The modern design of moving-coil (also called dynamic) drivers was established by Oliver Lodge in 1898. The first practical application of moving-coil loudspeakers was established by Danish engineer Peter L. Jensen and Edwin Pridham, in Napa, California. Jensen was denied patents. Being unsuccessful in selling their product to telephone companies, in 1915 they changed strategy to public address, and named their product Magnavox. Jensen was, for years after the invention of the loudspeaker, a part owner of The Magnavox Company.
The moving-coil principle as commonly used today in direct radiators was patented in 1924 by Chester W. Rice and Edward W. Kellogg. The key difference between previous attempts and the patent by Rice and Kellogg was the adjustment of mechanical parameters so that the fundamental resonance of the moving system took place at a lower frequency than that at which the cone's radiation impedance had become uniform. See the original patent for details.
About this same period, Walter H. Schottky invented the first ribbon loudspeaker.
These first loudspeakers used electromagnets, because large, powerful permanent magnets were generally not available at a reasonable price. The coil of an electromagnet, called a field coil, was energized by current through a second pair of connections to the driver. This winding usually served a dual role, acting also as a choke coil, filtering the power supply of the amplifier to which the loudspeaker was connected. AC ripple in the current was attenuated by the action of passing through the choke coil; however, AC line frequencies tended to modulate the audio signal being sent to the voice coil and added to the audible hum of a powered-up sound reproduction device.
In the 1930s, loudspeaker manufacturers began to combine two and three bandpasses' worth of drivers in order to increase frequency response and sound pressure level. In 1937, the first film industry-standard loudspeaker system, "The Shearer Horn System for Theatres" (a two-way system), was introduced by Metro-Goldwyn-Mayer. It used four 15″ low-frequency drivers, a crossover network set for 375 Hz, and a single multi-cellular horn with two compression drivers providing the high frequencies. John Kenneth Hilliard, James Bullough Lansing, and Douglas Shearer all played roles in creating the system. At the 1939 New York World's Fair, a very large two-way public address system was mounted on a tower at Flushing Meadows. The eight 27″ low-frequency drivers were designed by Rudy Bozak in his role as chief engineer for Cinaudagraph. High-frequency drivers were likely made by Western Electric.
Altec Lansing introduced the '604', which was to become their most famous coaxial Duplex driver, in 1943, incorporating a high-frequency horn sending sound through the middle of a 15-inch woofer for near-point-source performance. Altec's "Voice of the Theatre" loudspeaker system arrived in the marketplace in 1945, offering better coherence and clarity at the high output levels necessary in movie theaters. The Academy of Motion Picture Arts and Sciences immediately began testing its sonic characteristics; they made it the film house industry standard in 1955. Subsequently, continuous developments in enclosure design and materials led to significant audible improvements. The most notable improvements in modern speakers are improvements in cone materials, the introduction of higher-temperature adhesives, improved permanent magnet materials, improved measurement techniques, computer-aided design, and finite element analysis.
The most common type of driver, commonly called a dynamic loudspeaker, uses a lightweight diaphragm, or cone, connected to a rigid basket, or frame, via a flexible suspension that constrains a coil of fine wire to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil, making it a variable electromagnet. The coil and the driver's magnetic system interact, generating a mechanical force that causes the coil (and thus, the attached cone) to move back and forth, thereby reproducing sound under the control of the applied electrical signal coming from the amplifier. The following is a description of the individual components of this type of loudspeaker.
The diaphragm is usually manufactured with a cone- or dome-shaped profile. A variety of different materials may be used, but the most common are paper, plastic, and metal. The ideal material would be 1) rigid, to prevent uncontrolled cone motions; 2) have low mass, to minimize starting force requirements and energy storage issues; 3) be well damped, to reduce vibrations continuing after the signal has stopped with little or no audible ringing due to its resonance frequency as determined by its usage. In practice, all three of these criteria cannot be met simultaneously using existing materials; thus, driver design involves trade-offs. For example, paper is light and typically well damped, but is not stiff; metal may be stiff and light, but it usually has poor damping; plastic can be light, but typically, the stiffer it is made, the poorer the damping. As a result, many cones are made of some sort of composite material. For example, a cone might be made of cellulose paper, into which some carbon fiber, Kevlar, glass, hemp or bamboo fibers have been added; or it might use a honeycomb sandwich construction; or a coating might be applied to it so as to provide additional stiffening or damping.
The chassis, frame, or basket, is designed to be rigid, avoiding deformation which would change critical alignments with the magnet gap, perhaps causing the voice coil to rub against the sides of the gap. Chassis are typically cast from aluminum alloy, or stamped from thin steel sheet, although molded plastic and damped plastic compound baskets are becoming common, especially for inexpensive, low-mass drivers. Metallic chassis can play an important role in conducting heat away from the voice coil; heating during operation changes resistance, causing physical dimensional changes, and if extreme, may even demagnetize permanent magnets.
The suspension system keeps the coil centered in the gap and provides a restoring (centering) force that returns the cone to a neutral position after moving. A typical suspension system consists of two parts: the "spider", which connects the diaphragm or voice coil to the frame and provides the majority of the restoring force, and the "surround", which helps center the coil/cone assembly and allows free pistonic motion aligned with the magnetic gap. The spider is usually made of a corrugated fabric disk, impregnated with a stiffening resin. The name comes from the shape of early suspensions, which were two concentric rings of Bakelite material, joined by six or eight curved "legs". Variations of this topology included the addition of a felt disc to provide a barrier to particles that might otherwise cause the voice coil to rub. The German firm Rulik still offers drivers with uncommon spiders made of wood.
The cone surround can be rubber or polyester foam, or a ring of corrugated, resin coated fabric; it is attached to both the outer diaphragm circumference and to the frame. These different surround materials, their shape and treatment can dramatically affect the acoustic output of a driver; each class and implementation having advantages and disadvantages. Polyester foam, for example, is lightweight and economical, but is degraded by exposure to ozone, UV light, humidity and elevated temperatures, limiting its useful life to about 15 years.
The wire in a voice coil is usually made of copper, though aluminum—and, rarely, silver—may be used. The advantage of aluminum is its light weight, which raises the resonant frequency of the voice coil and allows it to respond more easily to higher frequencies. A disadvantage of aluminum is that it is not easily soldered, and so connections are instead often crimped together and sealed. These connections can corrode and fail in time. Voice-coil wire cross sections can be circular, rectangular, or hexagonal, giving varying amounts of wire volume coverage in the magnetic gap space. The coil is oriented co-axially inside the gap; it moves back and forth within a small circular volume (a hole, slot, or groove) in the magnetic structure. The gap establishes a concentrated magnetic field between the two poles of a permanent magnet; the outside of the gap being one pole, and the center post (called the pole piece) being the other. The pole piece and backplate are often a single piece, called the poleplate or yoke.
Modern driver magnets are almost always permanent and made of ceramic, ferrite, Alnico, or, more recently, rare earth such as neodymium and Samarium cobalt. A trend in design—due to increases in transportation costs and a desire for smaller, lighter devices (as in many home theater multi-speaker installations)—is the use of the last instead of heavier ferrite types. Very few manufacturers still produce electrodynamic loudspeakers with electrically powered field coils, as was common in the earliest designs (one such is French). When high field-strength permanent magnets became available, Alnico, an alloy of aluminum, nickel, and cobalt became popular, since it dispensed with the power supply issues of field-coil drivers. Alnico was used for almost exclusively until about 1980. Alnico magnets can be partially degaussed (i.e., demagnetized) by accidental 'pops' or 'clicks' caused by loose connections, especially if used with a high power amplifier. This damage can be reversed by "recharging" the magnet.
After 1980, most (but not quite all) driver manufacturers switched from Alnico to ferrite magnets, which are made from a mix of ceramic clay and fine particles of barium or strontium ferrite. Although the energy per kilogram of these ceramic magnets is lower than Alnico, it is substantially less expensive, allowing designers to use larger yet more economical magnets to achieve a given performance.
The size and type of magnet and details of the magnetic circuit differ, depending on design goals. For instance, the shape of the pole piece affects the magnetic interaction between the voice coil and the magnetic field, and is sometimes used to modify a driver's behavior. A "shorting ring", or Faraday loop, may be included as a thin copper cap fitted over the pole tip or as a heavy ring situated within the magnet-pole cavity. The benefits of this complication is reduced impedance at high frequencies, providing extended treble output, reduced harmonic distortion, and a reduction in the inductance modulation that typically accompanies large voice coil excursions. On the other hand, the copper cap requires a wider voice-coil gap, with increased magnetic reluctance; this reduces available flux, requiring a larger magnet for equivalent performance.
Driver design—including the particular way two or more drivers are combined in an enclosure to make a speaker system—is both an art and science. Adjusting a design to improve performance is done using some combination of magnetic, acoustic, mechanical, electrical, and material science theory; high precision measurements, generally with the observations of experienced listeners. A few of the issues speaker and driver designers must confront are distortion, lobing, phase effects, off-axis response, and crossover complications. Designers can use an anechoic chamber to ensure the speaker can be measured independently of room effects, or any of several electronic techniques which can, to some extent, replace such chambers. Some developers eschew anechoic chambers in favor of specific standardized room setups intended to simulate real-life listening conditions.
The fabrication of finished loudspeaker systems has become segmented, depending largely on price, shipping costs, and weight limitations. High-end speaker systems, which are typically heavier (and often larger) than economic shipping allows outside local regions, are usually made in their target market region and can cost $140,000 or more per pair. The lowest-priced speaker systems and most drivers are manufactured in China or other low-cost manufacturing locations.
Full-range drivers often employ an additional cone called a whizzer: a small, light cone attached to the joint between the voice coil and the primary cone. The whizzer cone extends the high-frequency response of the driver and broadens its high frequency directivity, which would otherwise be greatly narrowed due to the outer diameter cone material failing to keep up with the central voice coil at higher frequencies. The main cone in a whizzer design is manufactured so as to flex more in the outer diameter than in the center. The result is that the main cone delivers low frequencies and the whizzer cone contributes most of the higher frequencies. Since the whizzer cone is smaller than the main diaphragm, output dispersion at high frequencies is improved relative to an equivalent single larger diaphragm.
Limited-range drivers, also used alone, are typically found in computers, toys, and clock radios. These drivers are less elaborate and less expensive than wide-range drivers, and they may be severely compromised to fit into very small mounting locations. In these applications, sound quality is a low priority. The human ear is remarkably tolerant of poor sound quality, and the distortion inherent in limited-range drivers may enhance their output at high frequencies, increasing clarity when listening to spoken word material.
To accurately reproduce very low bass notes without unwanted resonances (typically from cabinet panels), subwoofer systems must be solidly constructed and properly braced; good speakers are typically quite heavy. Many subwoofer systems include power amplifiers and electronic sub-filters, with additional controls relevant to low-frequency reproduction. These variants are known as "active subwoofers". In contrast, "passive" subwoofers require external amplification.
Crossovers can be passive or active. A passive crossover is an electronic circuit that uses a combination of one or more resistors, inductors, or non-polar capacitors. These parts are formed into carefully designed networks and are most often placed between the full frequency-range power amplifier and the loudspeaker drivers to divide the amplifier's signal into the necessary frequency bands before being delivered to the individual drivers. Passive crossover circuits need no external power beyond the audio signal itself, but have disadvantages: high cost, large components (inductors and capacitors), limited ability to adjust the circuit as desired due to limited choice of high power level components, etc. They also cause substantial overall signal loss and a significant reduction in damping factor between the voice coil and the crossover. An active crossover is an electronic filter circuit that divides the signal into individual frequency bands before power amplification, thus requiring at least one power amplifier for each bandpass. Passive filtering may also be used in this way before power amplification, but it is an uncommon solution, being less flexible than active filtering. Any technique that uses crossover filtering followed by amplification is commonly known as bi-amping, tri-amping, quad-amping, and so on, depending on the minimum number of amplifier channels. Some loudspeaker designs use a combination of passive and active crossover filtering, such as a passive crossover between the mid- and high-frequency drivers and an active crossover between the low-frequency driver and the combined mid- and high frequencies.
Passive crossovers are commonly installed inside speaker boxes and are by far the most usual type of crossover for home and low-power use. In car audio systems, passive crossovers may be in a separate box, necessary to accommodate the size of the components used. Passive crossovers may be simple for low-order filtering, or complex to allow steep slopes such as 18 or 24 dB per octave. Passive crossovers can also be designed to compensate for undesired characteristics of driver, horn, or enclosure resonances, and can be tricky to implement, due to component interaction. Passive crossovers, like the driver units that they feed, have power handling limits, have insertion losses (10% is often claimed), and change the load seen by the amplifier. The changes are matters of concern for many in the hi-fi world. When high output levels are required, active crossovers may be preferable. Active crossovers may be simple circuits that emulate the response of a passive network, or may be more complex, allowing extensive audio adjustments. Some active crossovers, usually digital loudspeaker management systems, may include facilities for precise alignment of phase and time between frequency bands, equalization, and dynamics (compression and limiting) control.
Some hi-fi and professional loudspeaker systems now include an active crossover circuit as part of an onboard amplifier system. These speaker designs are identifiable by their need for AC power in addition to a signal cable from a pre-amplifier. This active topology may include driver protection circuits and other features of a digital loudspeaker management system. Powered speaker systems are common in computer sound (for a single listener) and, at the other end of the size spectrum, in modern concert sound systems, where their presence is significant and steadily increasing.
The simplest driver mount is a flat panel (i.e., baffle) with the drivers mounted in holes in it. However, in this approach, sound frequencies with a wavelength longer than the baffle dimensions are canceled out, because the antiphase radiation from the rear of the cone interferes with the radiation from the front. With an infinitely large panel, this interference could be entirely prevented. A sufficiently large sealed box can approach this behavior.
Since panels of infinite dimensions are impractical, most enclosures function by containing the rear radiation from the moving diaphragm. A sealed enclosure prevents transmission of the sound emitted from the rear of the loudspeaker by confining the sound in a rigid and airtight box. Techniques used to reduce transmission of sound through the walls of the cabinet include thicker cabinet walls, lossy wall material, internal bracing, curved cabinet walls—or more rarely, visco-elastic materials (e.g., mineral-loaded bitumen) or thin lead sheeting applied to the interior enclosure walls.
However, a rigid enclosure reflects sound internally, which can then be transmitted back through the loudspeaker diaphraghm—again resulting in degradation of sound quality. This can be reduced by internal absorption using absorptive materials (often called "damping"), such as glass wool, wool, or synthetic fiber batting, within the enclosure. The internal shape of the enclosure can also be designed to reduce this by reflecting sounds away from the loudspeaker diaphragm, where they may then be absorbed.
Other enclosure types alter the rear sound radiation so it can add constructively to the output from the front of the cone. Designs that do this (including bass reflex, passive radiator, transmission line, etc.) are often used to extend the effective low-frequency response and increase low-frequency output of the driver.
To make the transition between drivers as seamless as possible, system designers have attempted to time-align (or phase adjust) the drivers by moving one or more driver mounting locations forward or back so that the acoustic center of each driver is in the same vertical plane. This may also involve tilting the face speaker back, providing a separate enclosure mounting for each driver, or (less commonly) using electronic techniques to achieve the same effect. These attempts have resulted in some unusual cabinet designs.
The speaker mounting scheme (including cabinets) can also cause diffraction, resulting in peaks and dips in the frequency response. The problem is usually greatest at higher frequencies, where wavelengths are similar to, or smaller than, cabinet dimensions. The effect can be minimized by rounding the front edges of the cabinet, curving the cabinet itself, using a smaller or narrower enclosure, choosing a strategic driver arrangement, using absorptive material around a driver, or some combination of these and other schemes.
Most loudspeakers use two wiring points to connect to the source of the signal (for example, to the audio amplifier or receiver). This is usually done using binding posts or spring clips on the back of the enclosure. If the wires for the left and right speakers (in a stereo setup) are not connected "in phase" with each other (the + and − connections on the speaker and amplifier should be connected + to + and − to −), the loudspeakers will be out of polarity. Given identical signals, motion in one cone will be in the opposite direction of the other. This will typically cause monophonic material within a stereo recording to be canceled out, reduced in level, and made more difficult to localize, all due to destructive interference of the sound waves. The cancellation effect is most noticeable at frequencies where the speakers are separated by a quarter wavelength or less; low frequencies are affected the most. This type of wiring error doesn't damage speakers, but isn't optimal.
and optionally:
The load that a driver presents to an amplifier consists of a complex electrical impedance—a combination of resistance and both capacitive and inductive reactance, which combines properties of the driver, its mechanical motion, the effects of crossover components (if any are in the signal path between amplifier and driver), and the effects of air loading on the driver as modified by the enclosure and its environment. Most amplifiers' output specifications are given at a specific power into an ideal resistive load; however, a loudspeaker does not have a constant resistance across its frequency range. Instead, the voice coil is inductive, the driver has mechanical resonances, the enclosure changes the driver's electrical and mechanical characteristics, and a passive crossover between the drivers and the amplifier contributes its own variations. The result is a load resistance that varies fairly widely with frequency, and usually a varying phase relationship between voltage and current as well, also changing with frequency. Some amplifiers can cope with the variation better than others can.
To make sound, a loudspeaker is driven by modulated electrical current (produced by an amplifier) that pass through a "speaker coil" (a coil of copper wire), which then (through resistance and other forces) magnetizes the coil, creating a magnetic field. The electrical current variations that pass through the speaker are thus converted to varying magnetic forces, which move the speaker diaphraghm, which thus forces the driver to produce air motion that is similar to the original signal from the amplifier.
Driver ratings based on the SPL for a given input are called sensitivity ratings and are notionally similar to efficiency. Sensitivity is usually defined as so many decibels at 1 W electrical input, measured at 1 meter (except for headphones), often at a single frequency. The voltage used is often 2.83 VRMS, which is 1 watt into an 8 Ω (nominal) speaker impedance (approximately true for many speaker systems). Measurements taken with this reference are quoted as dB with 2.83 V @ 1 m.
The sound pressure output is measured at (or mathematically scaled to be equivalent to a measurement taken at) one meter from the loudspeaker and on-axis (directly in front of it), under the condition that the loudspeaker is radiating into an infinitely large space and mounted on an infinite baffle. Clearly then, sensitivity does not correlate precisely with efficiency, as it also depends on the directivity of the driver being tested and the acoustic environment in front of the actual loudspeaker. For example, a cheerleader's horn produces more sound output in the direction it is pointed by concentrating sound waves from the cheerleader in one direction, thus "focusing" them. The horn also improves impedance matching between the voice and the air, which produces more acoustic power for a given speaker power. In some cases, improved impedance matching (via careful enclosure design) will allow the speaker to produce more acoustic power.
A driver with a higher maximum power rating cannot necessarily be driven to louder levels than a lower-rated one, since sensitivity and power handling are largely independent properties. In the examples that follow, assume (for simplicity) that the drivers being compared have the same electrical impedance; are operated at the same frequency within both driver's respective pass bands; and that power compression and distortion are low. For the first example, a speaker 3 dB more sensitive than another will produce double the sound power (or be 3 dB louder) for the same power input; thus, a 100 W driver ("A") rated at 92 dB for 1 W @ 1 m sensitivity will put out twice as much acoustic power as a 200 W driver ("B") rated at 89 dB for 1 W @ 1 m when both are driven with 100 W of input power. In this particular example, when driven at 100 W, speaker A will produce the same SPL, or loudness, as speaker B would produce with 200 W input. Thus, a 3 dB increase in sensitivity of the speaker means that it will need half the amplifier power to achieve a given SPL. This translates into a smaller, less complex power amplifier—and often, to reduced overall system cost.
It is typically not possible to combine high efficiency (especially at low frequencies) with compact enclosure size and adequate low frequency response. One can, for the most part, choose only two of the three parameters when designing a speaker system. So, for example, if extended low-frequency performance and small box size are important, one must accept low efficiency. This rule of thumb is sometimes called Hoffman's Iron Law (after J.A. Hoffman, the "H" in KLH).
A significant factor in the sound of a loudspeaker system is the amount of absorption and diffusion present in the environment. Clapping one's hands in a typical empty room, without draperies or carpet, will produce a zippy, fluttery echo which is due both to a lack of absorption and to reverberation (that is, repeated echoes) from flat reflective walls, floor, and ceiling. The addition of hard surfaced furniture, wall hangings, shelving and even baroque plaster ceiling decoration, will change the echoes, due primarily to the diffusion caused by somewhat reflective objects with shapes and surfaces having sizes on the order of the sound wavelengths being diffused. This somewhat breaks up the simple reflections otherwise caused by bare flat surfaces, and spreads the reflected energy of an incident wave over a larger angle on reflection.
Any object radiating sound, including a loudspeaker system, can be thought of as being composed of combinations of such simple point sources. The radiation pattern of a combination of point sources will not be the same as for a single source, but rather will depend on the distance and orientation between the sources, the position relative to them from which the listener hears the combination, and the frequency of the sound involved. Using geometry and calculus, some simple combinations of sources are easily solved; others are not.
One simple combination is two simple sources separated by a distance and vibrating out of phase, one miniature sphere expanding while the other is contracting. The pair is known as a doublet, or dipole, and the radiation of this combination is similar to that of a very small dynamic loudspeaker operating without a baffle. The directivity of a dipole is a figure 8 shape with maximum output along a vector which connects the two sources and minimums to the sides when the observing point is equidistant from the two sources, where the sum of the positive and negative waves cancel each other. While most drivers are dipoles, depending on the enclosure to which they are attached, they may radiate as monopoles, dipoles (or bipoles). If mounted on a finite baffle, and these out of phase waves allowed to interact, dipole peaks and nulls in the frequency response result. When the rear radiation is absorbed or trapped in a box, the diaphragm becomes a monopole radiator. Bipolar speakers, made by mounting in-phase monopoles (both moving out of or into the box in unison) on opposite sides of a box, are a method of approaching omnidirectional radiation patterns.
In real life, individual drivers are actually complex 3D shapes such as cones and domes, and they are placed on a baffle for various reasons. A mathematical expression for the directivity of a complex shape, based on modeling combinations of point sources, is usually not possible, but in the farfield, the directivity of a loudspeaker with a circular diaphragm will be close to that of a flat circular piston, so it can be used as an illustrative simplification for discussion. As a simple example of the mathematical physics involved, consider the following: the formula for farfield directivity of a flat circular piston in an infinite baffle is where , is the pressure on axis, is the piston radius, is the wavelength (i.e. ) is the angle off axis and is the Bessel function of the first kind.
A planar source will radiate sound uniformly for low frequencies whose wavelength is longer than the dimensions of the planar source, and as frequency increases, the sound from such a source will be focused into an increasingly narrower angle. The smaller the driver, the higher the frequency where this narrowing of directivity occurs. Even if the diaphragm is not perfectly circular, this effect occurs such that larger sources are more directive. Several loudspeaker designs have been built which have approximately this behavior. Most are electrostatic or planar magnetic designs.
Various manufacturers use different driver mounting arrangements to create a specific type of sound field in the space for which they are designed. The resulting radiation patterns may be intended to more closely simulate the way sound is produced by real instruments, or simply create a controlled energy distribution from the input signal (some using this approach are called monitors, as they are useful in checking the signal just recorded in a studio). An example of the first is a room corner system with many small drivers on the surface of a 1/8 sphere. A system design of this type was patented by, and actually produced commercially, by Professor Amar Bose—the 2201. Later Bose models have deliberately emphasized production of both direct and reflected sound by the loudspeaker itself, regardless of its environment. The designs are controversial in high fidelity circles, but have proven commercially successful. Several other manufacturers' designs follow similar principles.
Directivity is an important issue because it affects the frequency balance of sound a listener hears, and also the interaction of the speaker system with the room and its contents. A speaker which is very directive (i.e., on an axis perpendicular to the speaker face) may result in a reverberant field lacking in high frequencies, giving the impression the speaker is deficient in treble even though it measures well on axis (e.g., "flat" across the entire frequency range). Speakers with very wide, or rapidly increasing directivity at high frequencies, can give the impression that there is too much treble (if the listener is on axis) or too little (if the listener is off axis). This is part of the reason why on-axis frequency response measurement is not a complete characterization of the sound of a given loudspeaker.
A horn loaded speaker can have a sensitivity as high as 110 dB at 2.83 volts (1 watt at 8 ohms) at 1 meter. This is a hundredfold increase in output compared to a speaker rated at 90 dB sensitivity, and is invaluable in applications where high sound levels are required or amplifier power is limited.
Piezoelectric speakers can have extended high frequency output, and this is useful in some specialized circumstances; for instance, sonar applications in which piezoelectric variants are used as both output devices (generating underwater sound) and as input devices (acting as the sensing components of underwater microphones). They have advantages in these applications, not the least of which is simple and solid state construction which resists the effects of seawater better than, say, a ribbon based device would.
Electrostatics are inherently dipole radiators and due to the thin flexible membrane are less suited for use in enclosures to reduce low frequency cancellation as with common cone drivers. Due to this and the low excursion capability, full range electrostatic loudspeakers are large by nature, and the bass will roll off at a frequency corresponding to a quarter wavelength of the narrowest panel dimension. To reduce the size of commercial products, they are sometimes used as a high frequency driver in combination with a conventional dynamic driver which handles the bass frequencies.
Planar magnetic speakers (having printed or embedded conductors on a flat diaphragm) are sometimes described as "ribbons", but are not truly ribbon speakers. The term planar is generally reserved for speakers which have roughly rectangular shaped flat surfaces that radiate in a bipolar (i.e., front and back) manner. Planar magnetic speakers consist of a flexible membrane with a voice coil printed or mounted on it. The current flowing through the coil interacts with the magnetic field of carefully placed magnets on either side of the diaphragm, causing the membrane to vibrate more or less uniformly and without much bending or wrinkling. The driving force covers a large percentage of the membrane surface and reduces resonance problems inherent in coil-driven flat diaphragms.
The Ohm Walsh loudspeakers use a unique driver designed by Lincoln Walsh, who had been a radar development engineer in WWII. He became interested in audio equipment design and his last project was a unique, one-way speaker using a single driver. The cone faced down into a sealed, airtight enclosure. Rather than move back-and-forth as conventional speakers do, the cone rippled and created sound in a manner known in RF electronics as a "transmission line". The new speaker created a cylindrical sound field. Lincoln Walsh died before his speaker was released to the public. The Ohm Acoustics firm has produced several loudspeaker models using the Walsh driver design since then.
The German firm Manger has designed and produced a bending wave driver which, on first glance appears somewhat conventional. In fact, the round panel attached to the voice coil bends in a carefully controlled way to produce full range sound.
ESS, a California manufacturer, licensed the design, employed Heil, and produced a range of speaker systems using his tweeters during the 1970s and 1980s. Radio Shack, a large US retail store chain, also sold speaker systems using such tweeters for a time. At present, there are two manufacturers of these drivers in Germany, one of which produces a range of high-end professional speakers using tweeters and mid-range drivers based on the technology. Martin Logan produces several AMT speakers in the US.
A less expensive variation on this theme is the use of a flame for the driver, as flames contain ionized (electrically charged) gases.
Digital speakers have been the subject of experiments performed by Bell Labs as far back as the 1920s. The design is simple; each bit controls a driver, which is either fully 'on' or 'off'.
There are problems with this design which have led to it being abandoned as impractical for the present. First, for a reasonable number of bits (required for adequate sound reproduction quality), the physical size of a speaker system becomes very large. Secondly, due to inherent analog digital conversion problems, the effect of aliasing is unavoidable, so that the audio output is "reflected" at equal amplitude in the frequency domain, on the other side of the sampling frequency, causing an unacceptably high level of ultrasonics to accompany the desired output. No workable scheme has been found to adequately deal with this.
The term "digital" or "digital-ready" is often used for marketing purposes on speakers or headphones, but these systems are not digital in the sense described above. Rather, they are conventional speakers which can be used with digital sound sources (e.g., optical media, MP3 players, etc.), as can any conventional speaker.
Category:Loudspeakers Category:1924 introductions Category:History of telecommunications
ar:مكبر الصوت an:Altavoz bg:Високоговорител ca:Altaveu cs:Reproduktor da:Højttaler de:Lautsprecher et:Kõlar el:Ηχείο es:Altavoz eo:Laŭtparolilo fa:بلندگو fr:Haut-parleur ga:Callaire gl:Altofalante ko:스피커 hi:लाउडस्पीकर hr:Zvučnik id:Pengeras suara it:Altoparlante he:רמקול kk:Үндеткіш lt:Garsiakalbis hu:Hangszóró mg:Famoaham-peo ml:ഉച്ചഭാഷിണി ms:Pembesar suara nl:Luidspreker ne:लाउड स्पीकर new:लाउदस्पिकर ja:スピーカー no:Høyttaler nn:Høgtalar pl:Głośnik pt:Altifalante ro:Difuzor qu:Ruqyaq ru:Громкоговоритель sco:Speaker sq:Altoparlanti simple:Loudspeaker sk:Reproduktor (elektroakustický menič) sl:Zvočnik (naprava) sr:Рачунарски звучник sh:Zvučnik su:Lawong fi:Kaiutin sv:Högtalare ta:ஒலிபெருக்கி th:ลำโพง tr:Hoparlör uk:Гучномовець vi:Loa zh:揚聲器This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.