Sir Karl Raimund Popper, CH FRS FBA (28 July 1902 – 17 September 1994) was an Austro-British philosopher and a professor at the London School of Economics. He is regarded as one of the greatest philosophers of science of the 20th century; he also wrote extensively on social and political philosophy.
Popper is known for his attempt to repudiate the classical observationalist / inductivist form of scientific method in favour of empirical falsification. He is also known for his opposition to the classical justificationist account of knowledge which he replaced with critical rationalism, "the first non justificational philosophy of criticism in the history of philosophy". As well, he is known for his vigorous defense of liberal democracy and the principles of social criticism that he came to believe made a flourishing "open society" possible.
Popper received a Lutheran upbringing and was educated at the University of Vienna. His father was a doctor of law at the Vienna University and a bibliophile who had 12,000–14,000 volumes in his personal library. Popper inherited both the library and the disposition from him.
In 1919, Popper became attracted by Marxism and subsequently joined the Association of Socialist School Students. He also became a member of the Social Democratic Workers' Party of Austria, which was at that time a party that fully adopted the Marxist ideology. After the June 15, 1919 street battle in the Hörlgasse, when police shot eight of his unarmed party comrades, he became disillusioned by what he saw to be the pseudo-scientific historical materialism of Marx, abandoned the ideology and remained a supporter of social liberalism throughout his life.
In 1928, he earned a doctorate in Psychology, under the supervision of Karl Bühler. His dissertation was titled "Die Methodenfrage der Denkpsychologie" (The question of method in cognitive psychology). Then, from 1930 to 1936, he taught secondary school. Popper published his first book, Logik der Forschung (The Logic of Scientific Discovery), in 1934. Here, he criticised psychologism, naturalism, inductionism, and logical positivism, and put forth his theory of potential falsifiability as the criterion demarcating science from non-science.
In 1937, the rise of Nazism and the threat of the Anschluss led Popper to emigrate to New Zealand, where he became lecturer in philosophy at Canterbury University College New Zealand (at Christchurch). It was here that he wrote his influential work "The Open Society and its Enemies". In 1946, he moved to England to become reader in logic and scientific method at the London School of Economics. Three years later, he was appointed as professor of logic and scientific method at the University of London in 1949. Popper was president of the Aristotelian Society from 1958 to 1959. He was knighted by Queen Elizabeth II in 1965, and was elected a Fellow of the Royal Society in 1976. He retired from academic life in 1969, though he remained intellectually active for the rest of his life. He was invested with the Insignia of a Companion of Honour in 1982. Popper was a member of the Academy of Humanism and described himself as an agnostic, showing respect for the moral teachings of Judaism and Christianity.
Popper won many awards and honours in his field, including the Lippincott Award of the American Political Science Association, the Sonning Prize, and fellowships in the Royal Society, British Academy, London School of Economics, King's College London, Darwin College Cambridge, and Charles University, Prague. Austria awarded him the Grand Decoration for Services to the Republic of Austria in Gold.
Popper died in Croydon, UK at the age of 92 on 17 September 1994. After cremation, his ashes were taken to Vienna and buried at Lainzer cemetery adjacent to the ORF Centre, where his wife Josefine Anna Henninger, who had died in Austria several years before, had already been buried.
In All Life is Problem Solving, Popper sought to explain the apparent progress of scientific knowledge—how it is that our understanding of the universe seems to improve over time. This problem arises from his position that the truth content of our theories, even the best of them, cannot be verified by scientific testing, but can only be falsified. Again, in this context the word 'falsified' does not refer to something being 'fake'; rather, that something can be (i.e., is capable of being) shown to be false by observation or experiment. Some things simply do not lend themselves to being shown to be false, and therefore are not falsifiable. If so, then how is it that the growth of science appears to result in a growth in knowledge? In Popper's view, the advance of scientific knowledge is an evolutionary process characterized by his formula:
:
In response to a given problem situation (), a number of competing conjectures, or tentative theories (), are systematically subjected to the most rigorous attempts at falsification possible. This process, error elimination (), performs a similar function for science that natural selection performs for biological evolution. Theories that better survive the process of refutation are not more true, but rather, more "fit"—in other words, more applicable to the problem situation at hand (). Consequently, just as a species' biological fitness does not ensure continued survival, neither does rigorous testing protect a scientific theory from refutation in the future. Yet, as it appears that the engine of biological evolution has produced, over time, adaptive traits equipped to deal with more and more complex problems of survival, likewise, the evolution of theories through the scientific method may, in Popper's view, reflect a certain type of progress: toward more and more interesting problems (). For Popper, it is in the interplay between the tentative theories (conjectures) and error elimination (refutation) that scientific knowledge advances toward greater and greater problems; in a process very much akin to the interplay between genetic variation and natural selection.
Where does "truth" fit into all this? As early as 1934 Popper wrote of the search for truth as "one of the strongest motives for scientific discovery." Still, he describes in Objective Knowledge (1972) early concerns about the much-criticized notion of truth as correspondence. Then came the semantic theory of truth formulated by the logician Alfred Tarski and published in 1933. Popper writes of learning in 1935 of the consequences of Tarski's theory, to his intense joy. The theory met critical objections to truth as correspondence and thereby rehabilitated it. The theory also seemed, in Popper's eyes, to support metaphysical realism and the regulative idea of a search for truth.
According to this theory, the conditions for the truth of a sentence as well as the sentences themselves are part of a metalanguage. So, for example, the sentence "Snow is white" is true if and only if snow is white. Although many philosophers have interpreted, and continue to interpret, Tarski's theory as a deflationary theory, Popper refers to it as a theory in which "is true" is replaced with "corresponds to the facts". He bases this interpretation on the fact that examples such as the one described above refer to two things: assertions and the facts to which they refer. He identifies Tarski's formulation of the truth conditions of sentences as the introduction of a "metalinguistic predicate" and distinguishes the following cases:
# "John called" is true. # "It is true that John called."
The first case belongs to the metalanguage whereas the second is more likely to belong to the object language. Hence, "it is true that" possesses the logical status of a redundancy. "Is true", on the other hand, is a predicate necessary for making general observations such as "John was telling the truth about Phillip."
Upon this basis, along with that of the logical content of assertions (where logical content is inversely proportional to probability), Popper went on to develop his important notion of verisimilitude or "truthlikeness".
The intuitive idea behind verisimilitude is that the assertions or hypotheses of scientific theories can be objectively measured with respect to the amount of truth and falsity that they imply. And, in this way, one theory can be evaluated as more or less true than another on a quantitative basis which, Popper emphasizes forcefully, has nothing to do with "subjective probabilities" or other merely "epistemic" considerations.
The simplest mathematical formulation that Popper gives of this concept can be found in the tenth chapter of Conjectures and Refutations. Here he defines it as:
:
where is the verisimilitude of a, is a measure of the content of truth of a, and is a measure of the content of the falsity of a.
Knowledge, for Popper, was objective, both in the sense that it is objectively true (or truthlike), and also in the sense that knowledge has an ontological status (i.e., knowledge as object) independent of the knowing subject (Objective Knowledge: An Evolutionary Approach, 1972). He proposed three worlds (see Popperian cosmology): World One, being the physical world, or physical states; World Two, being the world of mind, or mental states, ideas, and perceptions; and World Three, being the body of human knowledge expressed in its manifold forms, or the products of the second world made manifest in the materials of the first world (i.e.–books, papers, paintings, symphonies, and all the products of the human mind). World Three, he argued, was the product of individual human beings in exactly the same sense that an animal path is the product of individual animals, and that, as such, has an existence and evolution independent of any individual knowing subjects. The influence of World Three, in his view, on the individual human mind (World Two) is at least as strong as the influence of World One. In other words, the knowledge held by a given individual mind owes at least as much to the total accumulated wealth of human knowledge, made manifest, as to the world of direct experience. As such, the growth of human knowledge could be said to be a function of the independent evolution of World Three. Many contemporary philosophers have not embraced Popper's Three World conjecture, due mostly, it seems, to its resemblance to Cartesian dualism.
Popper's solution was an original contribution in the philosophy of mathematics. His idea was that a number statement such as "2 apples + 2 apples = 4 apples" can be taken in two senses. In one sense it is irrefutable and logically true, in the second sense it is factually true and falsifiable. Concisely, the pure mathematics "2 + 2 = 4" is always true, but, when the formula is applied to real world apples, it is open to falsification.
In a 1992 lecture, Popper explained the connection between his political philosophy and his philosophy of science. As he stated, he was in his early years impressed by communism and also active in the Austrian Communist party. What had a profound effect on him was an event that happened in 1918: during a riot, caused by the Communists, the police shot several people, including some of Popper's friends. When Popper later told the leaders of the Communist party about this, they responded by stating that this loss of life was necessary in working towards the inevitable workers' revolution. This statement did not convince Popper and he started to think about what kind of reasoning would justify such a statement. He later concluded that there could not be any justification for it, and this was the start of his later criticism of historicism.
In 1947, Popper founded with Friedrich Hayek, Milton Friedman, Ludwig von Mises and others the Mont Pelerin Society to defend classical liberalism, in the spirit of the Open Society.
Unlimited tolerance must lead to the disappearance of tolerance. If we extend unlimited tolerance even to those who are intolerant, if we are not prepared to defend a tolerant society against the onslaught of the intolerant, then the tolerant will be destroyed, and tolerance with them.The utterance of intolerant philosophies should not always be suppressed, "as long as we can counter them by rational argument and keep them in check by public opinion." However,
we should claim the right to suppress them if necessary even by force; for it may easily turn out that they are not prepared to meet us on the level of rational argument, but begin by denouncing all argument; they may forbid their followers to listen to rational argument, because it is deceptive, and teach them to answer arguments by the use of their fists or pistols.Furthermore, in support of human rights legislation in the second half of the 20th century, he stated:
We should therefore claim, in the name of tolerance, the right not to tolerate the intolerant. We should claim that any movement preaching intolerance places itself outside the law, and we should consider incitement to intolerance and persecution as criminal, in the same way as we should consider incitement to murder, or to kidnapping, or to the revival of the slave trade, as criminal.
Popper claims to have found a solution to the problem of induction. His reply is characteristic, and ties in with his criterion of falsifiability. He states that while there is no way to prove that the sun will rise, it is possible to formulate the theory that every day the sun will rise—if it does not rise on some particular day, the theory will be falsified and will have to be replaced by a different one. Until that day, there is no need to reject the assumption that the theory is true. Neither is it rational according to Popper to instead make the more complex assumption that the sun will rise until a given day, but will stop doing so the day after, or similar statements with additional conditions.
Such a theory would be true with higher probability, because it cannot be attacked so easily: To falsify the first one, it is sufficient to find that sun has stopped rising; to falsify the second one, one additionally needs the assumption that the given day has not yet been reached. Popper held that it is the least likely, or most easily falsifiable, or simplest theory (attributes which he identified as all the same thing) that explains known facts that one should rationally prefer. His opposition to positivism, which held that it is the theory most likely to be true that one should prefer, here becomes very apparent. It is impossible, Popper argues, to ensure a theory to be true (but not fatal, since even false theories may have true consequence); it is more important that they can be eliminated and corrected as easily as possible if false.
Popper and Hume agreed that there is often a psychological belief that the sun will rise tomorrow, but both denied that there is logical justification for the supposition that it will, simply because it always has in the past. Popper writes:
"I approached the problem of induction through Hume. Hume, I felt, was perfectly right in pointing out that induction cannot be logically justified." (Conjectures and Refutations, p. 55)
To Popper, who was an anti-justificationist, traditional philosophy is misled by the false principle of sufficient reason. He thinks that no assumption can ever be or needs ever to be justified, so a lack of justification is not a justification for doubt. Instead, theories should be tested and scrutinized. It is not the goal to bless theories with claims of certainty or justification, but to eliminate errors in them:
"there are no such things as good positive reasons; nor do we need such things [...] But [philosophers] obviously cannot quite bring [themselves] to believe that this is my opinion, let alone that it is right" (The Philosophy of Karl Popper, p. 1043)
When he gave the first Arthur Holly Compton Memorial Lecture in 1955, Popper revisited the idea of quantum indeterminacy as a source of human freedom. Eccles had suggested that "critically poised neurons" might be influenced by the mind to assist in a decision. Popper criticized Compton's idea of amplified quantum events affecting the decision. He wrote
"The idea that the only alternative to determinism is just sheer chance was taken over by Schlick, together with many of his views on the subject, from Hume, who asserted that 'the removal' of what he called 'physical necessity' must always result in'the same thing with chance. As objects must either be conjoin'd or not, . . . 'tis impossible to admit of any medium betwixt chance and an absolute necessity'.
"I shall later argue against this important doctrine according to which the alternative to determinism is sheer chance. Yet I must admit that the doctrine seems to hold good for the quantum-theoretical models which have been designed to explain, or at least to illustrate, the possibility of human freedom. This seems to be the reason why these models are so very unsatisfactory.
"Hume's and Schlick's ontological thesis that there cannot exist anything intermediate between chance and determinism seems to me not only highly dogmatic (not to say doctrinaire) but clearly absurd; and it is understandable only on the assumption that they believed in a complete determinism in which chance has no status except as a symptom of our ignorance."
Popper called not for something between chance and necessity but for a combination of randomness and control to explain freedom, though not yet explicitly in two stages with random chance before the controlled decision.
"freedom is not just chance but, rather, the result of a subtle interplay between something almost random or haphazard, and something like a restrictive or selective control."
Then in his 1977 book with John Eccles, The Self and its Brain, Popper finally formulates the two-stage model in a temporal sequence. And he compares free will to Darwinian evolution and natural selection,
"New ideas have a striking similarity to genetic mutations. Now, let us look for a moment at genetic mutations. Mutations are, it seems, brought about by quantum theoretical indeterminacy (including radiation effects). Accordingly, they are also probabilistic and not in themselves originally selected or adequate, but on them there subsequently operates natural selection which eliminates inappropriate mutations. Now we could conceive of a similar process with respect to new ideas and to free-will decisions, and similar things. "That is to say, a range of possibilities is brought about by a probabilistic and quantum mechanically characterized set of proposals, as it were - of possibilities brought forward by the brain. On these there then operates a kind of selective procedure which eliminates those proposals and those possibilities which are not acceptable to the mind."
Other thinkers who have formulated a two-stage model for free will include William James, Henri Poincaré, Arthur Compton, Henry Margenau, and Daniel Dennett.
In this context, passages written by Popper are frequently quoted in which he speaks about such issues himself. For example, he famously stated "Darwinism is not a testable scientific theory, but a metaphysical research program." He continued: He also noted that theism presented as explaining adaptation "was worse than an open admission of failure, for it created the impression that an ultimate explanation had been reached." He later said
He explained that the difficulty of testing had led some people to describe natural selection as a tautology, and that he too had in the past described the theory as 'almost tautological', and had tried to explain how the theory could be untestable (as is a tautology) and yet of great scientific interest. Popper summarized his new view as follows:
These frequently quoted passages are only a very small part of what Popper wrote on the issue of evolution, however, and give the wrong impression that he mainly discussed questions of its falsifiability. Popper never invented this criterion to give justifiable use of words like science. This would be a kind of justificationism, a view harshly rejected by Popper. In fact, Popper says at the very beginning of his Logic of Scientific Discovery that it is not his plan to define science, and that science can, in fact, be defined quite arbitrarily.
Popper had his very own sophisticated views on evolution that go much beyond what the frequently quoted passages say. In effect, Popper agreed with some of the points of both creationists and naturalists, but, on the other hand, also disagreed with both views on crucial aspects. Popper understood the universe as a creative entity that invents new things, including life, but without the necessity of something like a god, especially not one who is pulling strings from behind the curtain. Still, he accepted the creationistic criticism that an explanation is needed for all the purpose in the world, and that this can hardly be explained by purely naturalistic evolution. He said that evolution must be, as the creationists say, work in a goal-directed way, but he disagreed with their view that it must necessarily be the hand of god that imposes these goals onto the stage of live. Instead, he invented the such-called spearhead theory of evolution, a version of genetic pluralism. This theory says that the living organisms themselves have goals, and act according to these goals, each guided by a central control (in its most sophisticated form, this is the brain of humans, but controls also exist in much less sophisticated ways for species of lower complexity, such as the amoeba). These goals bring the purpose into the world. Mutations in the genes that determine the structure of the control may then cause drastic changes in behaviour, preferences and goals, without having an impact on the organism's phenotype. Popper postulates that such purely behavioral changes are less likely to be lethal for the organism compared to drastic changes of the phenotype. Popper contrasts his views with the notion of the "hopeful monster" that has large phenotype mutations and calls it the "hopeful behavioral monster". After behavior has changed radically, small but quick changes of the phenotype follow to make the organism fitter to its changed goals. This way it looks as if the phenotype were changing guided by some invisible hand, while it is merely natural selection working in combination with the new behaviour. For example, according to this hypothesis, the eating habits of the giraffe must have changed before its elongated neck evolved. Popper contrasted this view as evolution from within (the organism actively trying to discover new ways of life and being on a quest for conquering new ecological niches), with the naturalistic evolution from without (which has the picture of a hostile environment only trying to kill the mostly passive organism, or perhaps segregate some of its groups).
While there is some dispute as to the matter of influence, Popper had a long-standing and close friendship with economist Friedrich Hayek, who was also brought to the London School of Economics from Vienna. Each found support and similarities in each other's work, citing each other often, though not without qualification. In a letter to Hayek in 1944, Popper stated, "I think I have learnt more from you than from any other living thinker, except perhaps Alfred Tarski." Popper dedicated his Conjectures and Refutations to Hayek. For his part, Hayek dedicated a collection of papers, Studies in Philosophy, Politics, and Economics, to Popper, and in 1982 said, "...ever since his Logik der Forschung first came out in 1934, I have been a complete adherent to his general theory of methodology."
Popper also had long and mutually influential friendships with art historian Ernst Gombrich, biologist Peter Medawar, and neuro-scientist John Carew Eccles.
Popper's influence, both through his work in philosophy of science and through his political philosophy, has also extended beyond the academy. Among Popper's students and advocates at the London School of Economics is the billionaire investor George Soros, who says his investment strategies are modelled on Popper's understanding of the advancement of knowledge through the distinctly Hegelian idea of falsification. Among Soros's philanthropic foundations is the Open Society Institute, a think-tank named in honour of Popper's The Open Society and Its Enemies, which Soros founded to advance the Popperian defense of the open society against authoritarianism and totalitarianism.
Popperian philosophy also inspired the creation of Taking Children Seriously, a libertarian movement which noticed that Popper's general theory of knowledge creation does not differentiate between adults and children.
Rather, it is a recommended ideal method that, if enacted by a system or community, will over time lead to slow but steady progress of a sort (relative to how well the system or community enacts the method). It has been suggested that Popper's ideas are often mistaken for a hard logical account of truth because of the historical co-incidence of their appearing at the same time as logical positivism, the followers of which mistook his aims for their own.
The Quine-Duhem thesis argues that it's impossible to test a single hypothesis on its own, since each one comes as part of an environment of theories. Thus we can only say that the whole package of relevant theories has been collectively falsified, but cannot conclusively say which element of the package must be replaced. An example of this is given by the discovery of the planet Neptune: when the motion of Uranus was found not to match the predictions of Newton's laws, the theory "There are seven planets in the solar system" was rejected, and not Newton's laws themselves. Popper discussed this critique of naïve falsificationism in Chapters 3 & 4 of The Logic of Scientific Discovery. For Popper, theories are accepted or rejected via a sort of selection process. Theories that say more about the way things appear are to be preferred over those that do not; the more generally applicable a theory is, the greater its value. Thus Newton’s laws, with their wide general application, are to be preferred over the much more specific “the solar system has seven planets”.
Thomas Kuhn’s influential book The Structure of Scientific Revolutions argued that scientists work in a series of paradigms, and that falsificationist methodologies would make science impossible. |}} Popper's student Imre Lakatos attempted to reconcile Kuhn’s work with falsificationism by arguing that science progresses by the falsification of research programs rather than the more specific universal statements of naïve falsificationism. Another of Popper’s students Paul Feyerabend ultimately rejected any prescriptive methodology, and argued that the only universal method characterizing scientific progress was anything goes.
Popper claimed to have recognized already in the 1934 version of his Logic of Discovery a fact later stressed by Kuhn, "that scientists necessarily develop their ideas within a definite theoretical framework", and to that extent to have anticipated Kuhn's central point about 'normal science'. (But Popper criticised what he saw as Kuhn's relativism.) Also, in his collection Conjectures and Refutations: The Growth of Scientific Knowledge (Harper & Row, 1963), Popper writes, "Science must begin with myths, and with the criticism of myths; neither with the collection of observations, nor with the invention of experiments, but with the critical discussion of myths, and of magical techniques and practices. The scientific tradition is distinguished from the pre-scientific tradition in having two layers. Like the latter, it passes on its theories; but it also passes on a critical attitude towards them. The theories are passed on, not as dogmas, but rather with the challenge to discuss them and improve upon them."
Another objection is that it is not always possible to demonstrate falsehood definitively, especially if one is using statistical criteria to evaluate a null hypothesis. More generally it is not always clear, if evidence contradicts a hypothesis, that this is a sign of flaws in the hypothesis rather than of flaws in the evidence. However, this is a misunderstanding of what Popper's philosophy of science sets out to do. Rather than offering a set of instructions that merely need to be followed diligently to achieve science, Popper makes it clear in The Logic of Scientific Discovery that his belief is that the resolution of conflicts between hypotheses and observations can only be a matter of the collective judgment of scientists, in each individual case.
Popper's falsificationism can be questioned logically: it is not clear how Popper would deal with a statement like "for every metal, there is a temperature at which it will melt." The hypothesis cannot be falsified by any possible observation, for there will always be a higher temperature than tested at which the metal may in fact melt, yet it seems to be a valid scientific hypothesis. These examples were pointed out by Carl Gustav Hempel. Hempel came to acknowledge that Logical Positivism's verificationism was untenable, but argued that falsificationism was equally untenable on logical grounds alone. The simplest response to this is that, because Popper describes how theories attain, maintain and lose scientific status, individual consequences of currently accepted scientific theories are scientific in the sense of being part of tentative scientific knowledge, and both of Hempel's examples fall under this category. For instance, atomic theory implies that all metals melt at some temperature.
An early adversary of so-called critical rationalism, Karl-Otto Apel attempted a comprehensive refutation of Popper's philosophy. In Transformation der Philosophie (1973), Apel charged Popper with being guilty of, amongst other things, a pragmatic contradiction.
Ludwig Wittgenstein was accused of brandishing a poker at Popper during a meeting of the Cambridge Moral Sciences Club, when they argued about whether issues in philosophy were real or just linguistic puzzles. Wittgenstein's friends say he was merely handling a poker, but Popper used the situation to make a joke at Wittgenstein's expense.
Charles Taylor accuses Popper of exploiting his worldwide fame as an epistemologist to diminish the importance of philosophers of the 20th century continental tradition. According to Taylor, Popper's criticisms are completely baseless, but they are received with an attention and respect that Popper's "intrinsic worth hardly merits". William W. Bartley defended Popper against such allegations: "Sir Karl Popper is not really a participant in the contemporary professional philosophical dialogue; quite the contrary, he has ruined that dialogue. If he is on the right track, then the majority of professional philosophers the world over has wasted or is wasting their intellectual careers. The gulf between Popper's way of doing philosophy and that of the bulk of professional philosophers is as great as that between astronomy and astrology."
In 2004, philosopher and psychologist Michel ter Hark (Groningen, The Netherlands) published a book, called Popper, Otto Selz and the rise of evolutionary epistemology, ISBN 0-521-83074-5, in which he claimed that Popper took some of his ideas from his tutor, the German psychologist Otto Selz. Selz himself never published his ideas, partly because of the rise of Nazism which forced him to quit his work in 1933, and the prohibition of referring to Selz' work. Popper, the historian of ideas and his scholarship, is criticized in some academic quarters, for his rejection of Plato, Hegel and Marx.
According to Karl Popper, a theory is scientific only in so far as it is falsifiable, and should be given up as soon as it is falsified. By applying Popper's account of scientific method, John N. Gray's Straw Dogs states that this would have killed the theories of Darwin and Einstein at birth. When they were first advanced, each of them was at odds with some available evidence; only later did evidence become available that gave them crucial support.
Category:Articles with inconsistent citation formats Category:1902 births Category:1994 deaths Category:20th-century philosophers Category:Analytic philosophers Category:Austrian agnostics Category:Austrian philosophers Category:British agnostics Category:British people of Austrian descent Category:Austrian people of Jewish descent Category:British philosophers Category:British political philosophers Category:Cambridge University Moral Sciences Club Category:German-language philosophers Category:Philosophers of mind Category:Consciousness researchers and theorists Category:Philosophers of science Category:Mont Pelerin Society members Category:Members of the Order of the Companions of Honour Category:Knights Bachelor Category:Fellows of the British Academy Category:Fellows of the Royal Society Category:Fellows of Darwin College, Cambridge Category:Recipients of the Pour le Mérite (civil class) Category:Academics of the London School of Economics Category:University of Vienna alumni Category:University of Canterbury faculty Category:Refugees ennobled in the United Kingdom Category:People from Vienna Category:Naturalised citizens of the United Kingdom Category:Grand Crosses with Star and Sash of the Order of Merit of the Federal Republic of Germany
af:Karl Popper ar:كارل بوبر an:Karl Popper az:Karl Popper bn:কার্ল পপার be:Карл Попер be-x-old:Карл Попэр bg:Карл Попър ca:Karl Popper cs:Karl Raimund Popper cy:Karl Popper da:Karl Popper de:Karl Popper et:Karl Popper es:Karl Popper eo:Karl Popper fa:کارل پوپر fr:Karl Popper gl:Karl Popper ko:칼 포퍼 hr:Karl Popper hy:Կարլ Փոփեր io:Karl Popper id:Karl Popper is:Karl Popper it:Karl Popper he:קרל פופר kk:Поппер Карл Раймунд la:Carolus Popper lt:Karl Popper li:Karl Popper hu:Karl Popper hy:Կարլ Փոփեր mzn:پوپر nl:Karl Popper ja:カール・ポパー no:Karl Popper nn:Karl Popper oc:Karl Popper pms:Karl Popper pl:Karl Popper pt:Karl Popper ro:Karl Popper ru:Поппер, Карл Раймунд scn:Karl Popper simple:Karl Popper sk:Karl Raimund Popper sl:Karl Popper ckb:کارڵ پۆپەر sr:Карл Попер fi:Karl Popper sv:Karl Popper tt:Karl Raimund Popper tr:Karl Popper uk:Карл Поппер vi:Karl Popper yo:Karl Popper zh:卡尔·波普尔
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Coordinates | 37°46′45.48″N122°25′9.12″N |
---|---|
name | Karl |
footnotes | }} |
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.