In chemistry, an alcohol is any organic compound in which a hydroxyl functional group (-OH) is bound to a carbon atom, usually connected to other carbon or hydrogen atoms.
An important class are the simple acyclic alcohols, the general formula for which is CnH2n+1OH. Of those, ethanol (C2H5OH) is the type of alcohol found in alcoholic beverages, and in common speech the word alcohol refers specifically to ethanol.
Other alcohols are usually described with a clarifying adjective, as in isopropyl alcohol (propan-2-ol) or wood alcohol (methyl alcohol, or methanol). The suffix -ol appears in the IUPAC chemical name of all substances where the hydroxyl group is the functional group with the highest priority; in substances where a higher priority group is present the prefix hydroxy- will appear in the IUPAC name. The suffix -ol in non-systematic names (such as paracetamol or cholesterol) also typically indicates that the substance includes a hydroxyl functional group and, so, can be termed an alcohol. But many substances (such as citric acid, lactic acid, and sucrose) contain one or more hydroxyl functional groups without using the suffix.
The simplest alcohol is methanol, , which was formerly obtained by the distillation of wood and, therefore, is called "wood alcohol". It is a clear liquid resembling ethanol in smell and properties, with a slightly lower boiling point (64.7 °C), and is used mainly as a solvent, fuel, and raw material. Unlike ethanol, methanol is extremely toxic: One sip (as little as 10 ml) can cause permanent blindness by destruction of the optic nerve and 30 ml (one fluid ounce) is potentially fatal.
Two other alcohols whose uses are relatively widespread (though not so much as those of methanol and ethanol) are propanol and butanol. Like ethanol, they can be produced by fermentation processes. (However, the fermenting agent is a bacterium, Clostridium acetobutylicum, that feeds on cellulose, not sugars like the Saccharomyces yeast that produces ethanol.) Saccharomyces yeast are known to produce these higher alcohols at temperatures above . These alcohols are called fusel alcohols or fusel oils in brewing and tend to have a spicy or peppery flavor. They are considered a fault in most styles of beer.
Simple alcohols, in particular, ethanol and methanol, possess denaturing and inert rendering properties, leading to their use as anti-microbial agents in medicine, pharmacy, and industry.
The IUPAC nomenclature is used in scientific publications and where precise identification of the substance is important. In other less formal contexts, an alcohol is often called with the name of the corresponding alkyl group followed by the word "alcohol", e.g., methyl alcohol, ethyl alcohol. Propyl alcohol may be n-propyl alcohol or isopropyl alcohol, depending on whether the hydroxyl group is bonded to the 1st or 2nd carbon on the propane chain.
Alcohols are classified into primary, secondary, and tertiary, based upon the number of carbon atoms connected to the carbon atom that bears the hydroxyl group. The primary alcohols have general formulas RCH2OH; secondary ones are RR'CHOH; and tertiary ones are RR'R"COH, where R, R', and R" stand for alkyl groups. Ethanol and n-propyl alcohol are primary alcohols; isopropyl alcohol is a secondary one. The prefixes sec- (or s-) and tert- (or t-), conventionally in italics, may be used before the alkyl group's name to distinguish secondary and tertiary alcohols, respectively, from the primary one. For example, isopropyl alcohol is occasionally called sec-propyl alcohol, and the tertiary alcohol (CH3)3COH, or 2-methylpropan-2-ol in IUPAC nomenclature is commonly known as tert-butyl alcohol or tert-butanol.
! Chemical Formula | ! IUPAC Name | ! Common Name |
CH3OH | Methanol | Wood alcohol |
C2H5OH | Ethanol | Grain alcohol |
C3H7OH | Isopropyl alcohol | Rubbing alcohol |
C5H11OH | Pentanol | Amyl alcohol |
C16H33OH | Hexadecan-1-ol | Cetyl alcohol |
C2H4(OH)2 | Ethane-1,2-diol | Ethylene glycol |
C3H5(OH)3 | Propane-1,2,3-triol | Glycerin |
C4H6(OH)4 | Butane-1,2,3,4-tetraol | Erythritol |
C5H7(OH)5 | Pentane-1,2,3,4,5-pentol | Xylitol |
C6H8(OH)6 | Hexane-1,2,3,4,5,6-hexol | Mannitol, Sorbitol |
C7H9(OH)7 | Heptane-1,2,3,4,5,6,7-heptol | Volemitol |
C3H5OH | Prop-2-ene-1-ol | Allyl alcohol |
C10H17OH | 3,7-Dimethylocta-2,6-dien-1-ol | Geraniol |
C3H3OH | Prop-2-in-1-ol | Propargyl alcohol |
C6H6(OH)6 | Cyclohexane-1,2,3,4,5,6-geksol | Inositol |
C10H19OH | 2 - (2-propyl)-5-methyl-cyclohexane-1-ol | Menthol |
is Arabic for the definitive article, the in English.
The current Arabic name for alcohol is , re-introduced from western usage.
was the name given to the very fine powder, produced by the sublimation of the natural mineral stibnite to form antimony sulfide Sb2S3 (hence the essence or "spirit" of the substance), which was used as an antiseptic and eyeliner.
Bartholomew Traheron in his 1543 translation of John of Vigo introduces the word as a term used by "barbarous" (Moorish) authors for "fine powder": :the barbarous auctours use alcohol, or (as I fynde it sometymes wryten) alcofoll, for moost fine poudre.
William Johnson in his 1657 Lexicon Chymicum glosses the word as antimonium sive stibium. By extension, the word came to refer to any fluid obtained by distillation, including "alcohol of wine", the distilled essence of wine. Libavius in Alchymia (1594) has vini alcohol vel vinum alcalisatum. Johnson (1657) glosses alcohol vini as quando omnis superfluitas vini a vino separatur, ita ut accensum ardeat donec totum consumatur, nihilque fæcum aut phlegmatis in fundo remaneat. The word's meaning became restricted to "spirit of wine" (ethanol) in the 18th century, and was again extended to the family of substances so called in modern chemistry from 1850.
In general, the hydroxyl group makes the alcohol molecule polar. Those groups can form hydrogen bonds to one another and to other compounds (except in certain large molecules where the hydroxyl is protected by steric hindrance of adjacent groups). This hydrogen bonding means that alcohols can be used as protic solvents. Two opposing solubility trends in alcohols are: the tendency of the polar OH to promote solubility in water, and the tendency of the carbon chain to resist it. Thus, methanol, ethanol, and propanol are miscible in water because the hydroxyl group wins out over the short carbon chain. Butanol, with a four-carbon chain, is moderately soluble because of a balance between the two trends. Alcohols of five or more carbons (Pentanol and higher) are effectively insoluble in water because of the hydrocarbon chain's dominance. All simple alcohols are miscible in organic solvents.
Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. The boiling point of the alcohol ethanol is 78.29 °C, compared to 69 °C for the hydrocarbon Hexane (a common constituent of gasoline), and 34.6 °C for Diethyl ether.
Alcohols, like water, can show either acidic or basic properties at the O-H group. With a pKa of around 16-19, they are, in general, slightly weaker acids than water, but they are still able to react with strong bases such as sodium hydride or reactive metals such as sodium. The salts that result are called alkoxides, with the general formula RO- M+.
Meanwhile, the oxygen atom has lone pairs of nonbonded electrons that render it weakly basic in the presence of strong acids such as sulfuric acid. For example, with methanol:
Alcohols can also undergo oxidation to give aldehydes, ketones, or carboxylic acids, or they can be dehydrated to alkenes. They can react to form ester compounds, and they can (if activated first) undergo nucleophilic substitution reactions. The lone pairs of electrons on the oxygen of the hydroxyl group also makes alcohols nucleophiles. For more details, see the reactions of alcohols section below.
As one moves from primary to secondary to tertiary alcohols with the same backbone, the hydrogen bond strength, the boiling point, and the acidity typically decrease.
Some alcohols, mainly ethanol and methanol, can be used as an alcohol fuel. Fuel performance can be increased in forced induction internal combustion engines by injecting alcohol into the air intake after the turbocharger or supercharger has pressurized the air. This cools the pressurized air, providing a denser air charge, which allows for more fuel, and therefore more power.
Alcohols have applications in industry and science as reagents or solvents. Because of its low toxicity and ability to dissolve non-polar substances, ethanol can be used as a solvent in medical drugs, perfumes, and vegetable essences such as vanilla. In organic synthesis, alcohols serve as versatile intermediates.
Ethanol can be used as an antiseptic to disinfect the skin before injections are given, often along with iodine. Ethanol-based soaps are becoming common in restaurants and are convenient because they do not require drying due to the volatility of the compound. Alcohol is also used as a preservative for specimens.
Alcohol gels have become common as hand sanitizers.
==Laboratory synthesis== Several methods exist for the preparation of alcohols in the laboratory.
The formation of a secondary alcohol via reduction and hydration is shown: :
==Reactions==
: 2 R-OH + 2 NaH → 2 R-O-Na+ + 2H2↑
: 2 R-OH + 2 Na → 2 R-O−Na+ + H2
: 2 CH3CH2-OH + 2 Na → 2 CH3-CH2-O−+ + H2↑
Water is similar in pKa to many alcohols, so with sodium hydroxide there is an equilibrium set-up, which usually lies to the left:
: R-OH + NaOH ⇌ R-O-Na+ + H2O (equilibrium to the left)
It should be noted, however, that the bases used to deprotonate alcohols are strong themselves. The bases used and the alkoxides created are both highly moisture-sensitive chemical reagents.
The acidity of alcohols is also affected by the overall stability of the alkoxide ion. Electron-withdrawing groups attached to the carbon containing the hydroxyl group will serve to stabilize the alkoxide when formed, thus resulting in greater acidity. On the other hand, the presence of electron-donating group will result in a less stable alkoxide ion formed. This will result in a scenario whereby the unstable alkoxide ion formed will tend to accept a proton to reform the original alcohol.
With alkyl halides alkoxides give rise to ethers in the Williamson ether synthesis.
Alcohols may, likewise, be converted to alkyl bromides using hydrobromic acid or phosphorus tribromide, for example:
: 3 R-OH + PBr3 → 3 RBr + H3PO3
In the Barton-McCombie deoxygenation an alcohol is deoxygenated to an alkane with tributyltin hydride or a trimethylborane-water complex in a radical substitution reaction.
More useful is the E1 elimination reaction of alcohols to produce alkenes. The reaction, in general, obeys Zaitsev's Rule, which states that the most stable (usually the most substituted) alkene is formed. Tertiary alcohols eliminate easily at just above room temperature, but primary alcohols require a higher temperature.
This is a diagram of acid catalysed dehydration of ethanol to produce ethene:
A more controlled elimination reaction is the Chugaev elimination with carbon disulfide and iodomethane.
: R-OH + R'-COOH → R'-COOR + H2O
In order to drive the equilibrium to the right and produce a good yield of ester, water is usually removed, either by an excess of H2SO4 or by using a Dean-Stark apparatus. Esters may also be prepared by reaction of the alcohol with an acid chloride in the presence of a base such as pyridine.
Other types of ester are prepared in a similar manner — for example, tosyl (tosylate) esters are made by reaction of the alcohol with p-toluenesulfonyl chloride in pyridine.
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R-CH(OH)2) by reaction with water before it can be further oxidized to the carboxylic acid.
via aldehydes and aldehyde hydrates]]
Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include Collins reagent and Dess-Martin periodinane. The direct oxidation of primary alcohols to carboxylic acids can be carried out using Potassium permanganate or the Jones reagent.
. In addition, in pregnant women, it causes fetal alcohol syndrome.]] Ethanol in alcoholic beverages has been consumed by humans since prehistoric times for a variety of hygienic, dietary, medicinal, religious, and recreational reasons. The consumption of large doses of ethanol causes drunkenness (intoxication), which may lead to a hangover as its effects wear off. Depending upon the dose and the regularity of its consumption, ethanol can cause acute respiratory failure or death. Because ethanol impairs judgment in humans, it can be a catalyst for reckless or irresponsible behavior. The of ethanol in rats is 10.3 g/kg.
Other alcohols are substantially more poisonous than ethanol, partly because they take much longer to be metabolized and partly because their metabolism produces substances that are even more toxic. Methanol (wood alcohol), for instance, is oxidized to formaldehyde and then to the poisonous formic acid in the liver by alcohol dehydrogenase and formaldehyde dehydrogenase enzymes, respectively; accumulation of formic acid can lead to blindness or death. Likewise, poisoning due to other alcohols such as ethylene glycol or diethylene glycol are due to their metabolites, which are also produced by alcohol dehydrogenase. An effective treatment to prevent toxicity after methanol or ethylene glycol ingestion is to administer ethanol. Alcohol dehydrogenase has a higher affinity for ethanol, thus preventing methanol from binding and acting as a substrate. Any remaining methanol will then have time to be excreted through the kidneys.
Methanol itself, while poisonous, has a much weaker sedative effect than ethanol. Some longer-chain alcohols such as n-propanol, isopropanol, n-butanol, t-butanol, and 2-methyl-2-butanol do, however, have stronger sedative effects, but also have higher toxicity than ethanol. These longer chain alcohols are found as contaminants in some alcoholic beverages and are known as fusel alcohols, and are reputed to cause severe hangovers although it is unclear if the fusel alcohols are actually responsible. Many longer chain alcohols are used in industry as solvents and are occasionally abused by alcoholics, leading to a range of adverse health effects.
* Category:Antiseptics Category:Arabic loanwords Category:Functional groups Category:Iranian inventions
af:Alkohol ar:كحول an:Alcohol ast:Alcohol bn:অ্যালকোহল be:Спірты be-x-old:Сьпірт bs:Alkohol bg:Алкохол ca:Alcohol cs:Alkoholy cy:Alcohol da:Alkohol (stofklasse) de:Alkohole et:Alkoholid el:Αλκοόλες es:Alcohol eo:Alkoholo eu:Alkohol fa:الکل fo:Alkohol fr:Alcool (chimie) gd:Alcol gl:Alcohol ko:알코올 hi:एल्कोहॉल hr:Alkoholi io:Alkoholo id:Alkohol ia:Alcohol is:Alkóhól it:Alcoli he:כוהל jv:Alkohol kk:Алкогольдер sw:Alkoholi ht:Alkòl ku:Alkol la:Alcohol lv:Spirti lt:Alkoholis ln:Lotoko lmo:Alcol hu:Alkoholok mk:Алкохол ml:ചാരായം (രസതന്ത്രം) ms:Alkohol nl:Alcohol (stofklasse) ja:アルコール no:Alkoholer nn:Alkohol oc:Alcòl pnb:الکحل nds:Alkohol pl:Alkohole pt:Álcool ro:Alcool qu:Alkul ru:Спирты sq:Alkoholet scn:Alcool simple:Alcohol sk:Alkohol (hydroxyderivát) sl:Alkohol ckb:ئەلکول sr:Алкохол sh:Alkoholi su:Alkohol fi:Alkoholi sv:Alkoholer tl:Alkohol ta:மதுசாரம் te:ఆల్కహాలు th:แอลกอฮอล์ chy:Manestôtse tr:Alkol uk:Спирти ur:الکحل vi:Ancol vls:Alcool war:Alkohol yi:אלקאהאל yo:Ọtí zh-yue:酒精 bat-smg:Alkuoguolis zh:醇This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.