To measure obliquity, use the right hand grip rule for both the rotation and the orbital motion, i.e.: the line from the vertex at the object's centre to its north pole (above which the object appears to rotate counter-clockwise); and the line drawn from the vertex in the direction of the normal to its orbital plane, (above which the object moves counter-clockwise in its orbit). At zero degrees, these lines point in the same direction.
The planet Venus has an axial tilt of 177.3° because it is rotating in retrograde direction, opposite to other planets like Earth. The north pole of Venus is pointed 'downward' (our southward). The planet Uranus is rotating on its side in such a way that its rotational axis, and hence its north pole, is pointed almost in the direction of its orbit around the Sun. Hence the axial tilt of Uranus is 97°.
Over the course of an orbit, while the angle of the axial tilt does not change, the orientation of a planet's axial tilt moves through 360 degrees (one complete orbit around the Sun), relative to the Sun, causing seasons on Earth.
In the solar system, the Earth's orbital plane is known as the ecliptic plane, and so the Earth's axial tilt is officially called the obliquity of the ecliptic. It is denoted by the Greek letter ε.
The Earth currently has an axial tilt of about 23.4°. The axis remains tilted in the same direction towards the stars throughout a year and this means that when a hemisphere (a northern or southern half of the earth) is pointing away from the Sun at one point in the orbit then half an orbit later (half a year later) this hemisphere will be pointing towards the Sun. This effect is the main cause of the seasons (see effect of sun angle on climate). Whichever hemisphere is currently tilted toward the Sun experiences more hours of sunlight each day, and the sunlight at midday also strikes the ground at an angle nearer the vertical and thus delivers more energy per unit surface area.
Lower obliquity causes polar regions to receive less seasonally contrasting solar radiation, producing conditions more favorable to glaciation. Like changes in precession and eccentricity, changes in tilt influence the relative strength of the seasons, but the effects of the tilt cycle are particularly pronounced in the high latitudes where the great ice ages began. Obliquity is a major factor in glacial/interglacial fluctuations (see Milankovitch cycles).
The obliquity of the ecliptic is not a fixed quantity but changing over time in a cycle with a period of 41,000 years (see below). Note that the obliquity and the precession of the equinoxes are calculated from the same theory and are thus related to each other. A smaller ε means a larger p (precession in longitude) and vice versa. Yet the two movements act independent from each other, going in mutually perpendicular directions.
To quickly grasp an idea of its numerical value one can look at how the Sun's angle above the horizon varies with the seasons. The measured difference between the angles of the Sun above the horizon at noon on the longest and shortest days of the year gives twice the obliquity.
To an observer on the equator standing all year long looking above, the sun will be directly overhead at noon on the March Equinox, then swing north until it is over the Tropic of Cancer, 23° 26’ away from the equator on the Northern Solstice. On the September Equinox it will be back overhead, then swing south until it is over the Tropic of Capricorn, 23° 26’ away from the equator on the Southern Solstice.
Example: an observer at 50° latitude (either north or south) will see the Sun 63° 26’ above the horizon at noon on the longest day of the year, but only 16° 34’ on the shortest day. The difference is 2ε = 46° 52’, and so ε = 23° 26’.
(90° - 50°) + 23.4394° = 63.4394° when measuring angles from the horizon (90° - 50°) - 23.4394° = 16.5606°
At the Equator, this would be 90° + 23.4394° = 113.4394° and 90° - 23.4394° = 66.5606° (measuring always from the southern horizon).
Abu-Mahmud Khojandi measured the Earth's axial tilt in the 10th century using this principle with a giant sextant and noted that his value was lower than those of earlier astronomers, thus discovering that the axial tilt is not constant.
Simon Newcomb's calculation at the end of the nineteenth century for the obliquity of the ecliptic gave a value of 23° 27’ 8.26” (epoch of 1900), and this was generally accepted until improved telescopes allowed more accurate observations, and electronic computers permitted more elaborate models to be calculated. Lieske developed an updated model in 1976 with ε equal to 23° 26’ 21.448” (epoch of 2000), which is part of the approximation formula recommended by the International Astronomical Union in 2000:
ε = 84381.448 − 46.84024T − (59 × 10−5)T2 + (1.813 × 10−3)T3, measured in seconds of arc, with T being the time in Julian centuries (that is, 36,525 days) since the ephemeris epoch of 2000 (which occurred on Julian day 2,451,545.0). A straight application of this formula to 1900 (T=-1) returns 23° 27’ 8.29”, which is very close to Newcomb's value.
With the linear term in T being negative, at present the obliquity is slowly decreasing. It is implicit that this expression gives only an approximate value for ε and is only valid for a certain range of values of T. If not, ε would approach infinity as T approaches infinity. Computations based on a numerical model of the solar system show that ε has a period of about 41,000 years, the same as the constants of the precession p of the equinoxes (although not of the precession itself).
Other theoretical models may come with values for ε expressed with higher powers of T, but since no (finite) polynomial can ever represent a periodic function, they all go to either positive or negative infinity for large enough T. In that respect one can understand the decision of the International Astronomical Union to choose the simplest equation which agrees with most models. For up to 5,000 years in the past and the future all formulas agree, and up to 9,000 years in the past and the future, most agree to reasonable accuracy. For eras farther out discrepancies get too large.
Nevertheless extrapolation of the average polynomials gives a fit to a sine curve with a period of 41,013 years, which, according to Wittmann, is equal to:
ε = A + B sin(C(T + D)); with A = 23.496932° ± 0.001200°, B = − 0.860° ± 0.005°, C = 0.01532 ± 0.0009 radian/Julian century, D = 4.40 ± 0.10 Julian centuries, and T, the time in centuries from the epoch of 2000 as above.
This means a range of the obliquity from 22° 38’ to 24° 21’, the last maximum was reached in 8700 BC, the mean value occurred around 1550 and the next minimum will be in 11800. This formula should give a reasonable approximation for the previous and next million years or so. Yet it remains an approximation in which the amplitude of the wave remains the same, while in reality, as seen from the results of the Milankovitch cycles, irregular variations occur. The quoted range for the obliquity is from 21° 30’ to 24° 30’, but the low value may have been a one-time overshot of the normal 22° 30’.
Over the last 5 million years, the obliquity of the ecliptic (or more accurately, the obliquity of the Equator on the moving ecliptic of date) has varied from 22.0425° to 24.5044°, but for the next one million years, the range will be only from 22.2289° to 24.3472°.
Other planets may have a variable obliquity, too; for example, on Mars, the range is believed to be between 11° and 49° as a result of gravitational perturbations from other planets. The relatively small range for the Earth is due to the stabilizing influence of the Moon, but it will not remain so. According to W.R. Ward, the orbit of the Moon (which is continuously increasing due to tidal effects) will have gone from the current 60 to approximately 66.5 Earth radii in about 1.5 billion years. Once this occurs, a resonance from planetary effects will follow, causing swings of the obliquity between 22° and 38°. Further, in approximately 2 billion years, when the Moon reaches a distance of 68 Earth radii, another resonance will cause even greater oscillations, between 27° and 60°. This would have extreme effects on climate.
† Tilt to its orbit in the Earth-Moon system. Moon's tilt is 1.5424° (0.02692 radians) to ecliptic
Category:Precession Category:Planetary science Category:Angle
als:Bahnneigung ar:ميل محوري ast:Enclín axal az:Yer oxu bg:Наклон на оста (астрономия) ca:Obliqüitat cv:Планетăн çаврăну тĕнĕлĕн тайлăмĕ cs:Sklon rotační osy da:Aksehældning de:Bahnneigung es:Oblicuidad de la eclíptica eo:Aksa dekliniĝo eu:Inklinazio axial fa:انحراف محوری fr:Inclinaison de l'axe gl:Oblicuidade da eclíptica ko:자전축 기울기 hr:Nagib osi it:Inclinazione assiale he:נטיית ציר הסיבוב lt:Ašies posvyris hu:Tengelyferdeség mr:आसाचा कल nl:Obliquiteit ja:赤道傾斜角 no:Aksehelning nn:Aksehelling pt:Inclinação axial ru:Наклон оси вращения simple:Axial tilt sk:Sklon osi rotácie sl:Nagib vrtilne osi fi:Akselin kaltevuus sv:Axellutning th:ความเอียงของแกน uk:Нахил вісі обертання vi:Độ nghiêng trục quay zh:轉軸傾角This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.