To make sure various strategies are strictly dominated, I tinkered with
the payoffs a little. Someone who plays Tit-for-tat-minus-n gets a
bonus of 7/10.

55
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From now on, unless it makes too much ambiguity, we’ll use 7 to
refer to the strategy of playing Tit-for-Tat-minus 7. Note that 0 is
strictly dominated by both 1 and 2. If we assume that neither player
will play 0, then 1 is dominated by 2. And if we assume that neither
player will play 0 or 1, then 2 is dominated by 3. So iterative deletion
of strictly dominated strategies leaves us with nothing but 3. That
is, both players should play A from the start, if they want to play
strategies that are NSDAI

But also note that any strategy except 0 is BR. Given a probability
of 1 that the other player will play O, the best response is 1. Given a
probability of 1 that the other player will play 1, the best response is
2. And given a probability of 1 that the other player will play 2 or 3,
the best response is 3. So 1 and 2 are both BR, but not NSDAI, and
hence not NWDAL

Some BR strategies are not NWD

This one is a little odd, though it turns out to be important for a lot
of subsequent analysis.

Game 10/ 7
Uu 1,1 0,0
D 0,0 00

This is a game of perfect co-operation; the players get the same pay-
offs in every case. And they both get 1 if we end up at (U, /), and 0
otherwise. Note that both D and R are weakly dominated. So (U, /)
is the only NWD outcome of the game.

But both D and r are best responses. If C plays 7, then it doesn’t
matter what R plays. Since a best response only has to be as good as
the alternatives, not better, in that circumstance D is a best response.
A similar argument shows that r is a best response. So we have two
examples of strategies that are BR despite being weakly dominated.
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Iterated Best Responses

Some best responses are pretty crazy when playing against a rational opponent.
Consider the following game from R’s perspective.

Game21 L r
U 55 0,5
D 0,5 2,5

In this game, D is a best response. It does best if C chooses r. But why on earth
would C do that? C gets 5 for sure if she chooses L, and -5 for sure if she chooses
7. Assuming the weakest possible rationality constraint on C, she won’t choose
a sure loss over a sure gain. So given that, C should choose U.

Of course, we could have shown that with just considering domination. Note
that U is both NSDAI and NWDAI, while D has neither of these properties. The

following example is a little more complex.

Game 22 |/ m r
U 1,3 0,1 1,0
D 0,0 1,1 0,3

In this game neither player has a dominated move. So just using domination
techniques can’t get us closer to solving the game. And, from R’s perspective,
thinking about best responses doesn’t help either. U is a best response if C is
going to play / or r with probability at least 1/2, and D is best response if C is
going to play m with probability at least 1/2.

But note that 7 is not a best response for C. The argument for this is just
the argument we used in Game 19. Now let’s assume, when thinking from R’s
perspective, that C will play a best response. That is, we’re assuming C will play
either / or r. Given that, the best thing for R to do is to play U.

More carefully, if R knows that C is rational, and if R knows that rational
agents always play best responses, then R has a compelling reason to play U.
This suggests a new normative status.

BRBR That is, is a Best Response to a Best Response.
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All BRBR strategies are BR

This is obvious. All BRBR strategies are best responses to best re-
sponses, hence they are best responses to something, which by def-
nition makes them BR.

Some BR strategies are not BRBR
See Game 22. From R’s perspective, D is BR but not BRBR.

We can go on further. Think about Game 22 from C’s perspective. Assuming
R is rational, and knows C is rational, then R has a compelling reason to play
U. And if R plays U, the best response for C is /. This doesn’t mean that / is
the only best response; 7 is also a best response. Nor does it mean / is the only
best response to a best response; 7 is the best response to D, which as we showed
above is a best response. What’s really true is that / is the only best response to a
best response to a best response.

That means that if C knows that R knows that C is rational, then C has
a strong reason to play /. We could designate this with a new status, perhaps
BRBRBR. But at this point it’s best to simply iterate to infinity.

BRBRI That s, is a Best Response to a Best Response to a Best Response, and
so on to Infinity.

All BRBRI strategies are BRBR

This is obvious.

Some BRBR strategies are not BRBRI
See Game 22. From C’s perspective, R is BRBR but not BRBRI.

We say that p is mutual knowledge if every player in the game knows it. We say
that p is common knowledge if everyone knows it, and everyone knows every-
one knows it, and so on. It seems plausible that in any game where it is mutual
knowledge that everyone is rational, agents should only play BRBR strategies.
And at least there’s a case to be made that in a game where it is common knowl-
edge that the players are rational, players should play BRBRI strategies. (Though
we will come back to this point repeatedly, especially in the context of extensive
form games.)
Let’s update our graph of different normative statuses.
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BRBRI
NWDAI BRBR
NWD NSDAI BR

NSD

We have already gone over some of the proofs of the claims in the graph; let’s
finish up this part by going over the rest.

All BRBRI strategies are NSDAI

The proof of this is actually a little complicated. We will just go over
the proof for a two-player game; generalising the proof introduces

even more complications.

Assume for reductio that it isn’t true. That is, assume that a BR-
BRI strategy, call it s, is deleted in the process of iterative deletion of
strongly dominated strategies. So s, is a best response to some strat-
egy s; which is a best response to some strategy s, which is a best
response to some strategy s; etc. (Since we’re assuming games are
finite, many of these s; must be identical to each other.)

Every such deletion happens at some round or other of deletion. Let
the round that this BRBRI strategy is deleted be the 7’th round. That
is, given the strategies surviving after #» — 1 rounds, some alternative
strategy s’ does better than s, no matter what alternative strategy is
played. So s; must have been already deleted. That’s because s, is a
best response to s;, and an inferior response to all surviving strate-
gies. So s, is deleted in, at the latest, the #» — 1’th round.

Now consider the round at which s, is deleted. Some alternative to
s; 1s a better response than s, to any strategy surviving to this stage of
the iterative deletion process. But s, is, by hypothesis, a best response
to s,. So s, must have been antecedently deleted before this round.
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That is, s, must have been deleted by at the latest the » —2’nd round
of the iterative deletion process.

Generalising this argument, strategy s, must be deleted by, at the
latest, the 7 — B’th round of the iterative deletion process. But this is
impossible. Consider, for instance, the case where £ = n+1. Strategy
5,41 must be deleted by, at the latest, the -1’th round. But there is no
-1’th round, so we get a contradiction, completing the reductio.

Some strategies which are BRBR are not NSDAI, and hence not NWDAI

See Game 20. Playing 1 is a best response (to playing 0). And playing
2 is a best response to playing 1, so it is BRBR. But iterative deletion
of strongly dominated strategies deletes first O, then 1, then 2. So
playing 2 is not NSDAL

Some strategies which are BRBRI, and hence BR, and not NWD
We again use Game 10. Playing D is a best response to playing R,

which is a best response to playing D, which is a best response to
playing R, etc. So each of these strategies is BRBRI. But both strate-
gies are weakly dominated. So being BRBRI does not entail being
NWD.



Nash Equilibrium

In a two-player game, for a strategy s, to be BRBRI, it must be the best response
to some strategy s;, which is the best response to some strategy s,, which is the
best response to some strategy s;, etc. But we are assuming that there are only
finitely many strategy choices available. So how can we get such an infinite chain
going?

The answer, of course, is to repeat ourselves. As long as we get some kind
of loop, we can extend such a chain forever, by keeping on circling around the
loop. And the simplest loop will have just two steps in it. So consider any pair of
strategies (S, $;) such that s is the best response to s;, and s; is the best response
to so. In that case, each strategy will be BRBRI, since we can run around that
two-step ‘loop’ forever, with each stop on the loop being a strategy which is a
best response to the strategy we previous stopped at.

When a pair of strategies fit together nicely like this, we say they are a Nash
Equilibrium. More generally, in an n-player game, we use the following defini-
tion.

NE Some strategies sy, ...,s,, in an n-player game form a Nash Equilibrium iff
for each 1, s; is a best response to the strategies played by the other 7 — 1
players. That is, iff player i cannot do better by playing any alternative

strategy to s;, given that the other players are playing what they actually
do.

The ‘Nash’ in Nash Equilibrium is in honour of John Nash, who developed the
concept, and proved some striking mathematical results concerning it. (You may
remember that Nash was the subject of a bio-pic some years back, ‘A Beautiful
Mind’. The movie required believing that Russell Crowe was a mad genius, and
didn’t properly deploy the notion of Nash Equilibrium, so maybe it is best if we
keep our contact with Nash to the textbooks.)

The next few results are enough to let us place NE on our table of norms.

All NE strategies are BRBRI
By hypothesis, if s is part of a NE pair, then there is some s” such

that s is a best response to s’, and s’ is a best response to s. And that

means that each of s and s’ is BRBRI.
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Nash Equilibrium

Some BRBRI are not NE

We’ll prove a slight stronger result in a few pages, but for now we can
get the result we need by looking at the following simple game.

Game 23 |/ r
U 1,0 0,1
D 0,1 1,0

None of the (pure) strategies U,D, [ or r are NE. That’s because
there’s no NE pair we can make out of those four. And that’s fairly
obvious from the fact that whichever corner of the table we end up
in, one of the players would have done better by swapping their strat-

egy.
But note that each of the four strategies is BRBRI. U is a best re-

sponse to [, which is a best response to D, which is a best response
to r, which is a best response to U, whichis.....

The point here should be clear once we think about how we got from
the idea of BRBRI to the idea of NE. We wanted a ‘loop’ of strategies,
such that each was a best response to the strategy before it. NE was
what we got when we had a loop of length 2. But there are loops
which are longer than that; for example, there are loops of length 4.
And any loop is sufficient for the strategies on the loop to be BRBRI.
And these strategies need not be NE.

Some NE strategies are not NWD, and hence not NWDAI

We again use Game 10.

Game 10/ 7
U 1,1 0,0
D 0,0 0,0

The pair (D, r) is a Nash Equilibrium pair. But neither D nor r
survives the cutting out of weakly dominated strategies.



Nash Equilibrium in Simultaneous Move Games 63

Some NWDALI strategies are not NE

This one is a little more complicated, but only a little. Basically, we
take Game 23 and add a ‘co-operative’ strategy.

Game 24 | m r
U 44 3,3 3,3
M 3,3 50 0,5
D 3,3 0,5 5,0

First, note that (U, /) is a Nash Equilibrium. Second, note that if R
plays M, then C’s best response is to play r. And if C plays r, R’s
best response is to play D, and so on. So R playing M can’t be part
of any Nash Equilibrium. If it were, there would have to be some
response on C’s part to which R playing M was a best response, and
there isn’t. Similar arguments show that R playing D isn’t part of
any Nash Equilibrium. And similar arguments to that show that C
playing either m or 7 can’t be part of any Nash Equilibrium.

So (U, 1) is the only (pure) Nash Equilibriumin the game. (L'l ex-
plain why I’'m puttng ‘pure’ in occasionally very soon!) But elim-
inating dominated strategies gets us precisely nowhere, since as can
be quickly verified, there are no dominated strategies in the game. So
for each player, playing M is NWDAI, but is not NE.

Note that this example is also an argument that some BRBRI strate-
gies are not NE, since for each player M is BRBRI. (Exercise: Prove
this!)

Given all that, we can update the graph of normative statuses. The latest iteration
1s Figure 5.1.

Nash Equilibrium in Simultaneous Move Games

Let’s return to Game 23. It looks at first like there won’t be any Nash Equilib-
rium strategies in this game. That would be unfortunate; all of our statuses so far
are exemplified by at least one strategy in each game.

But that would be too quick. It leaves out a large class of strategies. Game
theorists say that as well as simply choosing to play U, or choosing to play D, R
has another choice. She can play a mixed strategy. A mixed strategy is where
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NE
BRBRI
NWDAI BRBR
NWD NSDAI BR
\‘/

NSD

Figure 5.1: Normative Statuses

the player plays different pure strategies with different probabilities. We’ll come
back very soon to what we might possibly mean by ‘probability” here, but for
now let’s explore the consequences for the existence of Nash Equilibria.

Let’s assume that R plays U with probability 1/2, and D with probability 1/2.
And similarly, assume that C plays / with probability 1/2, and » with probability
1/2. Can either player do better by deviating from these strategies?

Let’s look at it first from C’s perspective. If she plays /, then her expected
return is given by the following equation.

E(L)=Prob that R plays U x Payoff of (U, )
+ Prob that R plays D x Payoff of (D, /)
=1/2x0+1/2x1
p— 1/2
And the expected return of playing r is given by the following equation.

E(R) =Prob that R plays U x Payoft of (U, r)
+ Prob that R plays D x Payoff of (D, r)
=1/2x14+1/2%x0
— 1/,
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Let M, be the mixed strategy of playing L with probability x, and R with proba-
bility 1 — x. Then the expected value of M, is given by the following equation.

E(M,)=Pr(1)E(])+Pr(r)E(r)
= x/2+ 1—x/2
= 1/2

So whichever strategy C adopts, whether it is /, 7 or one of the continuum many
values of M, she’ll have an expected payout of 1/2. That means that she can’t do
any better by playing any alternative to M,;,. Of course, that’s for the rather
boring reason that any strategy is as good as any other at this point.

When we’re discussing R’s strategies, we’ll say that M, is the strategy of play-
ing U with probability x, and D with probability 1 — x. A similar argument
shows that given that C is playing M, ,, all strategies are as good as each other for
R. That means that the pair (M,),,My;,) is a Nash Equilibrium. Each player does
as well as they can playing M, ), given that the other player is playing #,/,. And
that’s the definition of a Nash Equilibrium.

It turns out that for any game with a finite number of choices for each player,
there is always at least one Nash Equilibrium, if we include mixed strategies. The
proof of this is beyond the scope of these notes, however.

Rather than using ad hoc naming conventions like M, it would be good to
have better ways of referring to mixed strategies. I'll use the following (fairly stan-
dard) notation. If a player’s choices for pure strategies are s;,s,,...,s,, then the
vector (xq,%,,...,x,) will represent the mixed strategy of playing s; with proba-
bility x;. If the game is represented on a table, we’ll let the first (i.e., leftmost)
column be C’s strategy s, the second column be her strategy s,, and so on. And
we’ll let the first (i.e., highest) row be R’s strategy s,, the second row be her strat-
egy s,, and so on. This notation will need to get more complicated when we
consider games in extensive form, but in fact we usually use mixed strategies for
games displayed in strategic form, so this isn’t a huge loss.

Mixtures and Dominance

Now that we have the notion of a mixed strategy, we need to revise a little bit
about what we said about dominant strategies. Recall that we used the Game 19
to show that some strategies which were not dominated were nevertheless not
best responses.
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Game 19 [ 7

U 3,3 0,0
M 1,1 1,1
D 0,0 3,3

Now compare the strategy M to the strategy S = (1/2,0,1/2). If C plays /, then M
returns 1, but the mixed strategy has an expected return of 1.5. If C plays r, then
M returns 1, but § has an expected return of 1.5. Indeed, if C plays any mixture
of / and 7, then M returns 1, but § still has an expected return of 1.5. In effect,
M 1s a dominated strategy; it is dominated by S.

So when we are talking about whether a strategy is dominated, we have to dis-
tinguish the scope of the tacit quantifier. Remember, ‘dominated’ means ‘dom-
inated by something’. If we are only quantifying over pure strategies, then M
is not dominated. If we are quantifying over mixed strategies as well, then M
is dominated. At least some authors use ‘dominated’ with this more expansive
quantifier domain in mind, so M is dominated because S dominates it. There is
a nice advantage to doing this. (There are also costs; it is harder to tell just by
looking whether strategies are dominated in this more expansive sense.) It means
we can distinguish nicely between what I've called a Best Strategy, which is really
a strategy that is not strongly dominated, and what we might call Perfect Strate-
gies, which are strategies that are not weakly dominated in this sense. We’ll come
back to this when we look at Stalnaker’s work in a few chapters.

What is a Mixed Strategy?

So far we’ve noted that there are some games that don’t have pure strategy Nash
Equilibria. And we said that if we expand the space of available strategies to
include mixed strategies, then those games do have Nash Equilibria. In fact we’ve
said, though not gone close to proving this, that all finite games have at least one
Nash Equilibrium solution, once we allow that agents can play mixed strategies.

But what does it mean to ‘play a mixed strategy’? As game theorists some-
times put it, how should be interpret talk of mixed strategies. It turns out the
options here are very similar to the candidate ‘interpretations’ of probability. (See
the SEP entry on interpretations of probability for more on this debate, if you're
interested.) Basically the interpretations can be classified as either metaphysical
or epistemological. We’re going to start with one of the metaphysical interpre-
tations, then look at a few epistemological interpretations, and finally return to
some more mundane metaphysical interpretations.
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The most obvious, and natural, interpretation uses objective chances. What
it means to play the strategy (x,1— x) is to grab some chance device that goes
into one state with chance x, and another state with chance 1 — x, see which state
it goes into, then play the s; if it is in the first state, and s, if it is in the second
state. Consider, for instance, the game Rock, Paper, Scissors, here represented as
Game 25.

Game 25 Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1

Scissors  -1,1  1,-1 0,0

For each player, the equilibrium strategy is to play (1/3,1/3,1/3). (Exercise: Verify
this!) The chance interpretation of this mixed strategy is that the player takes
some randomising device, say a die, that has a 1/3 chance of coming up in one
of three states. Perhaps the player rolls the die and plays Rock if it lands 1 or 2,
Paper if it lands 3 or 4, Scissors if it lands 5 or 6.

A slightly more elegant version of this strategy involves the game Matching
Pennies. We’ve seen the formal version of this game before, but the informal
version is fun as well. Basically each player reveals a penny, and Row wins if they
are both heads up or both tails up, and Column wins if one coin is heads up and
the other tails up. Apparently this was a source of some schoolyard amusement
before students had things like Angry Birds, or football, to play. As I said, we’ve
seen the game table before, though not with these labels.

Game 26 Heads Tails
Heads 1,-1 -1,1
Tails -1,1  1,-1

Again, the only equilibrium solution is for each player to play (1/2,1/2). And
here the chance interpretation of this strategy is that each player plays by simply
flipping their coin, and letting it land where it may.

But obviously it is very hard to procure a chance device on the spot for any
mixed strategy one might choose to play. How should we interpret a mixed
strategy then? The natural move is to opt for some kind of epistemological inter-
pretation of mixtures.
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One option is a straightforward subjectivist interpretation of the relevant
probabilities. So Row plays a mixed strategy (x,1 — x) iff Column’s subjective
probability that Row is playing s, with is x, and her subjective probability that
Row is playing s, is 1 — x. One does hear game theorists offer such subjective
interpretations of mixed strategies, but actually they don’t seem to make a lot
of sense. For one thing, it’s hard to say how Column’s credences should be in
any sense a strategy for Row, unless Row has Jedi mind-control powers. And if
Row does have Jedi mind-control powers, then she shouldn’t settle for any kind
of mixed strategy equilibrium. In Rock, Paper, Scissors, for instance, she should
follow the strategy of playing Rock and using her Jedi mind-control powers to
get Column to think she’s playing Paper.

Perhaps we can retain a subjectivist interpretation if we change who the sub-
ject is. Frank Arntzenius, in a recent paper called “No Regrets”, offers a different
kind of subjectivist interpretation. He says that an agent plays a mixed strategy
(x,1—x) if her credences at the end of rational deliberation are that she’ll play
s, with probability x, and s, with probability 1 — x. He admits there are oddi-
ties with this interpretation. In particular, he notes that it means that if you take
some kind of equilibrium theory to be the theory of rationality (as he does), then
our theory of rationality turns out to be a theory of what one should believe one
will do, not what one will do. This feels a little like changing the subject.

Could some kind of objective version of an epistemological interpretation do
any better? Perhaps we could say that to play (x,1 — x) is to act in such a way
that the objectively rational thing to believe about the agent is that she’ll play s,
with probability x? Arguably, the objective chance interpretation is a version of
this; given the Principal Principle, the rational thing to believe about a person
who uses a randomising device that comes up s; with chance x is that they’ll
play s, with probability x. But beyond that, it is hard to see what advantage the
view has. After all, if it is an available strategy to make rational people think that
you’re playing s; with probability x, in Rock, Paper, Scissors you should make
them think you’re likely playing Paper when you’re actually playing Rock. So
it’s hard to see how the equilibrium solution is rational.

In Ken Binmore’s decision theory textbook Playing for Real, he seems to en-
dorse something like the objective epistemological interpretation of mixed strate-
gies.
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Suppose that we deny Eve access to a randomizing device when she
plays Matching Pennies with Adam. Is she now doomed to lose? Not
if she knows her Shakespeare well! She can then make each choice of
head or tail contingent on whether there is an odd or even number
of speeches in the successive scenes of Titus Andronicus. Of course,
Adam might in principle guess that this is what she is doing—but
how likely is this? He would have to know her initial state of mind
with a quite absurd precision in order to setle on such a hypothe-
sis. Indeed, I don’t know myself why I chose Titus Andronicus from
all Shakespeare’s plays ... To outguess me in such a manner, Adam
would need to know my own mind better than I know it myself.
(Binmore 2006, 185).

But why is the likelihood that Adam will figure out Eve’s decision a component
of Eve’s strategy? Either Eve has some control over the probabilities Adam will
assign to her making various choices, or she doesn’t. If she doesn’t, then she
doesn’t have the power to play any mixed strategy interpreted this way. If she
does, she shouldn’t use them to give Adam true beliefs about her likely decisions.
So it’s hard to see the advantages.

Perhaps then the detour through epistemological interpretations was a red
herring. And this leads us back to two more metaphysical interpretations, both
of them involving frequencies.

One of these interpretations is particularly important in biology, and we will
return to this idea much later in the course. The idea is that a species plays a mixed
strategy (x,1—x) iff x of its population plays s;, and 1—x of its population plays
s,. Once we’re looking at population level ‘strategies’ we’ve obviously moved a
little away from the focus on rational game playing that has been the focus of the
course to date. I’'m not sure that it even makes sense to assign agency to popula-
tions. (Probably many of you think something stronger, that it’s clearly wrong to
assign agency to populations. But I’'m an extreme enough functionalist to think
that populations might have beliefs, desires, intentions and the like. I don’t want
to make this part of the notes turn on my crazy functionalism though!) And pre-
sumably the way the population implements the policy of having this frequency
distribution of strategies is by having some randomising device that sorts individ-
ual organisims into one of two types. So perhaps this isn’t really an alternative to
the objective chance interpretation either.
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The other big alternative is hinted at in Binmore’s discussion. Note that he
refers to ‘each choice of head or tail’. This implicates at least that there will be
more than one. So what he’s really interested in is the case where Adam and Eve
play Matching Pennies repeatedly. In this case, we might say that playing a mixed
strategy (x,1—x) is playing s, in x of the repeated games, and playing s, in 1 — x
of the repeated games. (Actually, we might want something more specific than
that, but saying just what we need is hard. See the SEP entry on “Chance versus
Randomness” for more discussion of the difficulties here.)

But it’s odd to bring repeated games in here. It looks suspiciously like chang-
ing the subject. What we care about is what we should do in this very game, not
in a long sequence of games. Put another way, we should in the first instance be
looking for a rule about what to do in a (known to be) one-shot game. What
should we do in such a game? Considerations about what would happen were we
to repeat the game seem irrelevant to that.

The issues about repeated games are complicated, and it is worth spending
some time going over them directly.

Nash, Best Response and Repeated Games

Here’s a hypothesis. I happen to think it’s basically true, but for now all that
matter is that it is a hypothesis. The hypothesis is that in any game where there
is common knowledge of rationality, any strategy which is BRBRI (i.e., that is a
best response to a best response to a best response ...) can be rationally played.

Now here’s an objection to that hypothesis. Consider repeated games of
Rock, Paper, Scissors. In any given game, playing Rock is BRBRI. That’s be-
cause playing Rock is a best response to playing Scissors, which is a best response
to playing Paper, which is a best response to playing Rock, and so on. But play-
ing Rock repeatedly is dumb. If it weren’t dumb, the following scene (from The
Simpsons episode “The Front” (April 15, 1993)) wouldn’t be funny.

Lisa: Look, there’s only one way to settle this. Rock-paper-scissors.
Lisa’s brain: Poor predictable Bart. Always takes ‘rock’.

Bart’s brain: Good ol’ ‘rock’. Nuthin’ beats that!

Bart: Rock!

Lisa: Paper.

Bart: D’oh!
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Since Bart’s strategy is BRBRI, and is irrational, it follows that the hypothesis is
false.

I think that objection is too quick, but it takes some time to say why. Let’s
think a bit about where Bart goes wrong. Imagine he and Lisa play Rock, Paper,
Scissors (hereafter RPS) many many times. At first Lisa plays the mixed strategy
(1/3,1/3,1/3), and Bart plays Rock. So each of them have an expected return of 0.
By the 11p round, Lisa has figured out what Bart is playing, and plays Paper, for
an expected return of 1, while Bart has an expected return of -1.

Now let’s think about when Bart goes wrong. To do this, I’'m going to assume
that Bart is rational. This is clearly false; Bart is obviously not playing rationally.
But I want to see just where the assumption of rationality leads to a contradiction.
Let’s say we knew in advance nothing but that Bart was going to play Rock on
the 11% round. Since we’re still assuming Bart is rational, it follows that playing
Rock is a best response given his credences over Lisa’s moves. Without I hope loss
of generality, let’s assume Lisa is still playing (1/3,1/3,1/3). Then Bart’s expected
return is 0, like for any other strategy, so it’s fine to play Rock.

But of course Bart doesn’t just play Rock in the 11t

round. He also plays
in the previous ten rounds. And that means that Lisa won’t still be playing
(1/3,1/3,1/3) by the time we get to the 11 round. Instead, she’ll be playing Paper.
So Bart’s expected return in the 11" round is not 0, it is (roughly) -1.

I think something follows from those reflections. When we added in infor-
mation about Bart’s play in the first ten rounds, Bart’s expected return in the 11t
round dropped. So I conclude that there was a long-term cost to his play in the
first 10 rounds. When he played Rock all those times, his expected return in that
round was 0. But he incurred a long-term cost by doing so. That long-term cost
isn’t properly represented in the matricies for each round of the game. When we
include it, it no longer becomes clear that Rock is BRBRI in each round.

A natural question then is, what really is the payoff table for each round of
RPS. The existing table isn’t a payoff table for two reasons. First, it lists out-
comes, not valuations of outcomes. And second, it only lists one kind of out-
come, the short-run winnings, not the long-run consequences of any given strat-
egy. What we really need is a valuation function over long-run consequences.

So what is the payoff table for each round of the game? I think that’s just
much too hard a question to answer. What we can say with some precision is
what the short-run outcome table is for each round. And summing short-run

outcomes gives us long-run outcomes, which hopetully will correlate in some
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sensible way with payoffs. But determining the long-run outcomes of any given
strategy is much too hard.

And that’s one reason to care about both mixed strategies, and the existence
of equilibria. Sometimes the best we can do in specifying a game is to specify the
short-run outcomes, and say that the long-run outcomes are sums of them. Now
the following hypothesis is clearly false: In any long-run game, it is rationally
permissible to, at each stage, play any strategy which would be BRBRI if the
short-run outcomes were the total payoffs. The Bart and Lisa example refutes
that hypothesis. But it doesn’t refute the hypothesis that I started this section
with, namely that any BRBRI strategy is rationally acceptable.



Games, Decisions and Equilibria

Let’s start today with a different hypothesis. Today’s hypothesis is that only Nash
Equilibrium strategies are rationally permissible. This is something that many
game theorists would endorse. But it’s a striking thesis. It says that sometimes
only mixed strategies are rationally permissible, since any pure strategy will not
be in equilibrium. And this is surprising given what we said earlier about decision
theory.

Remember that a game is just a decision problem where the relevant parts of
the world include other rational actors. So we should think that decision theo-
retic considerations would apply. Indeed, the view that game theory and deci-
sion theory have radically different norms will have some odd consequences in
situations where one is dealing with borderline rational agents, such as, perhaps,
non-human primates or very young human children.

And yet, orthodox decision theory never says that mixed strategies are prefer-
able to pure strategies. It might say that a mixed strategy is no worse than a pure
strategy, but it will never say that the mixed strategy is better. We can see this
quite easily. Assume our agent has two possible choices, s; and s,. The expected
value of s; is E(s;), and the expected value of s, is E(s,). Without loss of gen-
erality, assume E(s;) > E(s,). (If that’s not true, just relabel the strategies so it
becomes true!) Let’s work out the expected value of an arbitrary mixed strategy.

E({x,1—x))

xXE(sy)+ (1= x)E(sy)
XE(sy)+(1=x)E(sy) + (1= x)((E(s) — £(s))
<xE(s;)+(1—x)E(s;)

=E(s))

The reasoning on the third line is that since E(s;) > E(s,), E(s,)—E(s;) <0. And
since x is a probability, and hence in [0, 1], 1—x > 0. So (1—x)((E(s,)—E(s;)) <0,
50 XE(s)) 4+ (1= x)E(sy) + (1 = x)((E(s2) = £(s1)) < xE(s1) + (1 = x)E(sy)-

So the mixed strategy can’t do better than the better of the pure strategies.
Indeed, it only does as well as s; when (1 — x)((E(s,) — E(s;)) = 0, which means
either 1 —x = 0 or E(s,) — E(s;). The first of these happens when x = 1, i.e.,
when the agent plays the pure strategy s;. The second of these happens when
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E(s,) = E(s;), 1.e., the two pure strategies have the same expected return, so it
doesn’t matter, from an expected utility perspective, which one we play. (We’ll
come back to this fact a lot next time.)

So if a mixed strategy never has a higher expected return than a pure strategy,
how can it be better? To see what is really happening, we need to step back a
bit and revisit some notions from decision theory. We’ll need to rethink what
we were saying about dominance, and as we do that, revisit what we were saying
about expected value maximisation.

Dominance and Independence

Orthodox game theory endorses the following principle:

Dominance If choice ¢; does better than choice ¢, in every possible state, then
¢, is preferable to c,.

We could derive that by showing that ¢, will have a higher expected utiility than
¢, but that would be partially missing the point. The reason we care about
expected utility is because it endorses principles like Dominance.

But Dominance has some odd consequences. Jim Joyce suggests the following

puzzle case:

Suppose you have just parked in a seedy neighborhood when a man
approaches and offers to “protect” your car from harm for £10. You
recognize this as extortion and have heard that people who refuse
“protection” invariably return to find their windshields smashed. Th-
ose who pay find their cars intact. You cannot park anywhere else
because you are late for an important meeting. It costs £400 to re-
place a windshield. Should you buy “protection”? Dominance says
that you should not. Since you would rather have the extra £10 both
in the even that your windshield is smashed and in the event that it
is not, Dominance tells you not to pay. (from pages 115-6 of Joyce,

The Foundations of Causal Decision Theory.)

We can put this in a table to make the dominance argument that Joyce suggests

clearer.
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Broken Windshield Unbroken Windshield
Pay extortion -£410 -£10
Don’t pay -£400 0

In each column, the number in the ‘Don’t pay’ row is higher than the number
in the ‘Pay extortion’ row. So it looks just like the case above where we said
dominance gives a clear answer about what to do. But the conclusion is crazy.
Here is how Joyce explains what goes wrong in the dominance argument.

Of course, this is absurd. Your choice has a direct influence on the
state of the world; refusing to pay makes it likely that your wind-
shield will be smashed while paying makes this unlikely. The ex-
tortionist is a despicable person, but he has you over a barrel and
investing a mere £10 now saves £400 down the line. You should pay
now (and alert the police later).

This seems like a general principle we should endorse. We should define szates
as being, intuitively, independent of choices. The idea behind tables such as the
one given here is that the outcome should depend on two factors - what you
do and what the world does. If the ‘states’ are dependent on what choice you
make, then we won’t have successfully ‘factorised’ the dependence of outcomes
into these two components.

There is a famous historical, or at least literary, example of the odd conse-
quences of ignoring this dependence restriction. In Henry V, Shakespeare gives
the title character the following little speech. The context is that the English are
about to go to battle with the French at Agincourt, and they are heavily outnum-
bered. The king’s cousin Westmoreland has said that he wishes they had more
troops, and Henry strongly disagrees.

What’s he that wishes so?

My cousin Westmoreland? No, my fair cousin;
If we are marked to die, we are enough

To do our country loss; and if to live,

The fewer men, the greater share of honor.
God’s will! I pray thee, wish not one man more.
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This isn’t very persuasive reasoning, though I guess it worked in the play!
And the reason that it isn’t persuasive is that it takes the states to be win and lose,
but these are dependent on what we’re considering, namely whether it would be
better to have more troops. It seems that we need some kind of restriction on
dependent states. But what do we mean here by ‘dependent’? It turns out that
there are two quite distinct ways we can think about independence that lead to
strikingly different responses.

First, we might treat independence as probabilistic independence. On this
way of thinking about decision theory, we should only include states such that
the probability of being in any one state is the same no matter what choice we
make.

Second, we might treat independence as causal independence. On this way
of thinking about decision theory, we should only include states such that which
state we’re in isn’t caused (in whole or in part) by our decision.

Either strategy will be enough to deflect Joyce’s argument, and King Henry’s
for that matter. If we don’t pay, the probability of being in the broken windshield
state is higher than if we do. And if we pay, this might cause us to be in one
state (the unbroken windshield state) rather than another. So cases like Joyce’s,
or King Henry’s, don’t distinguish which independence criteria is appropriate.
Fortunately, there are some cases that tease these two notions apart.

Newcomb’s Problem

The most famous such case in philosophy is Newcomb’s Problem. It was in-
troduced to philosophers by Robert Nozick, who in turn credited it to William
Newcomb, a physicist at Livermore. Here’s how the puzzle is often presented.
In front of you are two boxes, call them A and B. You call see that in box B there
1s £1000, but you cannot see what is in box A. You have a choice, but not perhaps
the one you were expecting. Your first option is to take just box A, whose con-
tents you do not know. Your other option is to take both box A and box B, with
the extra £1000.

There is, as you may have guessed, a catch. A demon has predicted whether
you will take just one box or take two boxes. The demon is very good at pre-
dicting these things - in the past she has made many similar predictions and been
right every time. If the demon predicts that you will take both boxes, then she’s
put nothing in box A. If the demon predicts you will take just one box, she has
put £1,000,000 in box A. So the table looks like this.
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Predicts 1 box Predicts 2 boxes
Take 1 box £1,000,000 £0
Take 2 boxes  £1,001,000 £1,000

Crucially, the demon has made a prediction. So there is no causal link between
what choice is made, and what ‘state’ we’re in. (The scare quotes there are because
it isn’t obvious that we should treat the demon’s predictions as states, any more
than King Henry should have treated winning and losing as states.) But there
is a probabilistic connection. If you take 1 box, that’s excellent evidence that
the demon will have predicted you’ll have taken one box. So it’s more probable
that the demon will have predicted one box if you selected one box, than if you
selected two boxes.

Put more simply, the demon’s predictions are causally, but not probabilisti-
cally, independent of your choices.

And that matters, because if the table above is a good representation of the
decision problem, the obviously correct thing to do is to take both boxes. After
all, taking both boxes does better no matter which state you are in. That is,
taking both boxes does better no matter which state you are in, if the demon’s
predictions are genuinely states in the relevant sense.

Before going on, it’s worth thinking about how yox might respond to New-
comb’s Problem, and why. In the few section, we’ll look at some philosophically
important responses.

Newcomb as a Game

Very occasionally, you hear people say that Newcomb’s Problem relies on the
idea that the demon is perfect, and since thisis impossible, the puzzle is dissolved.
Really, neither of these claims is true. The puzzle arises even if the demon is very
good. (As we’ll see in a bit, the puzzle may arise if the demon is even marginally
better than chance.) And it isn’t obviously true that a perfect demon is impossi-
ble, or even incompatible with a free agent choosing. If determinism is true, and
compatibilism is the true theory of free will, then the demon might be perfect,
even if the agent is a free chooser.

Indeed, we can see the basic structure of the puzzle by considering New-
comb’s Puzzle simply as a game. Here it is, with R as the agent, and C as the
demon, and 1 util being £1000.
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Game 11/ r
U 1,1 1001,0
D 0,0 1000, 1

You might think that as long as C is pretty good at figuring out what rational R
will do, which game theorists will often assume is true, then the demon can be
assumed do well at predicting the agent’s move. But we have to be careful here.
The demon is supposed to do two rather distinct things well.

e In the vast majority of cases where the agent takes both boxes, the demon
predicts this.

e In the vast majority of cases where the agent takes one box, the demon
predicts this.

The assumption that the demon is good in general at predicting what agents will
do does not entail the conjunction of these claims. Imagine that the following
hypotheses are all true. Rationality requires taking both boxes (since this looks
like a dominating option). The demon assumes that most people are rational, so
always predicts that they’ll take both boxes. And, indeed, most people are ratio-
nal and take both boxes. Then the demon will usually make accurate predictions,
but the second claim isn’t true. So it’s important to be clear about what is be-
ing proposed about the demon, and how strong a claim it is. Still, I think it’s a
plausible claim.

When I was a graduate student back at Monash, I remember several discus-
sions about how good a job any one of us could do as the demon. And I think it
was pretty widely thought that if we had a few minutes to talk to the agent before
predicting their decision, we could probably get to at least 80% accuracy, whether
the agent was taking one box or two. That’s enough to make the case intuitively
problematic, and perfectly realistic. So the puzzle shouldn’t be dismissed, as it
often is by non-philosophers, as unrealistic.

Rule Following and Wealth

You might think that the following argument for taking one-box is compelling.

1. Most people who take one box end up rich, and most people who take two
boxes don’t.
2. Tt is better, at least in the context of this puzzle, to end up rich than not.
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3. So you should do what the people who end up rich do.
4. So you should take one box.

The problem is that this argument over-generates. (I believe this point traces back
to Allan Gibbard and William Harper, though I'm not sure about this.) The same
argument implies that you should take just one box in the case where the demon
makes the prediction, and then tells you what it is, before you choose. In other
words, the argument implies that you should take one box in this game.

1,1) 0, 0) (1001, 0) (1000, 1)

Take 2 Take 1

Take 2 Take 1

Predict 1

Predict 2

Demon

Figure 6.1: Transparent Newcomb’s Problem

That seems remarkably implausible to me. So the argument that you should
do what people who do well out of the game do also seems implausible. As
David Lewis put it, this looks like a game where irrationality is rewarded. But
that doesn’t mean that one should become irrational; it just means the world has
become a slightly odd place.

Evidential Decision Theory

Perhaps a better response to Newcomb like problems is evidential decision the-
ory. Evidential decision theory says that we shouldn’t take the probability of
states as fixed. Rather, in our calculations of expected utility, we should use
the probability of being in a state conditional on our having made a particular
choice. So we should treat the value of a decision, which we’ll write as V/(¢), as
being given by the following rule, where the sum is over the members of some

partition {p,..., p,}

n

V()= Pr(p;lo)V(p A p;)

=1
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This obviously isn’t a reductive definition; we assume that the value of each con-
junction of proposition and action is given in advance.

Note that I didn’t put any restrictions on the kind of partition mentioned.
One of the nice features of this approach to decision problems is that any parti-
tion will do. Let’s illustrate that by going through the Agincourt example. We’ll
make the following assumptions about value and probability. (In order to make
the numbers easier to compare, I’ll assume there is a 1/4 chance that the English
will get more troops before the battle. This, like many other assumptions we’re
making about the case, is clearly unrealistic!)

First, the values of the four possible outcomes (to the English) are as follows:

Winning with fewer troops is worth 11;
Winning with more troops is worth 10;
Losing with fewer troops is worth 1;

Losing with more troops is worth 0

That matches up with King Henry’s idea that whether you win or lose, it’s better
to do it with fewer troops. Now come the probabilities.

The probability that the English will have fewer troops and win is 0.15.
The probability that the English will have fewer troops and lose is 0.6.
The probability that the English will have more troops and win is 0.15.

The probability that the English will have more troops and lose is 0.1.

It’s worth going through some conditional probabilities to get a cleaner sense of
what these assumptions come to. I'll use ‘win’, ‘lose’, ‘more’ and ‘fewer’ with
their obvious definitions from the English perspective, i.e, win or lose the battle,
have more or fewer troops.

. Pr(win A more)
Pr(w1n|more) = W

Pr(win A more)

~ Pr(win A more) + Pr(lose A more)
0.15

T 0.1540.1
=0.6
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Since winning and losing are the only outcomes, it follows that Pr(lose|more)
= 0.4. Now what happens if the English have fewer troops.
Pr(win A fewer)
Pr(fewer)
Pr(win A fewer)

- Pr(win A fewer) + Pr(lose A fewer)
0.15

T 0.15+06
=0.2

Pr(win|fewer) =

And again, since winning and losing are exclusive and exhaustive, it follows that
Pr(lose|fewer) = 0.8.

Given all this, let’s work out the value of getting more troops. We’ll use
{win, lose} as our partition.

V(more) = Pr(win|more) V' (win A more) 4+ Pr(lose|more) V (lose A more)
=0.6x10+0.4x0
=6
V (fewer) = Pr(win|fewer)V (win A fewer) + Pr(lose|fewer) V (lose A fewer)
=02x11+0.8x1
=3
And we get the intuitively correct response, that fighting with more troops is
better than fighting with fewer troops.
Let’s see what happens if we use a different partition. Let 7 be the proposition
that the greater force will win. So it’s equivalent to win «— more. And now we’ll

redo the expected value calculation using {7, —~n} as the partition. I'll leave it as an
exercise to figure out why it is true that Pr(n|more) = 0.6, and Pr(n|fewer) = 0.8.

V(more) = Pr(n|more)V (n A more) + Pr(—n|more) V(—n A more)
=0.6x10+0.4x0
=6

V (fewer) = Pr(n|fewer)V (n A fewer) + Pr(—n|fewer)V (—n A fewer)
=0.8x1+02x11
=3
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And we get the same answer, for roughly the same reason. I won’t go through
the formal proof of this, but the general result is quite useful. If we’re using this
valuation function, it doesn’t matter which partition of possibility space we use,
we end up with the same value for each choice.

The decision theory that says we should make choices which maximise the
value of this function V' is known as evidential decision theory. It suggests that we
should take one box in Newcomb’s Problem, though we should take two boxes
if we already know what the demon has predicted. The latter claim is, I hope,
obvious. Here’s the argument for the former, assuming that the demon is 99%
reliable, whether the agent takes 1 or 2 boxes.

V(Take 2) = Pr(Predict 2| Take 2) V(Predict 2 A Take 2)+
Pr(Predict 1|Take 2)V(Predict 1 A Take 2)
=0.99 x 1+0.01 x 1001
=11
V(Take 1) = Pr(Predict 2|Take 1)V (Predict 2 A Take 1)+
Pr(Predict 1|Take 1)V (Predict 1 A Take 1)
=0.01 x 0+0.99 x 1000
=990

Since 990 > 11, the theory says you should take just one box. Basically, it says that
this case is just like the Agincourt case. Although you’ll be better off taking one
box whatever state you are in (win or lose in Agincourt, 1 or 2 boxes predicted
in Newcomb), since there is a probabilistic connection between what you do and
what state you're in, this isn’t sufficient reason to act.

Many people find this an attractive account of Newcomb’s Problem. But it
seems to me (and to many others) that it wildly overgenerates predictions of when
you should take actions that appear to be dominated. Consider the following
fantasy story about the correlation between smoking and cancer.

It’s true that smokers get cancer at a higher rate than non-smokers.
And that means that if you smoke, the probability that you’ll get
cancer will go up. That is, the epistemic probability that you will
get cancer will go up; we now have more evidence that you will get
cancern. But this isn’t because smoking causes cancer. Rather, smok-
ing and cancer have a common cause. The kind of people who are
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attracted to cigarettes are, unfortunately, disposed to get cancer. Per-
haps this is because there is a gene that causes favourable attitudes
towards cigarettes, and causes cancer.

Let’s say that story is true. And let’s say that our agent has a desire to smoke, but
a stronger desire to avoid cancer. What should she do?

Well presumably she should smoke. It won’t make her worse off. It will
confirm that she is in the high risk pool for cancer, but if the story is true, then
she is in that pool whether she smokes or not. So she may as well smoke.

This is hardly just an idiosyncratic view that people like me who think that
you should take two boxes in Newcomb’s Problem have. In the 1950s, some
prominent scientists argued that the common cause story was plausibly true, or
at least not ruled out by the evidence. (The most prominent such arguer was
R. A. Fisher, the founder of modern statistics.) And the tobacco industry loved
these claims, because they saw, rightly, that if people believed them they would
keep smoking, while if people thought smoking caused cancer, they would stop.

But note that given Evidential Decision Theory, it doesn’t seem to matter
whether smoking causes cancer, or whether smoking and cancer merely have
a common cause. Either way, smoking is evidence for cancer, just like taking
both boxes is evidence that there’s nothing in the opaque box. So either way,
you shouldn’t smoke. This is, most people think, wildly implausible, and that
implausibility undermines Evidential Decision Theory.

There is, as you may imagine, more to be said here. One popular move made
on behalf of Evidential Decision Theory at this point is the *Tickle Defence’. It
says that even if the story is true, smoking doesn’t increase the probability of
cancer conditional on an observed desire to smoke. There are critics of this move as
well, and going into this would take us too far afield. Suffice to say that smoking
cases cause problems for Evidential Decision Theorists, and many people think
they cause unresolvable problems.

Causal Decision Theory

In response to these problems, a number of philosophers in the late 1970s and
early 1980s developed Causal Decision Theory. The rough idea is that we start
with a probability distribution over the causal structure of the world. Each ele-
ment in this structure tells us what the causal consequences of particular choices
will be. We don’t know which of them is true; in some cases there may be a
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sense in which none of them are true yet. But we can assign a probability to each,
and hence work out the probability of getting each outcome upon making each
choice. We use that to generate an expected value of each choice, and then we
maximise expected value.

There are disputes about how to implement this. I’'m going to present the
version due to Allan Gibbard and William Harper, which is the closest thing
there is to an orthodox version of the theory. We’ll use U for the utility of each
choice, and write A O— B for If it were the case that A, it would be the case that B.

U(p)=> Pr(p o p))U(p A p;)
=1

Again, this isn’t a reductive account; we need utilities of more specific states to
get the utilities of choices. But the hope is that those will be clear enough in any
context that we can use the formula.

Let’s see how this works in two cases, Newcomb’s Problem and Joyce’s car
protection case.

In Newcomb’s problem, it is natural to set the two causal hypotheses to be
that the demon has put £1,000,000 in the opaque box, call that p,, and that she
has put nothing in the opaque box, call that p,. Then since our choice doesn’t
make a causal difference to whether p; or p, is true, Pr(¢ 0— p;) will just equal
Pr(p;) no matter whether 7 is 1 or 2, or whatever choice ¢ is. The probability
that there is a certain sum in the opaque box just is the probability that if we were
to make a choice, there would be that amount in the opaque box. If we say that
Pr(p;) = x, then we can work out the value of the two choices as follows.

U(Take 1 box)

Pr(Take 1 box o p,)U(Take 1 box A p, )+

Pr(Take 1 box o p,)U(Take 1 box A p,)

Pr(p,)U(Take 1 box A p,)+ Pr(p,)U(Take 1 box A p,)

x x U($1,000,000)+ (1 — x) x U(0)

U(Take 2 boxes) = Pr(Take 2 boxes o p,)U(Take 2 boxes A p,)+

Pr(Take 2 boxes O— p,)U(Take 2 boxes A p,)
Pr(p,)U(Take 2 boxes A p,)+Pr(p,)U(Take 2 boxes A p,)
x x U($1,001,000) + (1 — x) x U($1,000)
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No matter what x is, as long as U(£1,001,000) > U(£1,000,000), and U(£1,000)
> U(£0), then taking two boxes will be better than taking one box.

Now compare this to Joyce’s example. As a reminder, here is the table of
possible outcomes in that case.

Broken Windshield Unbroken Windshield
Pay extortion -£410 -£10
Don’t pay -£400 0

Let’s assume that a cost of £1 is worth -1 utils, and assume the following proba-
bilities:

Pr(Pay extortion O0— Broken Windshield) = 0.02

Pr(Pay extortion O— Unbroken Windshield) =0.98
Pr(Don’t pay extortion O~ Broken Windshield) = 0.99
Pr(Don’t pay extortion O— Unbroken Windshield) = 0.01

Then we will have the following calculations of utilities.

U (Pay exortion) =0.02 x —410+0.98 x —10
=-8.24-9.38
=-18
U(Don’t pay exortion) =0.99 x —400+40.01 x 0
=-39640
=-396

And clearly it is better to pay. That is, of course, the correct answer in this case.

As I mentioned, this isn’t the only way to spell out Causal Decision Theory.
David Lewis complains that the treatment of counterfactuals here is improper,
for instance. But looking into those complications would take us too far afield.
Instead we’ll look at three other concerns one might have.

First, it’s worth noting that our treatment of Newcomb’s Problem left out a
crucial fact. We proved that on a Causal Decision Theory, it would be better to
take two boxes than one. But we proved that by proving a fact about compara-
tive utilities, not by computing the actual utility of the two options. It is often
non-trivial to do that. Once I've decided that I will take both boxes, presumably
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the probability that the demon will have put money in the opaque box will be
low. But it’s not clear that that’s the probability I should be using. This might
matter in some complicated variants of Newcomb’s Problem. Let’s say S has a
choice between taking £2000 and playing Newcomb’s Problem. And also say
that § hasn’t thought through what she would do were she to play Newcomb’s
Problem. Should she conclude that since she hasn’t decided what she’ll do, there
is a substantial probability that she’ll take only one box in Newcomb’s Prob-
lem, so there is, even by Causal lights, a substantial probability that there will be
money in the opaque box, so she should play rather than take the £2000? And
if she should reason that way, is that a problem? That is, is it obvious that the
ideas behind Causal Decision Theory should lead to taking the £2000 rather than
playing? I’'m not sure what to say about these cases, but I worry that there’s a
problem here.

Second, Causal Decision Theory leads to certain kinds of dilemmas. Con-
sider the following story from Gibbard and Harper’s paper introducing Causal
Decision Theory.

Consider the story of the man who met Death in Damascus. Death
looked surprised, but then recovered his ghastly composure and said,
‘I AM COMING FOR YOU TOMORROW’. The terrified man that
night bought a camel and rode to Aleppo. The next day, Death
knocked on the door of the room where he was hiding, and said
‘IHAVE COME FOR YOU’.

‘But I thought you would be looking for me in Damascus’, said the
man.

‘NOT AT ALL’, said Death ‘“THAT IS WHY I WAS SURPRISED TO
SEE YOU YESTERDAY. | KNEW THAT TODAY I WAS TO FIND YOU
IN ALEPPO’.

Now suppose the man knows the following. Death works from an
appointment book which states time and place; a person dies if and
only if the book correctly states in what city he will be at the stated
time. The book is made up weeks in advance on the basis of highly
reliable predictions. An appointment on the next day has been in-
scribed for him. Suppose, on this basis, the man would take his being
in Damascus the next day as strong evidence that his appointment
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with Death is in Damascus, and would take his being in Aleppo the
next day as strong evidence that his appointment is in Aleppo...

If... he decides to go to Aleppo, he then has strong grounds for ex-
pecting that Aleppo is where Death already expects him to be, and
hence it is rational for him to prefer staying in Damascus. Simi-
larly, deciding to stay in Damascus would give him strong grounds
for thinking that he ought to go to Aleppo.

If we note that Death has a preference for being wherever the man is, and the
man has a preference for avoiding Death, then we can easily model this as a game.
Indeed, we can model it as a familiar game, it is just Matching Pennies, i.e., Game
23. In this version of the game, Death plays Row and the man plays column, but
we could easily reverse that.

Game 26 Damascus Aleppo
Damascus 1,-1 -1, 1
Aleppo -1, 1 1,-1

The response that Gibbard and Harper give to this game is that it is just a dil-
emma. Whatever the man plays, he’ll regret it. Actually, that strikes me as the
right thing to say, but not everyone is convinced. Reed Richter (in a 1984 AJP pa-
per) argued that this was the wrong thing to say about asymmetric versions of the
Death in Damascus case. Imagine that getting to Aleppo will cost a huge amount
of money, and be incredibly painful. Then the table might look something like
this:

Game 27 Damascus Aleppo
Damascus 1,-1 -1,0.5
Aleppo -1, 1 1,-1.5

Again, whatever the man does, he will regret it, just like in the original Death in
Damascus example. But it seems wrong to treat the two options available to the
man symmetrically. After all, going to Aleppo is much worse for him. If forced
to choose, some have argued, he should stay in Damascus.

Third, some people don’t like Causal Decision Theory because it trucks in
metaphysical notions like causation and counterfactuals. Richard Jeffrey was
worried that Causal Decision Theory was too metaphysical, but he agreed that
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we should take both boxes in Newcomb’s Problem. So he promoted a Ratifica-
tionist version of Evidential Decision Theory.

The idea behind ratificationism is that only ratifiable decisions are rationally
allowed. A decision is ratifiable if it maximises expected utility conditional on
that decision being taken. We can add a ratifiability clause to Evidential Deci-
sion Theory, as Jeffrey does, or to Causal Decision Theory, as (in effect) Frank
Arntzenius has recently suggested.

If we add a ratifiability clause to Evidential Decision Theory, we get the result
that rational agents should take both boxes. That’s because only it is ratifiable.
We computed earlier the expected utility of each choice according to Eviden-
tial Decision Theory, and concluded that the utility of taking just one box was
higher. But now look what happens if we conditionalise on the hypothesis that
we’ll take just one box. (For simplicity, we’ll again assume £1 is worth 1 util.) It
is easy enough to see that taking both boxes is better.

Pr(Million in opaque box|Take one box) =0.99 ..
V (Take one box|Take one box) =0.99 x 1,000,000+ 0.01 x 0
— 990,000
V (Take both box|Take one box) =0.99 x 1,001,000+ 0.01 x 1,000
— 991,000

But there is something very odd about this way of putting things. It requires
thinking about the expected value of an action conditional on something that
entails the action is not taken. In Newcomb’s Problem we can sort of make sense
of this; we use the conditional assumption that we’re taking one box to seed
the probability of the demon doing certain actions, then we run the calculations
from there. But I don’t see any reason to think that we should, in general, be able
to make sense of this notion.

A better approach, I think, is to mix ratificationism with Causal Decision
Theory. (This isn’t to say it’s the right approach; I'm an old-fashioned Causal
Decision Theorist. But it is better.) This lets us solve problems like the two-
step Newcomb problem discussed earlier. Let’s assume the demon is very very
accurate; given that the player is choosing ¢, the probability that the demon will
predict ¢ is 0.9999. Now let’s work through the values of taking each of the
options. (Remember, the game is to take £2,000, or play Newcomb’s Problem.
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If the player does the latter, she must choose one box or two. And p; is the
proposition that the demon predicts that i boxes will be taken. We’ll use 7; as
shorthand for Take i boxes. And we’ll assume, again that a pound is worth a util.)

U(T|Ty) =Pr(T 0= py|[ TY)U(Ty A py) + Pr(Ty 0 po TU(T| A py)
=0.9999 x 1,000,000+ 0.0001 x O
— 999,900

U(T|Ty) =Pr(T, 0 py| Ty )U(Ty A py) +Pr(T, 0 po| T)U(T, A py)
=0.9999 x 1,001,000+ 0.0001 x 1,000
=1,001,900

U(T|T,) =Pr(T, o> py| T)U(T} A py) + Pr(Ty 0= p,| 1) U(Ty A py)
—0.0001 x 1,000,000+ 0.9999 X 0
=100

U(TL|Ty) =Pe(Ty 0= pi| T))U(Ty A py) + Pr(Ty 0 po T)U(T, A py)
=0.0001 x 1,001,000 +0.9999 x 1,000
— 1,100

The important thing to note about this calculation is that Pr(7, o p,|T) is
very high, 0.9999 in our version of the game. What this says is that once we’ve
assumed 77, then the counterfactual 7, O0— p, is very very probable. That is,
given that we’re taking 1 box, it is very probable that if we had taken 2 boxes,
there would still have been money in the opaque box. But that’s just what New-
comb’s problem suggests.

Note that neither 7} nor 7, is ratifiable. Given T, the player would be bet-
ter with 7,. (The expected value of taking both boxes would be 1,001,900, as
compared to an expected value of 999,900 for taking one box.) And given 75, the
player would be better with simply taking the £2,000 and not playing, since the
expected payout of 7, is a mere 1,100. But taking £2,000 is ratifiable. Given that
the player is doing this, no other option is better. After all, if they are the kind of
player who is moved by the reasoning that leads to taking the £2,000, then they
are almost certainly two boxers, and so probably the opaque box would be empty.
So the only ratifiable decision is to take £2,000. This ratificationist argument is, I
think, intuitively plausible.

Note too that it is the very same conclusion that we reach through using a
form of backward induction. Let’s set up the game as a chart. We’ll use P for the
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1000,1 1001,0 0,0 1,1

Figure 6.2: Game 28

player, and D for the demon. At move 1, P’s choices are Cash or Box. After that,
we’ll use 1 and 2 for the obvious meanings; predictions for the demon, boxes for
the players. The payoffs are player first, demon second. To make the numbers
easier to read, we’ll set 1 util as being worth £1,000. And we’ll call the extended
form of this Game 28.

Note crucially the dotted line between the player’s choices in the top right.
Although the player makes her choice after the demon does, the player doesn’t
know what the demon chooses. This makes backwards induction a little tricky;
the demon can’t assume that the player will make the best response to her choice,
if the player doesn’t know what the choice is.

But when we look at the numbers more closely, that worry dissipates. What-
ever the demon does, the player is better off playing 2. So we should assume that
the player will play 2. Given that the player will play 2, the demon is best off
playing 2. And given that the demon is best off playing 2, the player at the initial
node is best off playing C. So backwards induction leads to the same conclu-
sion that ratificationist approaches do. And, as I said, this seems like an intuitive
enough verdict, at least in this case.

Equilibrium and Ratification

A large number of fairly orthodox game theorists typically accept the following
two propositions.
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e It is strictly better to defect than co-operate in Prisoners’ Dilemma, and in
general one should always take strictly dominating options.

e In some games, such as Rock-Paper-Scissors, the best thing to do is to play
a mixed strategy. In those games, playing a mixed strategy is preferably to
playing any pure strategy.

In general, anyone who thinks there is something normatively significant in play-
ing Nash Equilibrium strategies will have to accept something like those two
claims. But if you look at the two biggest positions in philosophical decision
theory, they are hard to reconcile. Evidential Decision Theorists may accept the
second, but will reject the first. On Evidential Decision Theory, it may be best
to accept a dominated option if, as in Newcomb’s Problem, the states are eviden-
tially connected to one’s choice. And Causal Decision Theorists will accept the
first, but not the second. On Causal Decision Theory, the expected value of a
mixed strategy is just the (weighted) average value of the strategies being mixed,
and the only rule is to maximise expected value, so the mixed strategy can’t be
preferable to each of the elements of the mixture.

Some of the tension is resolved if we add ratificationist decision theories to
our menu of choices. In particular, a causal ratificationist might accept both of
the bullet points above. It is obvious that they will accept the first. The co-
operation option in Prisoners’ Dilemma is both unratifiable and lower valued
than the defection option. What’s interesting is that, given one big extra assump-
tion, they can accept the second as well.

The big extra assumption is that conditional on one’s playing a strategy S,
one should give probability 1 to the claim that the other player will do some-
thing that is in their best interests given that one is playing S. Let’s apply that to
Rock-Paper-Scissors. Conditional on playing Rock, one should give probability
1 to the proposition that the other player will play Paper. That is, one should
give probability O to the proposition If I were to play Rock, I would win, while
giving probability 1 to the proposition If I were to play Scissors, I would win. So
conditional on playing Rock, the best thing to do, from a causal perspective, is to
play Scissors.

So playing Rock is not ratifiable, and by similar reasoning, neither is playing
Paper or Scissors. Does this mean nothing is ratifiable? Not at all; the mixed
strategies might still be ratifiable. In particular, the mixed strategy where one
plays each of the pure strategies with probability 1/3, is ratifiable. At least, it is
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ratifiable if we assume that causal ratificationism is the correct theory of rational
choice. If one plays this mixed strategy, and the other player knows it, then every
strategy the other player could play is equally valuable to them; they each have
expected value 0. Given that each strategy is equally valuable, the other player
could play any strategy that is rationally acceptable. Since we are assuming causal
ratificationism, that means they could play any ratifiable strategy. But the only
ratifiable strategy is the mixed strategy where one plays each of the pure strategies
with probability 1/3. Conditional on the other player doing that, moving away
from the mixed strategy has no advantages (though it also has no costs). So causal
ratificationism, plus an assumption that the other player is an excellent mind
reader, delivers the orthodox result.

There are other reasons to associate orthodoxy in game theory with causal
ratificationism. Here, for instance, is Ken Binmore motivating the use of equilib-
rium concepts in a prominent game theory textbook (Playing for Real).

Why should anyone care about Nash equilibria? There are at least
two reasons. The first is that a game theory book can’t authoratively
point to a pair of strategies as the solution of a game unless it is a Nash
equilibrium. Suppose, for example, that ¢ weren’t a best reply to s.
[Player 2] would then reason that if [Player 1] follows the book’s
advice and plays s, then she would do better not to play ¢. But a book
can’t be authoritative on what is rational if rational people don’t play
as it predicts. (Playing for Real, 18-19)

It seems to me that this argument only makes sense if we assume some ratifica-
tionist theory of decision making. What Binmore is encouraging us to focus on
here are strategies that are still rational strategies in situations where everyone
believes that they are rational strategies. That’s close, I think, to saying that we
should only follow strategies that are best strategies conditional on being played.

There’s a secondary argument Binmore is making here which I think is more
misleading. The most the little argument he gives could show is that if a game
has a unique solution, then that solution must be a Nash equilibrium. But it
doesn’t follow from that that there is anything special about Nash equilibrium
as opposed, say, to strategies that are BRBRI. After all, if a game has a unique
solution, each player will play a strategy that is BRBRI. And if each player has
multiple BRBRI strategies, even if some of them are not part of any Nash equi-
librium, it isn’t clear why a book which said each BRBRI strategy was rational
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would be self-undermining. If I say that any pure or mixed strategy whatsoever
could be rational in Rock-Paper-Scissors, and Player 1 believes me, and Player 2
knows this, Player 2 can’t use that knowledge to undermine my advice.

But you might note that Binmore says there is a second reason. Here’s what
it is.

Evolution provides a second reason why we should care about Nash
equilibria. If the payoffs in a game correspond to how fit the players
are, then adjustment processes that favour the more fit at the expense
of the less fit will stop working when we get to a Nash equilibrium
because all the survivors will then be as fit as it is possible to be in
the circumstances. (Playing for Real, 19)

This seems to me like a very strong reason to care about Nash equilibrium in
repeated games, like competition for food over time. The same is true in Rock-
Paper-Scissors. It isn’t true that Rock wins every time, and you shouldn’t play
Rock every time like Bart Simpson does. But that’s because you’ll give away
your strategy. It doesn’t show that a pure strategy of Rock is wrong in any given
game of Rock-Paper-Scissors.

As we noted at the end of the last section, it is not clear that the standard
representation of the payoffs in any given round of a repeated game are correct.
Some strategies incur costs down the road that aren’t properly reflected in the
individual payoff matricies. But, as we also noticed, it is hard to do much about
this. The best thing might be to just note that the payoffs aren’t quite right, and
look for equilibrium with respect to the not quite right payoffs.

In any case, we’re going to want to come back to what Causal Decision The-
ory says about repeated games somewhat later, so it is best to set that aside for
now. What I really have wanted to argue here was that ratificationism is necessary
to motivate some of the core ideas of game theory.

So is ratificationism correct? I have my doubts, but I think it would be too
much of a digression to go into them here. Instead, I want to focus on some of the
interesting cases where we have to hunt a little for equilibrium, or where there
are interesting factors that determine which equilibrium is chosen.
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Finding and Choosing Equilibria

Finding Mixed Strategy Equilibria

Let’s consider again the asymmetric version of Death in Damascus.

Game 27 Damascus Aleppo
Damascus 1,-1 -1,0.5
Aleppo -1,1 1,-1.5

Recall that Death is the Row player, and the Man is the Column player. The
way we generated Game 27 was to take the basic structure of the game, which is
Matching Pennies, and add in an 0.5 penalty for Man choosing Aleppo. It’s an
unpleasant journey from Damascus to Aleppo, particularly if you fear Death is
at the other end.

There is still no pure strategy equilibrium in this game. Whatever Death
plays, Man would prefer to play the other. And whatever Man plays, Death
wants to play it. So there couldn’t be a set of pure choices that they would both
be happy with given that they know the other’s play.

But the mixed strategy equilibrium that we looked at for Matching Pennies
isn’t an equilibrium either. We’ll write (x,y) for the mixed strategy of going to
Damascus with probability x, and going to Aleppo with probability y. Clearly
we should have x +y = 1, but it will make the representation easier to use two
variables here, rather than just writing (x, 1 — x) for the mixed strategies.

Given that representation, we can ask whether the state where each player
plays (1/2,1/2) is a Nash equilibrium. And, as you might guess, it is not. You
might have guessed this because the game is not symmetric, so it would be odd
if the equilibrium solution to the game is symmetric. But let’s prove that it isn’t
an equilibrium. Assume that Death plays (1/2,1/2). Then Man’s expected return
from staying in Damascus is:

1/2x —-141/2x1=0
while his return from going to Aleppo is

1/2x05+4+1/2x -1.5=-0.5
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So if Death plays (1/2,1/2), Man is better off staying in Damascus than going to
Aleppo. And if he’s better off staying in Damascus that going to Aleppo, he’s also
better off staying in Damascus than playing some mixed strategy that gives some
probability of going to Aleppo. In fact, the strategy (x,y) will have expected
return —/2, which is clearly worse than 0 when y > 0.

There’s a general point here. The expected return of a mixed strategy is the
weighted average of the returns of the pure strategies that make up the mixed
strategy. In this example, for instance, if the expected value of staying in Damas-
cus is d, and the expected value of going to Aleppo is a, the mixed strategy (x,y)
will have expected value xd + ya. And since x +y = 1, the value of that will be
strictly between 4 and d if 2 # d. On the other hand, if 2 = d, then x +y =1
entails that xd +ya =a = d. So if a = d, then any mixed strategy will be just
as good as any other, or indeed as either of the pure strategies. That implies that
mixed strategies are candidates to be equilibrium points, since there is nothing to
be gained by moving away from them.

This leads to an immediate, though somewhat counterintuitive, conclusion.
Let’s say we want to find strategies (xp,yp) for Death and (x,;,y;,) for Man that
are in equilibrium. If the strategies are in equilibrium, then neither party can
gain by moving away from them. And we just showed that that means that the
expected return of Damascus must equal the expected return of Aleppo. So to
find (xp,yp), we need to find values for xp, and yj, such that, given Man’s values,
staying in Damascus and leaving for Aleppo are equally valued. Note, and this
is the slightly counterintuitive part, we don’t need to look at Death’s values. All
that matters is that Death’s strategy and Man’s values together entail that the two
options open to Man are equally valuable.

Given that Death is playing (xp,7p), we can work out the expected utility of
Man’s options fairly easily. (We’ll occasionally appeal to the fact that x, +y, =

1)

U(Damascus) = xp X —14+y, x 1
=Jp~*p
=1-2xp
U(Aleppo)=xp x 0.5+ y, x —1.5
=0.5xp — 1.5(1 — xp)
=2x,— 15
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So there is equilibrium when 1 — 2x, = 2x;, — 1.5, i.e., when x = 5/s. So any
mixed strategy equilibrium will have to have Death playing (5/8,3/s).

Now let’s do the same calculation for Man’s strategy. Given that Man is play-
ing (xp,Yp), we can work out the expected utility of Death’s options. (Again,
we’ll occasionally appeal to the fact that x;, 4+ y,, = 1.)

U(Damascus) = xy; X 14y, x —1
=XM M
:ZXM—l

U(Aleppo) =x; x =141y, x 1

=Yu— XM
:1—2xM

So there is equilibrium when 2x;,—1 = 1-2x,,, i.e., when x;; = /2. So any mixed
strategy equilibrium will have to have Man playing (1/2,1/2). Indeed, we can work
out that if Death plays (5/8,3/8), and Man plays (1/2,1/2), then any strategy for
Death will have expected return 0, and any strategy for Man will have expected
return of —1/4. So this pair is an equilibrium.

But note something very odd about what we just concluded. When we chang-
ed the payoffs for the two cities, we made it worse for Man to go to Aleppo.
Intuitively, that should make Man more likely to stay in Damascus. But it turns
out this isn’t right, at least if the players play equilibrium strategies. The change
to Man’s payoffs doesn’t change Man’s strategy at all; he still plays (1/2,1/2). What
it does is change Death’s strategy from (1/2,1/2) to (5/8,3/s).

Let’s generalise this to a general recipe for finding equilibrium strategies in
two player games with conflicting incentives. Assume we have the following
very abstract form of a game:

Game 29 / r
U aja, b,b,
D ¢,¢, di,d,

As usual, Row chooses between Up and Down, while Column chooses between
left and right. We will assume that R prefers the outcome to be on the north-
west-southeast diagonal; that is, 2, > ¢, and d; > b,. And we’ll assume that C
prefers the other diagonal; that is, ¢, > a,, and b, > d,. We then have to find a
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pair of mixed strategies (x;;,xp) and (x;,x,) that are in equilibrium. (We’ll use
x4 for the probability of playing A.)

What's crucial is that for each player, the expected value of each option is
equal given what the other person plays. Let’s compute them the expected value

of playing U and D, given that C is playing (x;, x, ).

UU)=xja,+x,b
U(D)=x;c;+x,d;

We get equilibrium when these two values are equal, and x; + x, = 1. So we can
solve for x; the following way:

xja;+x,by =x;00+x,d,

& xpa—xp¢; =x,d; —x,.b;
< xj(ay—c) =x,(d; — by)
= X =X
Zdl_bl r
a;— 0 1
= X =1—x
Zdl_bl 1
a;— 0 n
= X X =
Zdl_bl /
o oE " )=1
X =
Nd =0,
1
= ! a1—¢ 1
dl_b1+

I won’t go through all the same steps, but a similar argument shows that

1
*u= by—a,
o—d,

+1

I’ll leave it as an exercise to confirm these answers are correct by working out the
expected return of U, D,/ and r if these strategies are played.

The crucial take-away lesson from this discussion is that to find a mixed strat-
egy equilibrium, we look at the interaction between one player’s mixture and the
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other player’s payoffs. The idea is to set the probability for each move in such
a way that even if the other player knew this, they wouldn’t be able to improve
their position, since any move would be just as good for them as any other.

I’'ve focussed on the case of a game where each player has just two moves.
When there are more than two moves available, things are a little more compli-
cated, but only a little. We no longer need it to be the case that one player’s mixed
strategy must make every other strategy the other player has equally valuable. It
only has to make every strategy that is part of the other player’s mixture equally
valuable. Consider, for instance, what happens if we expand our asymmetric
Death in Damascus game to give Man the option of shooting himself.

Game 30 Damascus Aleppo Shoot
Damascus 1,-1 -1,05 -1,-2
Aleppo -1, 1 1,-1.5 1,2

The shooting option is no good for anyone; Death doesn’t get to meet Man, and
Man doesn’t get to live the extra day. So if Death plays (5/s,3/s), that will make
Damascus and Aleppo equally valuable to Man, but Shooting will still have an
expected return of -2, rather than the expected return of —1/4 that Damascus and
Aleppo have. But that’s consistent with Death’s strategy being part of an equi-
librium, since Man’s strategy will be to play (1/2,1/2,0). Since Man isn’t playing
Shoot, it doesn’t matter that Shoot is less valuable to him, given Death’s move,
than the two pure strategies.

Coordination Games

Many games have multiple equilibria. In such cases, it is interesting to work
through the means by which one equilibrium rather than another may end up
being chosen. Consider, for instance, the following three games.

Game 31 4« b
A 1,1 0,0
B 0,0 1,1

Game 32 a4 b
A 2,1 0,0
B 0,0 1,2
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Game 33 a4 b
A 5,5 0,4
B 40 2,2

In each case, both (A,a) and (B, b) are Nash equilibria.

Game 31 is a purely cooperative game; the players have exactly the same pay-
offs in every outcome. It is a model for some real-world games. The two players,
R and C, have to meet up, and it doesn’t matter where. They could either go to
location A or B. If they go to the same location, they are happys; if not, not.

In such an abstract presentation of game, it is hard to see how we could select
an equilibrium out of the two possibilities. In practice, it often turns out not to
be so hard. Thomas Schelling (in The Strategy of Conflict) noted that a lot of real-
life versions of this game have what he called ‘focal points’. (These are sometimes
called Schelling points now, in his honour.) A focal point is a point that stands out
from the other options in some salient respect, and it can be expected that other
players will notice that it stands out. Here’s a nice example from a recent paper
by Christopher Potts (Interpretive Economy, Schelling Points, and evolutionary
stability).

Game 34

A and B have to select, without communicating, one of the following
nine figures. They each get a reward iff they select the same figure.

1 2 3
4 5 6
7 8 9

Game 35

A and B have to select, without communicating, one of the following
nine figures. They each get a reward iff they select the same figure.


http://semanticsarchive.net/Archive/jExYWZlN/potts-interpretive-economy-mar08.pdf
http://semanticsarchive.net/Archive/jExYWZlN/potts-interpretive-economy-mar08.pdf
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1 2 3
4 5 6
7 9

We could run experiments to test this, but intuitively, players will do better at
Game 35 than at Game 34. That’s because in Game 35, they have a focal point to
select; one of the options stands out from the crowd.

Schelling tested this by asking people where they would go if they had to
meet a stranger in a strange city, and had no way to communicate. The answers
suggested that meetups would be much more common than you might expect.
People in Paris would go to the Eiffel Tower; people in New York would go to
(the information booth at) Grand Central Station, and so on. (This game may be
easier if you don’t actually live in the city in question. I live in New York and go
to Grand Central about once a year; it would be far from the most obvious place
I would select.)

Game 32 is often called ‘Battle of the Sexes’. The real world example of it
that is usually used is that R and C are a married couple trying to coordinate on
a night out. But for whatever reason, they are at the stage where they simply
have to go to one of two venues. R would prefer that they both go to A, while C
would prefer that they both go to B. But the worst case scenario is that they go
to different things.

Game 33 is often called ‘Stag Hunt’. The idea behind the game goes back to
Rousseau, although you can find similar examples in Hume. The general idea is
that A is some kind of cooperative action, and B is a ‘defecting’ action. If players
make the same selection, then they do well. If they both cooperate, they do better
than if they both defect. But if they don’t cooperate, it is better to defect than to
cooperate.

Rousseau’s example was of a group of hunters out hunting a stag, each of
whom sees a hare going by. If they leave the group, they will catch the hare for
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sure, and have something to eat, but the group hunting the stag will be left with a
much lower probability of stag catching. Hume was more explicit than Rousseau
that these games come up with both two player and many player versions. Here
is a nice many player version (from Ben Polak’s OpenYale lectures).

Game 36

Everyone in the group has a choice between Investing and Not In-
vesting. The payoff to anyone who doesn’t invest is 0. If 90% or
more of the group Invests, then everyone who Invests gains £1. If
less than 90% of the group Invests, then everyone who invests loses

£1.

Again, there are two Nash equilibria: everyone invests, and everyone does not
invest. Hume’s hypothesis was that in games like this, the cooperative move (in
this case Investing) would be more likely in small groups than large groups.

Mixed Strategies in Multiple Equilibrium Games

All three of these games have mixed strategy equilibria as well as their pure strat-
egy equilibria. For Game 31, the mixed strategy equilibrium is easy to find. Each
player plays (1/2,1/2). In that case the other player has an expected return of 1/2
whatever they play, so it is an equilibrium.

Things are a little trickier in Game 32. To find the mixed strategy equilibrium
there, we have to apply the lesson we learned earlier: find strategies that make
the other player indifferent between their options. If R plays (x,1—x), then C’s
expected return from playing 4 and 4 is:

U@a)=xx1+(1—x)x0

Ub)=xx0+(1—x)x2
=2(1—x)

So there will be equilibrium only if x = 2(1 — x), i.e., only if x = 2/3. If that
happens, C’s expected return from any strategy will be 2/3. A similar argument
shows that we have equilibrium when C plays (1/3,2/3), and in that case R’s ex-
pected return from any strategy will be 2/3. (Unlike in the asymmetric version of
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Death in Damascus, here the equilibrium strategy is to bias one’s mixture towards
the result that one wants.)

We apply the same methodology in Game 33. So R will play (x,1—x), and
C’s expected return from the two available pure strategies is the same. Those
expected returns are:

U(@)=xx5+(1—x)x0

=5x

Ub)=xx44+(1—x)x2
=4x+2—-2x
=2+42x

So there will be equilibrium only if 5x = 2+ 2x, i.e., only if x = 2/5. If that
happens, C’s expected return from any strategy will be 19/3. Since the game is
completely symmetric, a very similar argument shows that if C plays (2/3,1/3),
then R has the same payoff whatever she plays. So each player cooperating with
probability 2/3 is a Nash equilibrium.

In two of the cases, the mixed strategy equilibrium is worse for each player
than the available pure strategy equilibria. In Game 33, the mixed equilibrium
is better than the defecting equilibrium, but worse than the cooperating equi-
librium. Say an equilibrium is Pareto-preferred to another equilibrium iff ev-
ery player would prefer the first equilibrium to the second. An equilibrium is
Pareto-dominant iff it is Pareto-preferred to all other equilibria. The coopera-
tive equilibrium is Pareto-dominant in Game 33; neither of the other games have
Pareto-dominant equiilbria.

Consider each of the above games from the perspective of a player who does
not know what strategy their partner will play. Given a probability distribution
over the other player’s moves, we can work out which strategy has the higher
expected return, or whether the various strategies have the same expected returns
as each other. For any strategy S, and possible strategy S’ of the other player, let
/ be a function that maps § into the set of probabilities x such that if the other
player plays §’ with probability x, § has the highest expected return. In two
strategy games, we can remove the relativisation to §’, since for the purposes
we’ll go on to, it doesn’t matter which §” we use. In somewhat formal language,
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£ (S) 1s the basin of attraction for S; it is the range of probability functions that
points towards S being played.

Let m be the usual (Lesbegue) measure over intervals; all that you need to
know about this measure is that for any interval [x,y], m([x,y]) =y — x; L.e., it
maps a continuous interval onto its length. Say m(f(S)) is the risk-attractiveness
of §. Intuitively, this is a measure of how big a range of probability distributions
over the other person’s play is compatible with § being the best thing to play.

Say that a strategy S is risk-preferred iff m(f(S)) is larger than m(f(S*)) for
any alternative strategy S* available to that agent. Say that an equilibrium is risk-
dominant iff it consists of risk-preferred strategies for all players.

For simple two-player, two-option games like we’ve been looking at, all of
this can be simplified a lot. An equilibrium is risk-dominant iff each of the moves
in it are moves the players would make if they assigned probability 1/2 to each of
the possible moves the other player could make.

Neither Game 31 nor Game 32 have a risk-dominant equilibrium. An asym-
metric version of Game 31, such as this game, does.

Game 37 a4 b
A 2,2 0,0
B 0,0 1,1

In this case (A,a) is both Pareto-dominant and risk-dominant. Given that, we
might expect that both players would choose A. (What if an option is Pareto-
dominated, and risk-dominated, but focal? Should it be chosen then? Perhaps;
the Eiffel Tower isn’t easy to get to, or particularly pleasant once you’re there,
but seems to be chosen in the Paris version of Schelling’s meetup game because
of its focality.)

The real interest of risk-dominance comes from Game 33, the Stag Hunt. In
that game, cooperating is Pareto-dominant, but defecting is risk-dominant. The
general class of Stag Hunt games is sometimes defined as the class of two-player,
two-option games with two equilibria, one of which is Pareto-dominant, and
the other of which is risk-dominant. By that definition, the most extreme Stag
Hunt is a game we discussed earlier in the context of deleting weakly dominated
strategies.
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Game 14 / r
T 1,1 100, 0
B 0,100 100, 100

The (B, ) equilibrium is obviously Pareto-dominant. But the (7,1) is extremely
risk-dominant. Any probability distribution at all over what the other player
might do, except for the distribution that assigns probability 1 to B/r, makes it
better to play one’s part of (7, 1) than one’s part of (B, ).

I won’t go through all the variations here, in large part because I don’t un-
derstand them all, but there are a number of ways of modifying the Stag Hunt
so that risk-dominant strategies are preferred. Some of these are evolutionary;
given certain rules about what kinds of mutations are possible, risk-dominant
strategies will invariable evolve more successfully than Pareto-dominant strate-
gies. And some of these involve uncertainty; given some uncertainty about the
payoffs available to other players, risk-dominant strategies may be uniquely ra-
tional. But going the details of these results is beyond the scope of these notes.

Value of Communication

In all the games we’ve discussed to date, we have assumed that the players are
not able to communicate before making their choices. Or, equivalently, we’ve
assumed that the payoff structure is what it is after communication has taken
place. If we relax that assumption, we need to think a bit about the kind of
speech acts that can happen in communication.

Imagine that R and C are playing a Prisoners’ Dilemma. There are two im-
portantly different types of communication that might take place before play.
First, they might promise really sincerely that they won’t defect. Second, they
might come to some arrangement whereby the person who defects will incur
some costs. This could be by signing a contract promising to pay the other in
the event of defection. Or it could be by one player making a plausible threat to
punish the other for defection.

The second kind of communication can change the kind of game the play-
ers are playing. The first kind does not, at least not if the players do not regard
promise breaking as a bad thing. That’s because the second kind of communica-
tion, but not the first, can change the payoff structure the players face. If R and
C each have to pay in the event of defecting, it might be that defecting no longer
dominates cooperating, so the game is not really a Prisoners’ Dilemma. But if
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they merely say that they will cooperate, and there is no cost to breaking their
word, then the game still is a Prisoners’ Dilemma.

Call any communication that does not change the payoff matrix cheap talk.
In Prisoners’ Dilemma, cheap talk seems to be useless. If the players are both
rational, they will still both defect.

But it isn’t always the case that cheap talk is useless. In a pure coordination
game, like Game 34, cheap talk can be very useful. If a player says that they will
play 7, then each player can be motivated to play 7 even if they have no interest in
honesty. More precisely, assume that the hearer initially thinks that the speaker
is just as likely to be lying as telling the truth when she says something about
what she will do. So before she thinks too hard about it, she gives credence 0.5 to
the speaker actually playing 7 when she says she will do so. But if there’s a 50%
chance the speaker will play 7, then it seems better to play 7 than anything else.
In the absence of other information, the chance that the hearer will win when
playing some number other than 7 will be much less than 50%; around 6% if she
has equal credence in the speaker playing each of the other options. So the hearer
should play 7. But if the speaker can reason through this, then she will play 7 as
well. So her statement will be self-enforcing; by making the statement she gives
herself a reason to make it true, even beyond any intrinsic value she assigns to
being honest.

There is one step in that reasoning that goes by particularly fast. Just because
we think it is in general just as likely that a speaker is lying as telling the truth,
doesn’t mean that we should think those things are equally likely o7 this occasion.
If the speaker has a particular incentive to lie on this occasion, the fact that they
are a truth-teller half the time is irrelevant. But in Game 34, they have no such
incentive. In fact, they have an incentive to tell the truth, since truth-telling is
the natural way to a good outcome for them in the game.

But this consideration is a problem in Battle of the Sexes. Assume that R says,
“I'm going to play A, whatever you say you’ll do.” If C believes this, then she
has a reason to play 4, and that means R has a reason to do what she says. So you
might think that Game 32 is like Game 34 as a game in which cheap talk makes
a difference. But in fact the reasoning that we used in Game 34 breaks down a
little. Here R has an incentive to make this speech independently of what they
are planning to do. Unless we think R has a general policy of truth-telling, it
seems speeches like this should be discounted, since R’s incentive to talk this way
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is independent of how the plan to play. And if R has a general policy of truth-
telling, a policy they regard it as costly to break, this isn’t really a case of cheap
talk.

The same analysis seems to apply with even greater force in Game 33. There,
R wants C to play a, whatever R is planning on playing. So she wants to give
C a reason to play a. And saying that she’ll play A would be, if believed, such
a reason. So it seems we have a simpler explanation for why R says what she
says, independent of what R plans to do. So I suspect that in both Game 32 and
Game 33, this kind of cheap talk (i.e., solemn declarations of what one will play)
is worthless.

But that’s not all we can do when we communicate. We can also introduce
new options. (Just whether this should be called genuinely cheap talk is perhaps a
little dubious, but it seems to me to fall under the same general heading.) Assume
that we modify Game 32 by allowing the two players to see the result of a fair
coin flip. We introduce a new option for them each to play, which is to do A if
the coin lands heads, and B if the coin lands tails. Call this option Z. The new
game table looks like this. (Note that many of the payoffs are expected payoffs,
not guarantees.)

Game 38 a b z
A 2,1 0,0 1, 0.5
B 0,0 1,2 0.5,1
Z 1,05 05,1 1.5,1.5

Note that (Z, z) is an equilibrium of the game. Indeed, it is a better equilibrium
by far than the mixed strategy equilibrium that left each player with an expected
return of 2/3. Not surprisingly, this kind of result is one that players with a chance
to communicate often end up at.
Assume that R thinks that C will play A, B, z with probabilities x, y, 1—x —y.
Then R’s expected returns for her three strategies are:
UA)=2x+0y+1(1—x—y)
=1+x—-y
UB)=0x+1y4+05(1-x—y)
=0.5-0.5x +0.5y
U(Z)=1x+0.5y +1.5(1—x —y)
=15-05x—y
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A little algebra gives us the following inequalities.
UA)>U(Z)=3x>1
UA)>UB)<=>x>3y—1
UB)>U(Z)<=3y>2

Putting these together we get the following results:

Aisbestiff x >1/3and x >3y —1
B isbestiff y >2/30r (x >1/3and 3y — 1> x)
Z isbestiff x <1/3and y <2/
Here is a graph showing where each of the three options has the highest utility.

Y
(O, 1) A

(0,2/3) (1/5,2/3)
BN (212

\./"}g

(1/3,0) (1,

A little geometry reveals that the area of the large rectangle where Z is best is 2/9,
the two triangles where B is best have area 1/18 amd 1/54 each, summing to 2/27,
and the remaining area in the triangle, the odd-shaped area where A is best, is
therefore 1/6. In other words, the largest region is the one where X is best. And
that means, by definition, that Z is risk-preferred for R. A similar computation
shows that z is risk-preferred for C. So we get the result that the newly available
equilibrium is a risk-dominant equilibrium.

I’ll leave the option of extending this analysis to Stag Hunt as an exercise for
the interested reader.
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In many games there are multiple Nash equilibria. Some of these equilibria seem
highly unreasonable. For instance, the mixed equilibria in Battle of the Sexes
has a lower payout to both players than either of the pure equilibria. In some
coordination games, as we saw earlier, there are very poor outcomes that are still
equilibria. For instance, in this game both Az and Bb are equilibria, but we
would expect players to play Aa, not Bb.

Game 39 a b
A 1000, 1000 0,0
B 0,0 1,1

Considerations such as these have pushed many game theorists to develop re-
finements of the concept of Nash equilibrium. A refinement is an equilibrium
concept that is stronger than Nash equilibrium. We have already seen a couple of
refinements of Nash equilibrium in the discussion of coordination games. Here
are two such refinements. (The first name is attested in the literature, the second
I made up because I couldn’t find a standard name.)

Pareto Nash equilibrium is a Nash equilibrium that Pareto dominates every
other Nash equilibrium.

Risk Nash equilibrium is a Nash equilibrium that risk dominates every other
equilibrium.

We could also consider weak versions of these concepts. A weak Pareto Nash
equilibrium is a Nash equilibrium that is not Pareto-dominated by any other
equilibrium, and a weak risk Nash equilibrium is a Nash equilibrium that is not
risk dominated by any other Nash equilibrium. Since we’ve already spent a fair
amount of time on these concepts when we discussed coordination games, I won’t
go on more about them here.

We can also generate refinements of Nash equilibrium by conjoining domi-
nance conditions to the definition of Nash equilibrium. For instance, the follow-
ing two definitions are of concepts strictly stronger than Nash equilibrium.

Nash + Weak Dominance A Nash equilibrium that is not weakly dominated
by another strategy.
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Nash + Iterated Weak Dominance A Nash equilibrium that is not deleted by
(some process of) iterative deletion of weakly dominated strategies.

In the following game, all three of Aa, Bb and Cc are Nash equilibria, but Cc¢
is weakly dominated, and B does not survive iterated deletion of weakly domi-
nated strategies.

Game 40 a b c
A 3,3 2,0 0,0
B 0,2 2,2 1,0
C 0,0 0,1 1,1

But most refinements don’t come from simply conjoining an independently mo-
tivated condition onto Nash equilibrium. We’ll start with the most significant
refinement, subgame perfect equilibrium.

Subgame Perfect Equilibrium

Consider the following little game. The two players, call them Player I and Player
IT, have a choice between two options, call them Good and Bad. The game is a
sequential move game; first Player I moves then Player II moves. Each player gets
1 if they choose Good and 0 if they choose Bad. We will refer to this game as
Game 41. Here 1s its game tree.

1,1) (1,0) ©, 1) ©,0)

Figure 8.1: Game 41

A strategy for Player I in Game 41 is just a choice of one option, Good or Bad. A
strategy for Player II is a little more complicated. She has to choose both what to
do if Player I chooses Good, and what to do if Player II chooses Bad. We’ll write
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her strategy as a3, where « is what she does if Player I chooses Good, and S is
what she does if Player I chooses Bad. (We will often use this kind of notation in
what follows. Wherever it is potentially ambiguous, I'll try to explain it. But the
notation is very common in works on game theory, and it is worth knowing.)

The most obvious Nash equilibrium of the game is that Player I chooses
Good, and Player II chooses Good whatever Player I does. But there is another
Nash equilibrium, as looking at the strategic form of the game reveals. We’ll put
Player I on the row and Player II on the column. (We’ll also do this from now on
unless there is a reason to do otherwise.)

Game4l gg gb bg bb
G 1,1 1,1 1,0 1,0
B o1 0,0 0,1 0,0

Look at the cell that I've bolded, where Player I plays Good, and Player II plays
Good, Bad. That’s a Nash equilibrium. Neither player can improve their out-
come, given what the other player plays. But it is a very odd Nash equilibrium.
It would be very odd for Player II to play this, since it risks getting 0 when they

can guarantee getting 1.

It’s true that Good, Bad is weakly dominated by Good, Good. But as we’ve
already seen, and as we’ll see in very similar examples to this soon, there are
dangers in throwing out all weakly dominated strategies. Many people think
that there is something else wrong with what Player II does here.

Consider the sub-game that starts with the right-hand decision node for Play-
er II. That isn’t a very interesting game; Player I has no choices, and Player II
simply has a choice between 1 and 0. But it is a game. And note that Good, Bad
is not a Nash equilibrium of that game. Indeed, it is a strictly dominated strategy
in that game, since it involves taking O when 1 is freely available.

Say that a strategy pair is a subgame perfect equilibrium when it is a Nash
equilibrium, and it is a Nash equilibrium of every sub-game of the game. The pair
Good and Good, Bad is not subgame perfect, since it is not a Nash equilibrium
of the right-hand subgame.

When we solve extensive form games by backwards induction, we not only
find Nash equilibria, but subgame perfect equilibria. Solving this game by back-
wards induction would reveal that Player II would choose Good wherever she
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ends up, and then Player I will play Good at the first move. And the only sub-
game perfect equilibrium of the game is that Player I plays Good, and Player II
plays Good, Good.

Forward Induction

In motivating subgame perfect equilibrium, we use the idea that players will sup-
pose that future moves will be rational. We can also develop constraints based
around the idea that past moves were rational. This kind of reasoning is called
forward induction. A clear, and relatively uncontroversial, use of it is in this
game by Cho and Kreps’s paper “Signalling Games and Stable Equilibria” (QJE,
1987). We’ll return to that paper in more detail below, but first we’ll discuss
Game 42.

1,1 1,-1
p b
p P
1p X o 1—x 1,
Q Q
0,0 0,0

Figure 8.2: Game 42
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This game takes a little more interpreting than some we’ve looked at previously.
We use the convention that an empty disc indicates the initial node of the game.
In this case, as in a few games we’ll look at below, it is in the middle of the tree.
The first move is made by Nature, denoted by N. Nature makes Player 1 playful
with probability x, or bashful, with probability 1—x. Player 1’s personality type
is revealed to Player 1, but not to Player 2. If she’s playful, she moves to the node
marked 1, if bashful to the node marked 1,. Either way she has a choice about
whether to play a guessing game with Player 2, where Player 2 has to guess her
personality type. Player 1’s payouts are as follows:

o If she doesn’t play the guessing game, she gets 0.

e If she’s playful, she gets 1 if Player 2 guesses correctly, and -1 if Player 2
guesses incorrectly.

e If she’s bashful, she gets -1 either way.

Player 2’s payouts are a little simpler.

o If the guessing game isn’t played, she gets 0.
e If it is played and she guesses correctly, she gets 1.
e If it is played and she guesses wrongly, she gets -1.

The horizontal dashed line at the top indicates that if one of the upper nodes is
reached, Player 2 doesn’t know which node she is at. So we can’t simply apply
backward induction. Indeed, there aren’t any subgames of this game, since there
are no nodes that are neither initial nor terminal such that when they are reached,
both players know they are there.

Player 1 has four possible strategies. She has to decide whether to Play or
Quit both for when she is playful and when she is bashful. We’ll write a strategy
a3 as the strategy of playing a if playful, and /3 if bashful. (We’re going to repeat
a lot of this notation when we get to signalling games, but it is worthwhile going
over it a few times to be maximally clear.) Player 2 only has one choice and two
possible strategies: if she gets to guess, she can guess playful or bashful. If we set
out the strategic form of the game, we get the following expected payouts. (It’s
worth checking that you understand why these are the expected payouts for each
strategy.)
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Game 42 P b
PP 2x—-1,2x—-1 —-1,1—2x
PQ X, X —X,—X
QP x—-1,x—-1 =x—-11-x
QQ 0,0 0,0

Assuming 0 < x < 1, it is easy to see that there are two pure Nash equilibria
here: (PQ, p) and (QQ, r). But there is something very odd about the second
equilibrium. Assume that both players are rational, and Player 2 actually gets
to play. If Player 1 is bashful, then Quitting dominates Playing. So a rational
bashful Player 1 wouldn’t give Player 2 a chance to move. So if Player 2 gets a
chance to move, Player 1 must be playful. And if Player 1 is playful, the best
move for Player 2 is p. So by forward induction reasoning, Player 2 should play
p- Moreover, Player 1 can figure all this out, so by backward induction reasoning
she should play her best response to p, namely PQ.

We’ll look at reasons for being sceptical of forward induction reasoning, or at
least of some notable applications of it, next time. But at least in this case, it seems
to deliver the right verdict: the players should get to the (PQ, p) equilibrium, not
the (QQ, 7) equilibrium.

Perfect Bayesian Equilibrium

The core idea behind subgame perfect equilibrium was that we wanted to elim-
inate equilibria that relied on ‘incredible threats’. That is, there are some equi-
libria such that the first player makes a certain move only because if they make
a different move, the second player to move would, on their current strategy, do
something that makes things worse for both players. But there’s no reason to
think that the second player would actually do that.

The same kind of consideration can arise in games where there aren’t any
subgames. For instance, consider the following game, which we’ll call Game 43.
The game here is a little different to one we’ve seen so far. First Player 1 makes a
move, either L, M or R. If her move is R, the game ends, with the (2, 2) payout.
If she moves L or M, the game continues with a move by Player 2. But crucially,
Player 2 does not know what move Player 1 made, so she does not know which
node she is at. So there isn’t a subgame here to start. Player 2 chooses [ or 7, and
then the game ends.

There are two Nash equilibria to Game 43. The obvious equilibrium is L/.
In that equilibrium Player 1 gets her maximal payout, and Player 2 gets as much
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3¢, 1) 00 (1,1) ©,0

Figure 8.3: Game 43

as she can get given that the rightmost node is unobtainable. But there is another
Nash equilibrium available, namely Rr. In that equilibrium, Player 2 gets her
maximal payout, and Player 1 gets the most she can get given that Player 2 is
playing r. But note what a strange equilibrium it is. It relies on the idea that
Player 2 would play r were she to be given a move. But that is absurd. Once she
gets a move, she has a straight choice between 1, if she plays /, and 0, if she plays
7. So obviously she’ll play /.

This 1s just like the examples that we used to motivate subgame perfect equi-
librium, but that doesn’t help us here. So we need a new concept. The core idea
is that each player should be modelled as a Bayesian expected utility maximiser.
More formally, the following constraints are put on players.

1. At each point in the game, each player has a probability distribution over
where they are in the game. These probability distributions are correct
about the other players’ actions. That is, if a player is playing a strategy S,
everyone has probability 1 that they are playing S. If § is a mixed strategy,
this might involve having probabilities between 0 and 1 in propositions
about which move the other player will make, but players have correct
beliefs about other players’ strategies.

2. No matter which node is reach, each player is disposed to maximise ex-
pected utility on arrival at that node.

3. When a player had a positive probability of arriving at a node, on reaching
that node they update by conditionalisation.

4. When a player gave O probability to reaching a node (e.g., because the equi-
librium being played did not include that node), they have some disposition
or other to form a set of consistent beliefs at that node.



116 Refining Nash Equilibria

The last constraint is very weak, but it does enough to eliminate the equilibrium
R7. The constraint implies that when Player 2 moves, she must have some proba-
bility distribution Pr such that there’s an x such that Pr(L) = x and Pr(M) = 1—x.
Whatever value x takes, the expected utility of / given Pr is 1, and the expected
utility of 7 is 0. So being disposed to play r violates the second condition. So R~
is not a Perfect Bayesian equilibrium.

It’s true, but I’'m not going to prove it, that all Perfect Bayesian equilibria are
Nash equilibria. It’s also true that the converse does not hold, and this we have
proved; Game 43 is an example.

Signalling Games

Concepts like Perfect Bayesian equilibrium are useful for the broad class of games
known as signalling games. In a signalling game, Player 1 gets some information
that is hidden from player 2. Many applications of these games involve the infor-
mation being de se information, so the information that Player 1 gets is referred
to as her type. But that’s inessential; what is essential is that only one player gets
this information. Player 1 then has a choice of move to make. There is a small
loss of generality here, but we’ll restrict our attention to games where Player 1’s
choices are independent of her type, i.e., of the information she receives. Player
2 sees Player 1’s move (but not, remember, her type) and then has a choice of
her own to make. Again with a small loss of generality, we’ll restrict attention
to cases where Player 2’s available moves are independent of what Player 1 does.
We’ll start, in game Game 44 with a signalling game where the parties’ interests
are perfectly aligned.

As above, we use an empty disc to signal the initial node of the game tree. In this
case, it is the node in the centre of the tree. The first move is made by Nature,
again denoted as N. Nature assigns a type to Player 1; that is, she makes some
proposition true, and reveals it to Player 1. Call that proposition g. We’ll say that
Nature moves left if ¢ is true, and right otherwise. We assume the probability
(in some good sense of probability) of g is p, and this is known before the start
of the game. After Nature moves, Player 1 has to choose Up or Down. Player
2 is shown Player 1’s choice, but not Nature’s move. That’s the effect of the
horizontal dashed lines. If the game reaches one of the upper nodes, Player 2
doesn’t know which one it is, and if it reaches one of the lower nodes, again
Player 2 doesn’t know which it is. Then Player 2 has a make a choice, here simply
denoted as /eft or right.
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1,1 0,0 0,0 1,1

Figure 8.4: Game 44

In any game of this form, each player has a choice of four strategies. Player
1 has to choose what to do if ¢ is true, and what to do if g is false. We’ll write
a3 for the strategy of doing « if ¢, and 3 if =¢. Since @ could be U or D, and 3
could be U or D, there are four possible strategies. Player 2 has to choose what to
do if U is played, and what to do if D is played. We’ll write y& for the strategy
of doing y if U is played, and & if D is played. Again, there are four possible
choices. (If Player 2 knew what move Nature had made, there would be four
degrees of freedom in her strategy choice, so she’d have 16 possible strategies.
Fortunately, she doesn’t have that much flexibility!)

Any game of this broad form is a signalling game. Signalling games differ
in (a) the interpretation of the moves, and (b) the payoffs. Game 44 has a very
simple payoff structure. Both players get 1 if Player 2 moves [ iff ¢, and 0 other-
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wise. If we think of / as the formation of a belief that ¢, and r as the formation
of the opposite belief, this becomes a simple communication game. The players
get a payoff iff Player 2 ends up with a true belief about g, so Player 1 is trying
to communicate to Player 2 whether g is true. This kind of simple communica-
tion game was Lewis used in Convention to show that game theoretic approaches
could be fruitful in the study of meaning. The game is perfectly symmetric if
P = 1/2; so as to introduce some asymmetries, I'll work through the case where
p =3/

Game 44 has a dizzying array of Nash equilibria, even given this asymmetry
introducing assumption. They include the following:

e There are two separating equilibria, where what Player 1 does depends on
what Nature does. These are (UD,[r) and (DU, rl). These are rather
nice equilibria; both players are guaranteed to get their maximal payout.

e There are two pooling equilibria, where what Player 1 does is independent
of what Nature does. These are (UU, /1) and (DD, /I). Given that she
gets no information from Player 1, Player 2 may as well guess. And since
Pr(q) > 1/2, she should guess that g is true; i.e., she should play /. And
given that Player 2 is going to guess, Player 1 may as well play anything. So
these are also equilibria.

e And there are some babbling equilibria. For instance, there is the equilib-
rium where Player 1 plays either UU or DD with some probability r, and
Player 2 plays /.

Unfortunately, these are all Perfect Bayesian equilibria too. For the separating
and babbling equilibria, it is easy to see that conditionalising on what Player 1
plays leads to Player 2 maximising expected utility by playing her part of the
equilibrium. And for the pooling equilibria, as long as the probability of g stays
above 1/2 in any ‘off-the-equilibrium-path’ play (e.g., conditional on D in the
(UU,!1) equilibrium), Player 2 maximises expected utility at every node.

That doesn’t mean we have nothing to say. For one thing, the separating
equilibria are Pareto-dominant in the sense that both players do better on those
equilibria than they do on any other. So that’s a non-coincidental reason to think
that they will be the equilibria that arise. There are other refinements on Perfect
Bayesian equilibria that are more narrowly tailored to signalling games. We’ll
introduce them by looking at a couple of famous signalling games.
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Economists have been interested for several decades in games that give college
a signalling function. So consider the following variant of the signalling game,
Game 45. It has the following intended interpretation:

e Player 1 is a student and potential worker, Player 2 is an employer.

e The student is either bright or dull with probability p of being bright.
Nature reveals the type to the student, but only the probability to the em-
ployer, so ¢ is that the student is bright.

e The student has the choice of going to college (U) or the beach (D).

e The employer has the choice of hiring the student (/) or rejecting them (7).

In Game 45 we make the following extra assumptions about the payoffs.

e Being hired is worth 4 to the student.

e Going to college rather than the beach costs the bright student 1, and the
dull student 5, since college is much harder work for dullards.

e The employer gets no benefit from hiring college students as such.

e Hiring a bright student pays the employer 1, hiring a dull student costs the
employer 1, and rejections have no cost or benefit.

The resulting game tree is shown in 8.5. In this game, dull students never prefer
to go to college, since even the lure of a job doesn’t make up for the pain of
actually having to study. So a rational strategy for Player 1 will never be of the
form a U, since for dull students, college is a dominated option, being dominated
by aD. But whether bright students should go to college is a trickier question.
That is, it is trickier to say whether the right strategy for Player 1is UD or DD,
which are the two strategies consistent with eliminating the strictly dominated
strategies. (Remember that strictly dominated strategies cannot be part of a Nash
equilibrium.)

First, consider the case where p < 1/2. In that case, if Player 1 plays DD, then
Player 2 gets 2p — 1 from playing either // or r/, and 0 from playing /7 or r 7.
So she should play one of the latter two options. If she plays rr, then DD is a
best response, since when employers aren’t going to hire, students prefer to go
to the beach. So there is one pooling equilibrium, namely (DD, r r). But what
if Player 2 plays /7. Then Player 1’s best response is UD, since bright students
prefer college conditional on it leading to a job. So there is also a separating
equilibrium, namely (UD, [ r). The employer prefers that equilibrium, since her
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3,1 1,0 1,-1 5.0

Figure 8.5: Game 45

payoff is now p rather than 0. And students prefer it, since their payoff is 3p
rather than 0. So if we assume that people will end up at Pareto-dominant out-
comes, we have reason to think that bright students, and only bright students,
will go to college, and employers will hire college students, and only college stu-
dents. And all this is true despite there being no advantage whatsoever to going
to college in terms of how good an employee one will be.

Especially in popular treatments of the case, the existence of this kind of
model can be used to motivate the idea that college only plays a signalling role.
That s, some people argue that in the real world college does not make students
more economically valuable, and the fact that college graduates have better em-
ployment rates, and better pay, can be explained by the signalling function of
college. For what it’s worth, I highly doubt that is the case. The wage premium
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one gets for going to college tends to increase as one gets further removed from
college, although the further out from college you get, the less important a signal
college participation is. One can try to explain this fact too on a pure signalling
model of college’s value, but frankly I think the assumptions needed to do so are
heroic. The model is cute, but not really a picture of how actual college works.

So far we assumed that p < 1/2. If we drop that assumption, and assume
instead that p > 1/2, the case becomes more complicated. Now if Player 1 plays
DD, i.e., goes to the beach no matter what, Player 2’s best response is still to
hire them. But note that now a very odd equilibrium becomes available. The
pair (DD, rl) is a Nash equilibrium, and, with the right assumptions, a Perfect
Bayesian equilibrium. This pair says that Player 1 goes to the beach whatever her
type, and Player 2 hires only beach goers.

This is a very odd strategy for Player 2 to adopt, but it is a little hard to say
just why it is odd. It is clearly a Nash equilibrium. Given that Player 2 is playing
rl, then clearly beach-going dominates college-going. And given that Player 1
is playing DD, playing 7/ gets as good a return as is available to Player 2, i.e.,
2p—1. Could it also be a Perfect Bayesian equilibrium? It could, provided Player
2 has a rather odd update policy. Say that Player 2 thinks that if someone goes
to college, they are a dullard with probability greater than 1/2. That’s consistent
with what we’ve said; given that Player 1 is playing DD, the probability that a
student goes to college is 0. So the conditional probability that a college-goer is
bright is left open, and can be anything one likes in Perfect Bayesian equilibrium.
So if Player 2 sets it to be, say, 0, then the rational reaction is to play /.

But now note what an odd update strategy this is for Player 2. She has to as-
sume that if someone deviates from the DD strategy, it is someone for whom the
deviation is strictly dominated. Well, perhaps it isn’t crazy to assume that some-
one who would deviate from an equilibrium isn’t very bright, so maybe this isn’t
the oddest assumption in this particular context. But a few economists and game
theorists have thought that we can put more substantive constraints on probabili-
ties conditional on ‘off-the-equilibrium-path’ behaviour. One such constraint, is,
roughly, that deviation shouldn’t lead to playing a dominated strategy. This is the
“intuitive criterion” of Cho and Kreps. In this game, all the criterion rules out
is the odd pair (DD, rI). It doesn’t rule out the very similiar pair (DD, /). But
the intuitive criterion makes more substantial constraints in other games. We’ll
close the discussion of signalling games with such an example, and a more careful
statement of the criterion.
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The tree in 8.6 represents Game 46, which is also a guessing game. The usual
statement of it involves all sorts of unfortunate stereotypes about the type of men
who have quiche and/or beer for breakfast, and I'm underwhelmed by it. So I’ll
run with an example that relies on different stereotypes.

A North American tourist is in a bar. 60% of the North Americans who
pass through that bar are from Canada, the other 40% are from the US. (This is
a little implausible for most parts of the world, but maybe it is very cold climate
bar. In Cho and Kreps’ version the split is 90/10 not 60/40, but all that matters
is which side of 50/50 it is.) The tourist, call her Player 1, knows her nationality,
although the barman doesn’t. The tourist can ask for the bar TV to be turned to
hockey or to baseball, and she knows once she does that the barman will guess
at her nationality. (The barman might also try to rely on her accent, but she
has a fairly neutral upper-Midwest/central Canada accent.) Here are the tourist’s
preferences.

e If she is American, she has a (weak) preference for watching baseball rather
than hockey.

e If she is Canadian, she has a (weak) preference for watching hockey rather
than baseball.

e Either way, she has a strong preference for being thought of as Canadian
rather than American. This preference is considerably stronger than her
preference over which sport to watch.

The barman’s preferences are simpler; he prefers to make true guesses to false
guesses about the tourist’s nationality. All of this is common knowledge. So
the decision tree is In this tree, B means asking for baseball, H means asking for
hockey, 2 means guessing the tourist is from the USA, ¢ means guessing she is
from Canada.

There are two Nash equilibria for this game. One is (HH, ca); everyone asks
for hockey, and the barman guesses Canadian if hockey, American if baseball.
It isn’t too hard to check this is an equilibrium. The Canadian gets her best
outcome, so it is clearly an equilibrium for her. The American gets the second-
best outcome, but asking for baseball would lead to a worse outcome. And given
that everyone asks for hockey, the best the barman can do is go with the prior
probabilities, and that means guessing Canadian. It is easy to see how to extend
this to a perfect Bayesian equilibrium; simply posit that conditional on baseball
being asked for, the probability that the tourist is American is greater than 1/2.
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Figure 8.6: Game 46

The other equilibrium is rather odder. It is (BB, ac); everyone asks for base-
ball, and the barman guesses American if hockey, Canadian if baseball. Again, it
isn’t too hard to see how it is Nash equilibrium. The Canadian would rather have
hockey, but not at the cost of being thought American, so she has no incentive
to defect. The American gets her best outcome, so she has no incentive to defect.
And the barman does as well as he can given that he gets no information out of
the request, since everyone requests baseball.

Surprisingly, this could also be a perfect Bayesian equilibrium. This requires
that the barman maximise utility at every node. The tricky thing is to ensure he
maxmises utility at the node where hockey is chosen. This can be done provided
that conditional on hockey being chosen, the probability of American rises to
above 1/2. Well, nothing we have said rules that out, so there exists a perfect
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Bayesian equilibrium. But it doesn’t seem very plausible. Why would the barman
adopt just this updating disposition?

One of the active areas of research on signalling games is the development of
formal rules to rule out intuitively crazy updating dispositions like this. (Small
note for the methods folks: at least some of the economists working on this ex-
plicitly say that the aim is to develop formal criteria that capture clear intuitions
about cases.) I'm just going to note one of the very early attempts in this area,
Cho and Kreps’ Intuitive Criterion.

Start with some folksy terminology that is (I think) novel to me. Let an
outcome o of the game be any combination of moves by nature and the players.
Call the players” moves collectively P and nature’s move N. So an outcome is a
pair (P, N). Divide the players into three types.

e The happy players in o are those such that given N, o maximises their
possible returns. That is, for all possible P/, their payoff in (P, N) is at least
as large as their payoff in (P’,N).

e The content players are those who are not happy, but who are such that
for no strategy s’ which is an alternative to their current strategy s, would
they do better given what nature and the other players would do if they
played s’.

e The unhappy players are those who are neither happy nor content.

The standard Nash equilibrium condition is that no player is unhappy. So assume
we have a Nash equilibrium with only happy and content players. And assume it
is also a Perfect Bayesian equilibrium. That is, for any ‘off-equilibrium’ outcome,
each player would have some credence function such that their play maximises
utility given that function.

Now add one constraint to those credence functions:

Intuitive Criterion - Weak Version

Assume a player has probability 1 that a strategy combination P will
be played. Consider their credence function conditional on another
player playing s/, which is different to the strategy s they play in P.
If it is consistent with everything else the player believes that s” could
be played by a player who is content with the actual outcome (P, N),
then give probability 1 to s’ being played by a content player.
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That is, if some deviation from equilibrium happens, give probability 1 to it
being one of the content players, not one of the happy players, who makes the
deviation.

That’s enough to rule out the odd equilibrium for the baseball-hockey game.
The only way that is a Perfect Bayesian equilibrium is if the barman responds
to a hockey request by increasing the probability that the tourist is American.
But in the odd equilibrium, the American is happy, and the Canadian is merely
content. So the Intuitive Criterion says that the barman should give credence 1 to
the hockey requester, i.e., the deviator from equilibrium, being Canadian. And
if so, the barman won’t respond to a hockey request by guessing the requestor
is American, so the Canadian would prefer to request hockey. And that means
the outcome is no longer an equilibrium, since the Canadian is no longer even
content with requesting baseball.

In games where everyone has only two options, the weak version I've given
is equivalent to what Cho and Kreps offers. The official version is a little more
complicated. First some terminology of mine, then their terminology next.

e A player is happy to have played s rather than s’ if the payoff for s in o is
greater than any possible outcome for s’ given N.

o A player is content to have played s rather than s’ if they are not happy
to have played s rather than s, but the payoff for s in o is as great as the
payoff for s’ given N and the other players strategies.

e A player is unhappy to have played s rather than s’ if they are neither
happy nor content to have played s rather than s’.

If a player is happy to have played s rather than s’, and s is part of some equilib-
rium outcome o, then Cho and Kreps say that s’ is an equilibrium-dominated
strategy. The full version of the Intuitive Criterion is then:

Intuitive Criterion - Full Version

Assume a player has probability 1 that a strategy combination P will
be played. Consider their credence function conditional on another
player playing s’, which is different to the strategy s they play in P.
If it is consistent with everything else the player believes that s” could
be played by a player who is merely content to have played s rather
than s, then give probability 1 to s’ being played by someone who is
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content to have played s, rather than someone who is happy to have
played s.

This refinement matters in games where players have three or more options. It
might be that a player’s options are s, s, and s3, and their type is ¢, or t,. In the
Nash equilibrium in question, they play s,. If they are type ¢, they are happy
to have played s; rather than s,, but merely content to have played s, rather than
s;. If they are type t,, they are happy to have played s, rather than s;, but merely
content to have played s, rather than s,. In my terminology above, both players
are content rather than happy with the outcome. So the weak version of the In-
tuitive Criterion wouldn’t put any restrictions on what we can say about them
conditional on them playing, say s,. But the full version does say something; it
says other players should assign probability 1 to the player being type ¢, condi-
tional on them playing s,, since the alternative is that s, is played by a player who
is happy they played s; rather than s,. Similarly, it says that conditional on the
player playing s;, other players should assign probability 1 to their being of type
t;, since the alternative is to assign positive probability to a player deviating to a
strategy they are happy not to play.

The Intuitive Criterion has been the subject of an enormous literature. Goo-
gle Scholar lists nearly 2000 citations for the Cho and Kreps paper alone, and
similar rules are discussed in other papers. So there are arguments that it is
too weak and arguments too strong, and refinements in all sorts of directions.
But in the interests of not getting too far outside my field of competence, we’ll
leave those. What I most wanted to stress was the form a refinement of Perfect
Bayesian equilibrium would take. It is a constraint on the conditional credences
of agents conditional on some probability O event happening. It’s interesting that
there are some plausible, even intuitive constraints; sometimes it seems the eco-
nomic literature has investigated rationality under O probability evidence more
than philosophers have!

Other Types of Constraint

We don’t have the time, or perhaps expertise, to go into other kinds of constraints
in as much detail, but I wanted to quickly mention two other ways in which game
theorists have attempted to restrict Nash equilibrium.

The first is sometimes called trembling-hand equilibrium. The idea is that
we should restrict our attention to those strategies that are utility maximising
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given a very very high credence that the other players will play the strategies
they actually play, and some positive (but low) credence that they will play each
other strategy. This is, I think very important to real-world applications, since
it is very implausible that we should assign probability 1 to any claim about the
other players, particularly claims of the form that they will play some equilib-
rium rather than another. (There is a connection here to the philosophical claim
that rational credences are regular; that is, that they assign positive probability to
anything possible.)

In normal form games, the main effect of this is to rule out strategies that
are weakly dominated. Remember that there are many strategies that are equilib-
ria that are weakly dominated, since equilibrium concepts typically only require
that player can’t do better given some other constraint. But if we have to assign
positive probability to any alternative, then the weakly dominating strategy will
get a utility boost from the alternative under which it is preferable.

Things get more complicated when we put a ‘trembling-hand’ constraint on
solutions to extensive form games. The usual idea is that players should, at each
node, assign a positive probability to each deviation from equilibrium play. This
can end up being a rather tight constraint, especially when combined with such
ideas as subgame-perfection.

The other kind of refinement I'll briefly discuss in evolutionary stability.
This 1s, as the name suggests, a concept that arose out of game-theoretic models
of evolution. As such, it only really applies to symmetric games. In such a game,
we can write things like U(s,s”), meaning the payoff that one gets for playing s
when the other player is playing s’. In an asymmetric game, we’d have to also
specify which ‘side’ one was when playing s, but there’s no need for that in a
symmetric game.

We then say that a strategy is evolutionarily stable iff these two conditions

hold.

Ve:(U(s,s) > Ult,s))
Vi#s:(U(s,s)>U(t,s)V U(s,s) > U(t,t))

The idea is that a species playing s is immune to invasion if it satisfies these condi-
tions. Any invader will play some alternative strategy ¢. Think then of a species
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playing ¢t whose members have to play either against the existing strategy s with
high probability, or against other members of their own species with low prob-
ability. The first clause says that the invader can’t do better in the normal case,
where they play with a dominant strategy. The second clause says that they do
worse in one of the two cases that come up during the invasion, either playing
the dominant strategy or playing their own kind. The effect is that the dominant
strategy will do better, and the invader will die out.

For real-world applications we might often want to restrict the quantifier to
biologically plausible strategies. And, of course, we’ll want to be very careful
with the specification of the game being played. But, I'm told, there are some
nice applications of this concept in explanations of certain equilibrium outcomes.
That’s a topic for biology class though - not decision theory!



Backward Induction and Its Discontents

Problems with Backwards Induction

When each player only moves once, it is very plausible that each player should
play their part of a subgame perfect equilibrium solution to the game. But this
is less compelling when players have multiple moves. We can start to see why by
looking at a game that Robert Stalnaker has used in a few places. Again, it is an
extensive form game. We will call it Game 47.

I II I
* * 14 3
A a A,
D, d D,
2 1 0

Figure 9.1: Game 47

The game starts in the upper-left corner. There are up to three moves, each
of them Across or Down. As soon as one player moves Down, the game ends. It
is a common interest game; each player gets the payout at the terminal node.

Since there is only one path to each decision node, a strategy merely has to
consist of a set of plans for what to play if that node is reached. Alice’s strategy
will consist of two capitalised moves, and Bob’s strategy will consist of one lower-
case move.

If we apply backwards induction, we get that the unique solution of the game
is (A;Ay,a). Alice would play A, if it gets that far. Given that, Bob would be
better off playing a than d if he gets to play. And given that, Alice is better off
playing A, than D,.

But there are many other Nash equilibria of the game. One of them is
(DyA,,d). Given that Player L is playing D,, Player II can play anything without
changing her payout; it will be 2 come what may. Given that Player II is playing
d, Player I is best off playing D, and taking 2, rather than just getting the 1 that
comes from leaving Player II to make a play.
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Could this equilibrium be one that rational players, who know each other
to be rational, reach? Stalnaker argues that it could. Assume each player knows
that the other player is rational, and is playing that strategy. Given what Player
I knows, her strategy choice is clearly rational. She takes 2 rather than the 1 that
she would get by playing A,, and she is disposed to take 3 rather than 0 if she gets
to the final decision node. So her actual choice is rational, and her disposition is
to make another rational choice if we reach the end of the game.

Things are a little trickier for Player II. You might think it is impossible for
rational Player II, who knows Player I to be rational, to move d. After all, if
Player I is rational, then she’ll play A,, not D,. And if she plays A,, it is better
to play a than d. So it looks hard to justify Player II’'s move. But looks can be
deceiving. In fact there isn’t anything wrong with Player II’s move, as long as he
has the right beliefs to justify it. It’s very important to distinguish the following
two conditionals.

e If Player I has the choice, she chooses A, over D,.
e If Player I were to have the choice, she would choose A, over D,.

Player IT knows that the first, indicative, conditional is true. And indeed it is true.
But he doesn’t know that the second, subjunctive, conditional is true. After all, if
Player I were to have the choice between A, and D,, she would have, irrationally,
chosen A, over D,. And if she had chosen irrationally once, it’s possible that she
would choose irrationally again.

Here’s an analogy that may help explain what’s going on. The following set
of beliefs is consistent.

e Any perfectly rational being gets all of the questions on their algebra exam
right.

e Alice is perfectly rational.

o If Alice had got the second-hardest question on the algebra exam wrong,
she would have got the hardest question on the algebra exam wrong as
well.

Player II’s beliefs are like that. He believes Player I is perfectly rational. He also
believes that if Player I were to make an irrational move, she would continue
to make irrational moves. That’s consistent with belief in perfect rationality, and
nothing about the game setup rules out such a belief. He also believes that playing
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A, would be irrational. That’s correct, given what Player I knows about Player
II. Given all those beliefs, playing d, if he had the chance, would be rational.

Stalnaker argues that many game theorists have tacitly confused indicative
and subjunctive conditionals in reasoning about games like Game 47. Let’s look
at some other games where similar reasoning takes place.

Money Burning Game

Elchanen Ben-Porath and Eddie Dekel suggested this variant to the Battle of the
Sexes game. The variation is in two steps. First, we change the payouts for the
basic game to the following. (Note that I'm using a lowercase letter for one of R’s
options here; this is to distinguish the d of down from the D of Don’t burn.)

/ r
u 41 0,0
d 0,0 1,4

Then we give Player I the option of publicly burning 2 utils before playing this
game. We will use D for Don’t burn, and B for burn. So actually each player has
four choices. Player I has to choose both D or B, then # or d. Player 2 has to
choose whether to play / or 7 in each of the two possibilities: first, when D is
played, second, when B is played. We’ll write [r for the strategy of playing / if
D, and 7 if B, and so on for the other strategies.

Game 48 [/ Ir rl rr
Du 41 41 0,0 0,0
Dd 0,0 0,0 1,4 1,4
Bu 2,1 -2,0 2,1 -2,0
Bd 2,0 -1,4 2,0 -1,4

Now we can analyse this game a couple of ways. First, we can go through elim-
inating weakly dominated strategies. Note that D# strictly dominated Bd, so
we can eliminate it. If Bd is out, then [/ weakly dominates /r, and r/ weakly
dominates 7 7. So we can eliminate /7 and r r. Now B# weakly dominates Dd,
relative to the remaining options, so we can eliminate it. Given that just D# and
Bu remain, [/ weakly dominates all options for Player II, so it is all that is left.
And given that // is all that remains, D# strongly dominates B#. So the itera-
tive deletion of weakly dominated strategies leaves us with (D, /) as the unique
solution of the game.
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Alternatively, we can think the players reason as follows. (As Stalnaker notes,
this is an instance of the forward induction reasoning we discussed earlier.) Play-
ing Bd is obviously irrational for Player I, since its maximum return is -1, and
playing Du or Dd guarantees getting at least 0. So any rational player who plays
B must be playing Bu. That is, if Player L is rational and plays B, she will play Bu.
Moreover, this is common knowledge among the players. So if Player I plays B,
she will recognise that Player II will know that she is playing B#. And if Player
IT knows Player I is playing # after burning, she will play /, since that returns
her 1 rather than 0. So Player I knows that playing B leads to the 2,1 state; 1.e., it
returns her 2. But now it is irrational to play Dd, since that gets at most 1, and
playing B leads to a return of 2. So Player I will play B# or Du. And since the
reasoning that leads to this is common knowledge, Player II must play //, since
playing / is her best response to a play of #, and she knows Player I will play #.
But if Player I is going to play //, Player I doesn’t need to burn; she can just play
Du.

There is a crucial conditional in the middle of that argument; let’s isolate it.
e If Player I is rational and plays B, she will play Bu.

But that’s not what is needed to make the argument work. What Player I needs,
and in fact needs to be common knowledge, is the following subjunctive.

e If Player I is rational then, if she were to play B, she would play Bu.

But in fact there’s no reason to believe that. After all, if the forward induction
argument is right, then it is irrational to burn the money. So if Player I were
to play B, i.e., burn the money, then she would be doing something irrational.
And the fact that Player I is actually rational is consistent with the counterfactual
that if she were to do one irrational thing, it would be because she is following
an irrational strategy. Note that on the assumption that D# is optimal, then if
Player I finds herself having played B, it isn’t clear that playing d is irrational; it
isn’t like it is dominated by #.

So it isn’t true that if Player I were to burn the utils, Player II would know
that she is playing B#, and react accordingly by playing /. And if that’s not true,
then there’s no reason to think that Bu is better than Dd. And if there’s no
reason to think that, there’s no reason to be confident Player 2 will play //.
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Stalnaker goes further and provides a positive model where the players start
with a common belief in rationality, and in what each other will do, but in which
the players play Bu# and /. I'll leave it as an exercise to work out what counter-
factuals the agents have to believe to make this rational, but suffice to say that it
could be a perfectly rational solution.

There is another, relatively simple, equilibrium to the game. Player I will
play Dd, and Player Il will play »r. Player II is certain that Player I will play d,
and will keep that belief even if Player I irrationally burns 2 utils to start with.
Given that certainty, it is rational for Player I to play Dd, so Player II’s belief is
consistent with believing Player I to be rational. And since Player Iis playing Dd,
playing r r is perfectly rational for Player II; indeed it results in her best possible
outcome. Moreover, given that Player Il is playing 7 7, it makes sense for Player I
to play d even if they were, irrationally, to burn the utils. So even though playing
Bd would be irrational, since it is strictly dominated, if they were to (irrationally)
play D, they should follow that by playing d. There’s an important point about
the scope of the claim that playing Bd is irrational. It doesn’t imply that if the
player were to irrationally play B, it would be irrational to follow with a play
of d. If Player I was convinced that Player II was playing 7, then it would be
rational to follow B with d.

Iterated Prisoners’ Dilemma

Let’s start with a slightly relabeled version of Game 1, where we use C and D for
cooperate and defect.

Gamel ¢ d
C 33 0,5
D 50 1,1

We’ll call the players I and II, and use uppercase letters for Player I’s strategies,
and lower case letters for Player II’s strategies. We’ll assume that each player
knows that the other players are perfectly rational in Stalnaker’s sense.

There are a couple of arguments that the players must end up at the equilib-
rium where every player defects on every move. One of these is an argument by
backwards induction.

At the last move of the game, defecting dominates cooperating. Both players
know this. At the second-last move, you might have thought antecedently that
there was some benefit to cooperating. After all, it might induce cooperation
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in the other player. But the only benefit one could get from cooperating was
cooperation at the next (i.e., last) move. And no rational player will cooperate
on the last move. So, if you’re playing with a rational player, there’s no benefit to
cooperating on the second-last move. But if that’s right, and everyone knows it,
then there is no benefit to cooperating on the third-last move. The only benefit
would be if that would induce cooperation, and it couldn’t, since we just proved
that any rational player would defect on the second-last move. And so on for any
finite length game that you like.

Alternatively, we could look at the game from a strategic perspective. As
we’ve seen in games like Game 48, sometimes there are Nash equilibria that
don’t appear in backwards induction reasoning. But this isn’t (I think) the case
in finitely iterated Prisoners’ Dilemma. The only Nash equilibrium is that both
players defect in every circumstance.

This is a little tricky to check since the strategic form of iterated Prisoners’
Dilemma gets very complex very quickly. Let’s just consider the three round
version of the game. Already each player has 128 strategies to choose from. The
choice of a strategy involves making 7 distinct choices:

1. What to do in the first round.

2. What to do in the second round if the other player cooperates in the first
round.

3. What to do in the second round if the other player defects in the first round.

4. What to do in the third round if the other player cooperates in each of the
first two rounds.

5. What to do in the third round if the other player cooperates in the first
round then defects in the second round.

6. What to do in the third round if the other player defects in the first round
then cooperates in the second round.

7. What to do in the third round is the other player defects in each fo the first
two rounds.

Since these 7 choices are distinct, and the player has 2 choices at each point, there
are 27 = 128 possible strategies. So the strategic form of the table involves 128 x
128 = 16384 cells. Needless to say, we won’t be putting that table here. (Though
it isn’t too hard to get a computer to draw the table for you. The four round
game, where each player has 2!> choices, and there are over one billion cells in
the decision table, requires more computing power!)
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We’ll write a strategy as (x;x,X;X4X5%¢X,), where x; is 0 if the player’s answer
to the 7’th question above is to cooperate, and 1 if it is to defect. So (0000000)
is the strategy of always cooperating, (1111111) is the strategy of always defect-
ing, (0010101) is ‘tit-for-tat’, the strategy of cooperating on the first move, then
copying the other player’s previous move, and so on.

Let (x;x,%;3X4X5X,X,) be any strategy that doesn’t always involve defection on
the final round, i.e., a strategy where x, + x5 + x, + x, < 4. It is easy enough to
verify that such a strategy is weakly dominated by (x;x,x;1111). In some plays
of the game, the defection on the final round leads to getting a better outcome. In
other plays of the game, (x,;x,%;x,%5%,x,) and (x;x,x;1111) have the same play.
For instance, (0001000) will do just as well as (0001111) if the opponent plays any
strategy of the form (000x,x5x,x;), but it can never do better than (0001111). So
if each player is perfectly rational, we can assume their strategy ends with 1111.

That cuts each player’s choices down to 8. Let’s do that table. We’ll use C
and ¢ rather than 0, and D and d rather than 1, so it is easier to distinguish the
two players’ strategies. When we label the table, we’ll leave off the trailing Ds
and d’s, since we assume players are defecting on the last round. We’ll also leave
off the 3 units the players each get in the last round. (In other words, this will
look a lot like the table for a two round iterated Prisoners’ Dilemma, but it is
crucial that it is actually a three-round game.)

Game 49 ccc ccd cdc cdd dcc ded ddc ddd
CCC 6,6 6,6 3,8 3,8 3,8 38 010 0,10
CCD 6,6 66 38 3,8 55 55 1,6 1,6
CDC 6,6 83 44 44 38 3,8 010 0,10
CDD 6,6 8,3 4,4 4,4 55 5,5 1,6 1,6
DCC 6,6 55 83 55 44 1,6 4,4 1,6
DCD 6,6 5,5 8,3 55 6,1 2,2 6,1 2,2
DDC 6,6 6,1 10,0 6,1 4,4 1,6 4,4 1,6
DDD 6,6 6,1 10,0 6,1 6,1 2,2 6,1 2,2

In this game CCC is strongly dominated by CDD, and DCC is strongly dom-
inated by DDD. Similarly ccc and dcc are strongly dominated. So let’s delete
them.
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Game 49 ccd cdc cdd dcd ddc ddd
ccDh 6,6 3,8 3,8 55 1,6 1,6
CDC 8,3 44 44 3,8 0,10 0,10
CDD 8,3 44 44 55 1,6 1,6
DCD 5,5 83 55 22 61 22
DDC 6,1 10,0 6,1 1,6 44 1,6
DDD 6,1 10,0 6,1 2,2 6,1 2,2

Note that each of these is a best response. In particular,

CCD is abest response to dcd.

CDC is a best response to ccd.

CDD is a best response to ccd and dcd.

DCD is a best response to ddc.

DDC is a best response to cd ¢ and cdd.

DDD is a best response to cdc, cdd, ddc and ddd.

Now the only Nash equilibrium of that table is the bottom-right corner. But
there are plenty of strategies that, in a strategic version of the game, would be
consistent with common belief in perfect rationality. The players could, for in-
stance, play CDC and cdc, thinking that the other players are playing ccd and
CCD respectively. Those beliefs would be false, but they wouldn’t be signs that
the other players are irrational, or that they are thinking the other players are
irrational.

But you might suspect that the strategic form of the game and the extensive
form are crucially different. The very fact that there are Nash equilibria that are
not subgame perfect equilibria suggests that there are tighter constraints on what
can be played in an extensive game consistent with rationality and belief in ratio-
nality. Stalnaker argues, however, that this isn’t right. In particular, any strategy
that is (given the right beliefs) perfectly rational in the strategic form of the game
is also (given the right beliefs and belief updating dispositions) perfectly rational
in the extensive form. We’ll illustrate this by working more slowly through the
argument that the game play (CDC,cdc) is consistent with common belief in
perfect rationality.

The first thing you might worry about is that it isn’t clear that CDC is per-
fectly rational, since it is looks to be weakly dominated by CDD, and perfect
rationality is inconsistent with playing weakly dominated strategies. But in fact
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CDC isnt weakly dominated by CDD. It’s true that on the six columns rep-
resented here, CDC never does better than CDD. But remember that each
of these strategies is short for a three-round strategy; they are really short for
CDCDDDD and CDDDDDD. And CDCDDDD is not weakly dominated
by CDDDDDD:; it does better, for example, against dcccddd. That is the
strategy is defecting the first round, cooperating the second, then defecting on
the third round unless the other player has cooperated on each of the first two
rounds. Since CDC does cooperate each of the first two rounds, it gets the ad-
vantage of defecting against a cooperator on the final round, and ends up with 8
points, whereas CDD merely ends up with 6.

But why would we think Player IT might play dcccddd? After all, it is itself
a weakly dominated strategy, and perfectly rational beings (like Player II) don’t
play weakly dominated strategies. But we’re not actually thinking Player II wil/
play that. Remember, Player I's assumption is that Player II will play ccddddd,
which is not a weakly dominated strategy. (Indeed, it is tit-for-tat-minus-one,
which is a well-known strategy.) What Player I also thinks is that if she’s wrong
about what Player II will play, then it is possible that Player II is not actually
perfectly rational. That’s consistent with believing Player II is actually perfectly
rational. The assumption of common belief in perfect rationality is not sufficient
for the assumption that one should believe that the other player is perfectly ratio-
nal no matter what surprises happen. Indeed, that assumption is barely coherent;
some assumptions are inconsistent with perfect rationality.

One might be tempted by a weaker assumption. Perhaps a player should hold
on to the belief that the other player is perfectly rational unless they get evidence
that is inconsistent with that belief. But it isn’t clear what could motivate that. In
general, when we are surprised, we have to give up something that isn’t required
by the surprise. If we antecedently believe p A ¢, and learn =(p A q), then what
we’ve learned is inconsistent with neither p nor ¢, but we must give up one of
those beliefs. Similarly here, it seems we must be prepared to give up a belief in
the perfect rationality of the other player in some circumstances when that is not
entailed by our surprise. (Note that even if you don’t buy the argument of this
paragraph, there still isn’t a reason to think that perfectly rational players can’t
play CDD. But analysing that possibility is beyond the scope of these notes.)

What happens in the extensive form version of the game? Well, each player
cooperates, thinking this will induce cooperation in the other, then each player
is surprised by a defection at round two, then at the last round they both defect
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because it is a one-shot Prisoners’ Dilemma. Nothing seems irrational there. We
might wonder why neither defected at round one. Well, if they believed that
the other player was playing tit-for-tat-minus-one, then it is better to cooperate
at round one (and collect 8 points over the first two rounds) than to defect (and
collect at most 6). And playing tit-for-tat-minus-one is rational if the other person
is going to defect on the first and third rounds, and play tit-for-tat on round two.
So as long as Player I thinks that Player II thinks that Player I thinks that she is
going to defect on the first and third rounds, and play tit-for-tat on round two,
then her cooperation at round one is rational, and consistent with believing that
the other player is rational.

But note that we had to attribute an odd belief to Player II. We had to assume
that Player II is wrong about what Player I will play. It turns out, at least for
Prisoners’ Dilemma, that this is crucial. If both players are certain that both
players are perfectly rational, and have no false beliefs, then the only strategy that
can be rationalised is permanent defection. The proof (which I'm leaving out) is
in Stalnaker’s “Knowledge, Belief and Counterfactual Reasoning in Games”.

This isn’t because the no false beliefs principle suffices for backwards induc-
tion reasoning in general. In Game 47, we can have a model of the game where
both players are perfectly rational, and have correct beliefs about what the other
player will do, and both those things are common belief, and yet the backwards
induction solution is not played. In that game A believes, truly, that B will play d,
and B believes, truly, that A will play A;D,. And each of these moves is optimal
given (true!) beliefs about the other player’s strategy.

But Prisoners” Dilemma is special. It isn’t that in a game played between
players who know each other to have no false beliefs and be perfectly rational
that we must end up at the bottom-right corner of the strategic table. But we
must end up in a game where every player defects every time. It could be that
Player I thinks Player II is playing either dcd or ddd, with ddd being much
more, and on that basis she decides to play dcd. And Player II could have the
converse beliefs. So we’ll end up with the play being (DCD,dcd). But of course
that means each player will defect on the first two rounds, and then again on
the last round since they are perfectly rational. In such a case the requirement
that each player have no false beliefs won’t even be enough to get us to Nash
equilibrium since (DCD,dcd) is not a Nash equilibrium. But it is enough to
get permanent defection.
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