The sea is of significant economic importance to regional trade, shipping and transport, fishing, and power generation in the form of wind power and nuclear plants. Annual traffic between Great Britain and Ireland amounts to over 12 million passengers and 17 million tonnes of traded goods.
On the North. The Southern limit of the Scottish Seas [or Inner Seas off the West Coast of Scotland, defined as "a line joining the South extreme of the Mull of Galloway (54°38'N) in Scotland and Ballyquintin Point (54°20'N) in Ireland"].On the South. A line joining St. David's Head () to Carnsore Point ().
The Port of Liverpool handles 32 million tonnes of cargo and 734 thousand passengers a year. Holyhead port handles most of the passenger traffic from Dublin and Dún Laoghaire ports, as well as 3.3 million tonnes of freight.
Ports in the Republic handle 3,600,000 travellers crossing the sea each year, amounting to 92% of all Irish Sea travel. This has been steadily dropping for a number of years (20% since 1999), probably as a result of low cost airlines.
Ferry connections from Great Britain to Ireland across the Irish Sea include the routes from Swansea to Cork, Fishguard and Pembroke to Rosslare, Holyhead to Dún Laoghaire, Holyhead to Dublin, Stranraer to Belfast and Larne, and Cairnryan to Larne. There is also a connection between Liverpool and Belfast via the Isle of Man or direct from Birkenhead. The world's largest car ferry, Ulysses, is operated by Irish Ferries on the Dublin Port–Holyhead route; Stena Line also operates between Britain and Ireland. The Port of Barrow-in-Furness, despite being one of Britain's largest shipbuilding centres and being home to the United Kingdom's only submarine-building complex, is only a minor port.
"Irish Sea" is also the name of one of the BBC's Shipping Forecast areas defined by the coordinates:
There have been various tentative proposals for an Irish Sea Tunnel.
During World War I the Irish Sea became known as "U-boat Alley", because the U-boats moved their emphasis from the Atlantic to the Irish Sea after the United States entered the war in 1917.
:See also: Transport in Ireland, Transport in the United Kingdom, Transport on the Isle of Man
The information on the invertebrates of the seabed of the Irish Sea is rather patchy because it is difficult to survey such a large area, where underwater visibility is often poor and information often depends upon looking at material brought up from the seabed in mechanical grabs. However, the groupings of animals present depend to a large extent on whether the seabed is composed of rock, boulders, gravel, sand, mud or even peat. In the soft sediments seven types of community have been provisionally identified, variously dominated by brittle-stars, sea urchins, worms, mussels, tellins, furrow-shells, and tower-shells.
Parts of the bed of the Irish Sea are very rich in wildlife. The seabed southwest of the Isle of Man is particularly noted for its rarities and diversity, as are the horse mussel beds of Strangford Lough. Scallops and queen scallops are found in more gravelly areas. In the estuaries, where the bed is more sandy or muddy, the number of species is smaller but the size of their populations is larger. Brown shrimp, cockles and edible mussels support local fisheries in Morecambe Bay and the Dee Estuary and the estuaries are also important as nurseries for flatfish, herring and sea bass. Muddy seabeds in deeper waters are home to populations of the Dublin Bay prawn, also known as "scampi".
The open sea is a complex habitat in its own right. It exists in three spatial dimensions and also varies over time and tide. For example, where freshwater flows into the Irish Sea in river estuaries its influence can extend far offshore as the freshwater is lighter and "floats" on top of the much larger body of saltwater until wind and temperature changes mix it in. Similarly, warmer water is less dense and seawater warmed in the inter-tidal zone may "float" on the colder offshore water. The amount of light penetrating the seawater also varies with depth and turbidity. This leads to differing populations of plankton in different parts of the sea and varying communities of animals that feed on these populations. However, increasing seasonal storminess leads to greater mixing of water and tends to break down these divisions, which are more apparent when the weather is calm for long periods.
Plankton includes bacteria, plants (phytoplankton) and animals (zooplankton) that drift in the sea. Most are microscopic, but some, such as the various species of jellyfish and sea gooseberry, can be much bigger.
Diatoms and dinoflagellates dominate the phytoplankton. Although they are microscopic plants, diatoms have hard shells and dinoflagellates have little tails that propel them through the water. Phytoplankton populations in the Irish Sea have a spring "bloom" every April and May, when the seawater is generally at its greenest.
Crustaceans, especially copepods, dominate the zooplankton. However, many animals of the seabed, the open sea and the seashore spend their juvenile stages as part of the zooplankton. The whole plankton "soup" is vitally important, directly or indirectly, as a food source for most species in the Irish Sea, even the largest. The enormous basking shark, for example, lives entirely on plankton and the leatherback turtle's main food is jellyfish.
A colossal diversity of invertebrate species live in the Irish Sea and its surrounding coastline, ranging from flower-like fan-worms to predatory swimming crabs to large chameleon-like cuttlefish. Some of the most significant for other wildlife are the reef-building species like the inshore horse mussel of Strangford Lough and the inter-tidal honeycomb worm of Morecambe Bay, Cumbria and Lancashire. These build up large structures over many years and, in turn, provide surfaces, nooks and crannies where other marine animals and plants may become established and live out some or all of their lives.
There are quite regular records of live and stranded leatherback turtle in and around the Irish Sea. This species travels north to the waters off the British Isles every year following the swarms of jellyfish that form its prey. Loggerhead turtle, Ridley sea turtle and green turtle are found very occasionally in the Irish Sea but are generally unwell or dead when discovered. They have strayed or been swept out of their natural range further south into colder waters.
The estuaries of the Irish Sea are of international importance for birds. They are vital feeding grounds on migration flyways for shorebirds travelling between the Arctic and Africa. Others depend on the milder climate as a refuge when continental Europe is in the grip of winter.
Twenty-one species of seabird are reported as regularly nesting on beaches or cliffs around the Irish Sea. Huge populations of the sea duck, common scoter, spend winters feeding in shallow waters off eastern Ireland, Lancashire and North Wales.
Whales, dolphins and porpoises all frequent the Irish Sea, but knowledge of how many there may be and where they go is somewhat sketchy. About a dozen species have been recorded since 1980, but only three are seen fairly often. These are the harbour porpoise, bottlenose dolphin and common dolphin. The more rarely seen species are minke whale, fin whale, sei whale, sperm whale, northern bottlenose whale, long-finned pilot whale, orca, white-beaked dolphin, striped dolphin and Risso's dolphin.
The common or harbour seal and the grey seal are both resident in the Irish Sea. Common seals breed in Strangford Lough, grey seals in southwest Wales and, in small numbers, on the Isle of Man. Grey seals haul out, but do not breed, off Hilbre and Walney islands, Merseyside, the Wirral, Barrow-in-Furness Borough, and Cumbria.
Low-level radioactive waste has been discharged into the Irish Sea as part of operations at Sellafield since 1952. The rate of discharge began to accelerate in the mid- to late 1960s, reaching a peak in the 1970s and generally declining significantly since then. As an example of this profile, discharges of plutonium (specifically 241Pu) peaked in 1973 at 2,755TBq falling to 8.1 TBq by 2004. Improvements in the treatment of waste in 1985 and 1994 resulted in further reductions in radioactive waste discharge although the subsequent processing of a backlog resulted in increased discharges of certain types of radioactive waste. Discharges of technetium in particular rose from 6.1 TBq in 1993 to a peak of 192TBq in 1995 before dropping back to 14TBq in 2004. In total 22PBq of 241Pu was discharged over the period 1952 to 1998. Current rates of discharge for many radionuclides are at least 100 times lower than they were in the 1970s.
Analysis of the distribution of radioactive contamination after discharge reveals that mean sea currents result in much of the more soluble elements such as caesium being flushed out of the Irish Sea through the North Channel about a year after discharge. Measurements of technetium concentrations post-1994 has produced estimated transit times to the North Channel of around six months with peak concentrations off the northeast Irish coast occurring 18–24 months after peak discharge. Less soluble elements such as plutonium are subject to much slower redistribution. Whilst concentrations have declined in line with the reduction in discharges they are markedly higher in the eastern Irish Sea compared to the western areas. The dispersal of these elements is closely associated with sediment activity, with muddy deposits on the seabed acting as sinks, soaking up an estimated 200kg of plutonium. The highest concentration is found in the eastern Irish Sea in sediment banks lying parallel to the Cumbrian coast. This area acts as a significant source of wider contamination as radionuclides are dissolved once again. Studies have revealed that 80% of current sea water contamination by caesium is sourced from sediment banks, whilst plutonium levels in the western sediment banks between the Isle of Man and the Irish coast are being maintained by contamination redistributed from the eastern sediment banks.
The consumption of seafood harvested from the Irish Sea is the main pathway for exposure of humans to radioactivity. The environmental monitoring report for the period 2003 to 2005 published by the Radiological Protection Institute of Ireland (RPII) reported that in 2005 average quantities of radioactive contamination found in seafood ranged from less than 1Bq/kg for fish to under 44Bq/kg for mussels. Doses of man-made radioactivity received by the heaviest consumers of seafood in Ireland in 2005 was 1.10µSv. This compares with a corresponding dosage of radioactivity naturally occurring in the seafood consumed by this group of 148µSv and a total average dosage in Ireland from all sources of 3620µSv. In terms of risk to this group, heavy consumption of seafood generates a 1 in 18 million chance of causing cancer. The general risk of contracting cancer in Ireland is 1 in 522. In the UK, the heaviest seafood consumers in Cumbria received a radioactive dosage attributable to Sellafield discharges of 0.22mSv (220µSv) in 2005. This compares to average annual dose of naturally sourced radiation received in the UK of 2.23mSv (2230µSv).
Also see Beaufort's Dyke.
Oil is produced from the Lennox and Douglas fields. It is then treated at the Douglas Complex and piped 17 kilometres to an oil storage barge ready for export by tankers. Gas is produced from the Hamilton, Hamilton North and Hamilton East reservoirs. After initial processing at the Douglas Complex the gas is piped by subsea pipeline to the Point of Ayr gas terminal for further processing. The gas is then sent by onshore pipeline to PowerGen's combined cycle gas turbine power station at Connah's Quay. PowerGen is the sole purchaser of gas from the Liverpool Bay development.
The Liverpool Bay development comprises four offshore platforms. Offshore storage and loading facilities. The onshore gas processing terminal at Point of Ayr. Production first started at each filed as follows: Hamilton North in 1995, Hamilton in 1996, Douglas in 1996, Lennox (oil only) in 1996 and Hamilton East 2001. The first contract gas sales were in 1996.
Liverpool Bay has been historically contaminated by discharges of sewage sludge, compromising water quality for this part of the Irish Sea.
Several potential Irish Sea tunnel projects have been proposed, most recently the "Tusker Tunnel" between the ports of Rosslare and Fishguard proposed by The Institute of Engineers of Ireland in 2004. A different proposed route between Dublin and Holyhead was proposed in 1997 by the British engineering firm Symonds. Either tunnel, at , would be by far the longest in the world, and would cost an estimated €20 billion.
Further wind turbine sites include: The North Hoyle site off the coast from Rhyl and Prestatyn in North Wales, containing thirty 2 MW turbines. operated by NPower Renewables
Category:Irish Sea Category:Landforms of Ireland Category:Shipping Forecast areas Category:European seas Category:Republic of Ireland – United Kingdom border Category:Borders of Wales
ang:Īrisc Sǣ ar:البحر الأيرلندي an:Mar d'Irlanda ast:Mar d'Irlanda bn:আইরিশ সাগর be:Ірландскае мора bs:Irsko more br:Mor Iwerzhon bg:Ирландско море ca:Mar d'Irlanda cv:Ирланд тинĕсĕ cs:Irské moře cy:Môr Iwerddon da:Irske Hav de:Irische See et:Iiri meri es:Mar de Irlanda eo:Irlanda Maro eu:Irlandako itsasoa fa:دریای ایرلند fr:Mer d'Irlande fy:Ierske See ga:Muir Éireann gv:Mooir Vannin gl:Mar de Irlanda ko:아일랜드 해 hy:Իռլանդական ծով hr:Irsko more is:Írlandshaf it:Mare d'Irlanda he:הים האירי ka:ირლანდიის ზღვა ku:Deryaya Îrlandî lv:Īrijas jūra lb:Irescht Mier lt:Airijos jūra hu:Ír-tenger mk:Ирско Море ml:ഐറിഷ് കടൽ arz:البحر الايرلاندى ms:Laut Ireland nl:Ierse Zee nds-nl:Ierse zee ja:アイリッシュ海 no:Irskesjøen nn:Irskesjøen oc:Mar d'Irlanda pl:Morze Irlandzkie pt:Mar da Irlanda ro:Marea Irlandeză ru:Ирландское море sco:Erse Sea sq:Deti Irlandez simple:Irish Sea sk:Írske more sl:Irsko morje sr:Ирско море sh:Irsko more fi:Irlanninmeri sv:Irländska sjön tl:Dagat Irlandes th:ทะเลไอริช tr:İrlanda Denizi uk:Ірландське море vi:Biển Ireland war:Dagat Irlanda yi:אירישער ים zh:愛爾蘭海This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.