Paris]]
Lighting or illumination is the deliberate application of light to achieve some practical or aesthetic effect. Lighting includes the use of both artificial light sources such as lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting (using windows, skylights, or light shelves) is often used as the main source of light during daytime in buildings. This can save energy compared with artificial lighting, which represents a major component of energy consumption in buildings. Without proper design, energy can be wasted by using too much light, or using out-dated technology. Proper lighting can enhance task performance, improve the appearance of an area, and have positive psychological effects on occupants. Indoor lighting is usually accomplished using light fixtures, and is a key part of interior design. Lighting can also be an intrinsic component of landscape projects.
An important property of light fixtures is the luminous efficacy or wall-plug efficiency, meaning the amount of usable light emanating from the fixture per used energy, usually measured in lumen per watt. A fixture using replaceable light sources can also have its efficiency quoted as the percentage of light passed from the "bulb" to the surroundings. The more transparent the lighting fixture is, the higher efficacy. Shading the light will normally decrease efficacy but increase the directionality and the visual comfort probability.
Uplighting is less common, often used to bounce indirect light off the ceiling and back down. It is commonly used in lighting applications that require minimal glare and uniform general illuminance levels. Uplighting (indirect) uses a diffuse surface to reflect light in a space and can minimize disabling glare on computer displays and other dark glossy surfaces. It gives a more uniform presentation of the light output in operation. However indirect lighting is completely reliant upon the reflectance value of the surface. While indirect lighting can create a diffused and shadow free light effect it can be regarded as an uneconomical lighting principle.
Soffit or close to wall lighting can be general or a decorative wall-wash, sometimes used to bring out texture (like stucco or plaster) on a wall, though this may also show its defects as well. The effect depends heavily on the exact type of lighting source used.
Recessed lighting (often called "pot lights" in Canada, "can lights" or 'high hats" in the US) is popular, with fixtures mounted into the ceiling structure so as to appear flush with it. These downlights can use narrow beam spotlights, or wider-angle floodlights, both of which are bulbs having their own reflectors. There are also downlights with internal reflectors designed to accept common 'A' lamps (light bulbs) which are generally less costly than reflector lamps. Downlights can be incandescent, fluorescent, HID (high intensity discharge) or LED.
Track lighting, invented by Lightolier, was popular at one point because it was much easier to install than recessed lighting, and individual fixtures are decorative and can be easily aimed at a wall. It has regained some popularity recently in low-voltage tracks, which often look nothing like their predecessors because they do not have the safety issues that line-voltage systems have, and are therefore less bulky and more ornamental in themselves. A master transformer feeds all of the fixtures on the track or rod with 12 or 24 volts, instead of each light fixture having its own line-to-low voltage transformer. There are traditional spots and floods, as well as other small hanging fixtures. A modified version of this is cable lighting, where lights are hung from or clipped to bare metal cables under tension.
A sconce is a wall-mounted fixture, particularly one that shines up and sometimes down as well. A torchiere is an uplight intended for ambient lighting. It is typically a floor lamp but may be wall-mounted like a sconce.
The portable or table lamp is probably the most common fixture, found in many homes and offices. The standard lamp and shade that sits on a table is general lighting, while the desk lamp is considered task lighting. Magnifier lamps are also task lighting.
's Square of Europe, lit at night.]]
The illuminated ceiling was once popular in the 1960s and 1970s but fell out of favor after the 1980s. This uses diffuser panels hung like a suspended ceiling below fluorescent lights, and is considered general lighting. Other forms include neon, which is not usually intended to illuminate anything else, but to actually be an artwork in itself. This would probably fall under accent lighting, though in a dark nightclub it could be considered general lighting.
In a movie theater each step in the aisles is usually marked with a row of small lights, for convenience and safety when the film has started, hence the other lights are off. Traditionally made up of small low wattage, low voltage lamps in a track or translucent tube, these are rapidly being replaced with LED based versions.
are used to illuminate outdoor playing fields or work zones during nighttime.]] Floodlights can be used to illuminate outdoor playing fields or work zones during nighttime hours. The most common type of floodlights are metal halide and high pressure sodium lights.
Beacon lights are positioned at the intersection of two roads to aid in navigation.
Security lights can be used along roadways in urban areas, or behind homes or commercial facilities. These are extremely bright lights used to deter crime. Security lights may include floodlights.
Entry lights can be used outside to illuminate and signal the entrance to a property. These lights are installed for safety, security, and for decoration.
Underwater accent lighting is also used for koi ponds, fountains, swimming pools and the like.
Vehicles typically include headlamps and tail lights. Headlamps are white or selective yellow lights placed in the front of the vehicle, designed to illuminate the upcoming road and to make the vehicle more visible. Many manufactures are turning to LED headlights as an energy-efficient alternative to traditional headlamps. Tail and brake lights are red and emit light to the rear so as to reveal the vehicle's direction of travel to following drivers. White rear-facing reversing lamps indicate that the vehicle's transmission has been placed in the reverse gear, warning anyone behind the vehicle that it is moving backwards, or about to do so. Flashing turn signals on the front, side, and rear of the vehicle indicate an intended change of position or direction.
In addition to lighting for useful purposes, manufacturers would sometimes backlight their logos and or other translucent paneling in the 1970s. In the 1990s, a popular trend was to customize vehicles with neon lighting, especially underneath the body of a car. In the 2000s, neon lighting is increasingly yielding to digital vehicle lighting, in which bright LEDs are placed on the car and operated by a computer which can be customized and programmed to display a range of changing patterns and colors, a technology borrowed from Christmas lights.
It is important to be able to differentiate types of lamps and lamp technologies. These include:
in the 18th century, painted by Giovanni Paolo Panini.]]
Lighting design as it applies to the built environment, also known as 'architectural lighting design', is both a science and an art. Lighting of structures must consider aesthetic elements as well as practical considerations of quantity of light required, occupants of the structure, energy efficiency and cost. The amount of daylight recieved in an internal space can be analized by undertaking a Daylight factor calculation. For simple installations, hand-calculations based on tabular data can be used to provide an acceptable lighting design. More critical or optimized designs now routinely use mathematical modeling on a computer using software such as Radiance which can allow an Architect to quickly undetake complex calculations to review the benefit of a particular design.
In some design instances, materials used on walls and furniture play a key role in the lighting effect. Dark paint tends to absorb light, making the room appear smaller and more dim than it is, whereas light paint does the opposite. In addition to paint, reflective surfaces also have an effect on lighting design. Surfaces or floors that are too reflective create unwanted glare.
===Photometric studies=== Photometric studies (also sometimes referred to as "layouts" or "point by points") are often used to simulate lighting designs for projects before they are built or renovated. This enables architects, lighting designers, and engineers to determine whether a proposed lighting setup will deliverer the amount of light intended. In many cases these studies are referenced against IESNA recommended lighting practices for the type of application. Depending on the type of area, different design aspects may be emphasized by IESNA for safety or practicality (i.e. such as maintaining uniform light levels or highlighting certain areas). Specialized software is often used to create these, which typically combine the use of two-dimensional CAD software drawings and lighting simulation software (i.e. AGi32).
Motion picture and television production use many of the same tools and methods of stage lighting. Especially in the early days of these industries, very high light levels were required and heat produced by lighting equipment was a significant problem to lighting designers. Modern cameras are more sensitive, but the use of atifical and available natural light sources must still be carefully designed.
The SI unit of illuminance and luminous emittance, being the luminous power per area, is measured in Lux. It is used in photometry as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watts per square metre, but with the power at each wavelength weighted according to the luminosity function, a standardized model of human visual brightness perception. In English, "lux" is used in both singular and plural.
Several measurement methods have been developed to control glare resulting from indoor lighting design. The Unified Glare Rating (UGR) athe Visual Comfort Probability, and the Daylight Glare Index are some of the most well-known methods of measurement. In addition to these new methods, four main factors influence the degree of discomfort glare; the luminance of the glare source, the solid angle of the glare source, the background luminance, and the position of the glare source in the field of view must all be taken into account.
However, these two metrics, developed in the last century, are facing increased challenges and criticisms as new types of light sources, particularly light emitting diodes (LEDs), become more prevalent in the market.
For example, in order to meet the expectations for good color rendering in retail applications, research suggests using the well-established CRI along with another metric called gamut area index (GAI). GAI represents the relative separation of object colors illuminated by a light source; the greater the GAI, the greater the apparent saturation or vividness of the object colors. As a result, light sources which balance both CRI and GAI are generally preferred over ones that have only high CRI or only high GAI.
In order to specifically measure the amount of light entering the eye, personal circadian light meter called the Daysimeter has been developed. This is the first device created to accurately measure and characterize light (intensity, spectrum, timing, and duration) entering the eye that affects the human body's clock.
The small, head-mounted device measures an individual's daily rest and activity patterns, as well as exposure to short-wavelength light that stimulates the circadian system. The device measures activity and light together at regular time intervals and electronically stores and logs its operating temperature. The Daysimeter can gather data for up to 30 days for analysis.
Many newer control systems are using wireless mesh open standards (such as ZigBee), which provides benefits including easier installation (no need to run control wires) and interoperability with other standards-based building control systems (e.g. security).
In response to daylighting technology, daylight-linked automated response systems have been developed to further reduce energy consumption. These technologies are helpful, but they do have their downfalls. Many times, rapid and frequent switching of the lights on and off can occur, particularly during unstable weather conditions or when daylight levels are changing around the switching illuminance. Not only does this distrub occupants, it can also reduce lamp life. A variation of this technology is the 'differential switching or dead-band' photoelectric control which has multiple illuminances it switches from so as not to disturb occupants as much.
Occupancy sensors to allow operation for whenever someone is within the area being scanned can control lighting. When motion can no longer be detected, the lights shut off. Passive infrared sensors react to changes in heat, such as the pattern created by a moving person. The control must have an unobstructed view of the building area being scanned. Doors, partitions, stairways, etc. will block motion detection and reduce its effectiveness. The best applications for passive infrared occupancy sensors are open spaces with a clear view of the area being scanned. Ultrasonic sensors transmit sound above the range of human hearing and monitor the time it takes for the sound waves to return. A break in the pattern caused by any motion in the area triggers the control. Ultrasonic sensors can see around obstructions and are best for areas with cabinets and shelving, restrooms, and open areas requiring 360-degree coverage. Some occupancy sensors utilize both passive infrared and ultrasonic technology, but are usually more expensive. They can be used to control one lamp, one fixture or many fixtures.
Daylighting is an important method of lighting that is as old as time. Daylighting is simply designing a space to use as much natural light as possible. This decreases energy consumption and costs, and requires less heating and cooling from the building. Daylighting has also been proven to have positive effects on patients in hospitals as well as work and school performance. Due to a lack of information that indicate the likely energy savings, daylighting schemes are not yet popular among most buildings.
Specification of illumination requirements is the basic concept of deciding how much illumination is required for a given task. Clearly, much less light is required to illuminate a hallway or bathroom compared to that needed for a word processing work station. Prior to 1970 (and too often even today), a lighting engineer would simply apply the same level of illumination design to all parts of the building without considering usage. Generally speaking, the energy expended is proportional to the design illumination level. For example, a lighting level of 80 footcandles might be chosen for a work environment involving meeting rooms and conferences, whereas a level of 40 footcandles could be selected for building hallways. If the hallway standard simply emulates the conference room needs, then twice the amount of energy will be consumed as is needed for hallways. Unfortunately, most of the lighting standards even today have been specified by industrial groups who manufacture and sell lighting, so that a historical commercial bias exists in designing most building lighting, especially for office and industrial settings. Beyond the energy factors being considered, it is important not to over-design illumination, lest adverse health effects such as headache frequency, stress, and increased blood pressure be induced by the higher lighting levels. In addition, glare or excess light can decrease worker efficiency.
Analysis of lighting quality particularly emphasizes use of natural lighting, but also considers spectral content if artificial light is to be used. Not only will greater reliance on natural light reduce energy consumption, but will favorably impact human health and performance. New studies have shown that the performance of students is influenced by the time and duration of daylight in their regular schedules. Designing school facilities to incorporate the right types of light at the right time of day for the right duration may improve student performance and well-being. Similarly, designing lighting systems that maximize the right amount of light at the appropriate time of day for the elderly may help relieve symptoms of Alzheimer's Disease. The human circadian system is entrained to a 24-hour light-dark pattern that mimics the earth’s natural light/dark pattern. When those patterns are disrupted, they disrupt the natural circadian cycle. Circadian disruption may lead to numerous health problems including breast cancer, seasonal affective disorder, delayed sleep phase syndrome, and other ailments.
A study conducted in 1972 and 1981, documented by Robert Ulrich, surveyed 23 surgical patients assigned to rooms looking out on a natural scene. The study concluded that patients assigned to rooms with windows allowing lots of natural light had shorter postoperative hospital stays, received fewer negative evaluative comments in nurses’ notes, and took fewer potent analegesics than 23 matched patients in similar rooms with windows facing a brick wall. This study suggests that due to the nature of the scenery and daylight exposure was indeed healthier for patients as opposed to those exposed to little light from the brick wall. In addition to increased work performance, proper usage of windows and daylighting crosses the boundaries between pure aesthetics and overall health.
In 1849, Dr. Abraham Gesner, a Canadian geologist, devised a method where kerosene could be distilled from petroleum. Earlier coal-gas methods had been used for lighting since the 1820s, but they were expensive. Gesner's kerosene was cheap, easy to produce, could be burned in existing lamps, and did not produce an offensive odor as did most whale oil. It could be stored indefinitely, unlike whale oil, which would eventually spoil. The American petroleum boom began in the 1850s. By the end of the decade there were 30 kerosene plants operating in the United States. The cheaper, more efficient fuel began to drive whale oil out of the market. John D. Rockefeller was most responsible for the commercial success of kerosene. He set up a network of kerosene distilleries which would later become Standard Oil, thus completely abolishing the need for whale-oil lamps.
Compact fluorescent lamps
Compact fluorescent lamps (aka 'CFLs') use less power to supply the same amount of light as an incandescent lamp. Due to the ability to reduce electric consumption, many organizations have undertaken measures to encourage the adoption of CFLs. Some electric utilities and local governments have subsidized CFLs or provided them free to customers as a means of reducing electric demand. For a given light output, CFLs use between one fifth and one quarter of the power of an equivalent incandescent lamp. One of the simplest and quickest ways for a household or business to become more energy efficient is to adopt CFLs as the main lamp source, as suggested by the Alliance for Climate Protection
LED lamps
LED lamps have been advocated as the newest and best environmental lighting method. According to the Energy Saving Trust, LED lamps use only 10% power compared to a standard incandescent bulb, where compact fluorescent lamps use 20% and energy saving halogen lamps 70%. A downside is still the initial cost, which is higher than that of compact fluorescent lamps. General Electric expects to begin producing organic LEDs for architectural use by 2010.
Flares can also be used by the military to mark positions, usually for targeting, but laser-guided and GPS weapons have eliminated this need for the most part.
The Illuminating Engineering Society of North America (IESNA), in conjunction with organizations like ANSI and ASHRAE, publishes guidelines, standards, and handbooks that allow categorization of the illumination needs of different built environments. Manufacturers of lighting equipment publish photometric data for their products, which defines the distribution of light released by a specific luminaire. This data is typically expressed in standardized form defined by the IESNA.
The International Association of Lighting Designers (IALD) is an organization which focuses on the advancement of lighting design education and the recognition of independent professional lighting designers. Those fully independent designers who meet the requirements for professional membership in the association typically append the abbreviation IALD to their name.
The Professional Lighting Designers Association (PLDA), formerly known as ELDA is an organisation focusing on the promotion of the profession of Architectural Lighting Design. They publish a monthly newsletter and organise different events throughout the world.
The National Council on Qualifications for the Lighting Professions (NCQLP) offers the Lighting Certification Examination which tests rudimentary lighting design principles. Individuals who pass this exam become ‘Lighting Certified’ and may append the abbreviation LC to their name. This certification process is one of three national (U.S.) examinations (the others are CLEP and CLMC) in the lighting industry and is open not only to designers, but to lighting equipment manufacturers, electric utility employees, etc.
The Professional Lighting And Sound Association (PLASA) is a UK-based trade organisation representing the 500+ individual and corporate members drawn from the technical services sector. Its members include manufacturers and distributors of stage and entertainment lighting, sound, rigging and similar products and services, and affiliated professionals in the area. They lobby for and represent the interests of the industry at various levels, interacting with government and regulating bodies and presenting the case for the entertainment industry. Example subjects of this representation include the ongoing review of radio frequencies (which may or may not affect the radio bands in which wireless microphones and other devices use) and engaging with the issues surrounding the introduction of the RoHS (Restriction of Hazardous Substances Directive) regulations.
Category:Garden features Category:Architectural elements
ar:إضاءة ca:Il·luminació de:Beleuchtung et:Valgustus (tehnika) el:Φωτεινότητα es:Iluminación física eo:Lumigo fa:نورپردازی fr:Éclairage hi:प्रदीप्ति ko:조명 it:Illuminazione he:תאורה nl:Belichting ja:照明 pl:Iluminacja (oświetlenie) ru:Искусственные источники света fi:Valaistus sv:Belysning ta:ஒளியமைப்பு uk:Джерела світла zh:照明This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.