A river is a natural watercourse, usually freshwater, flowing towards an ocean, a lake, a sea, or another river. In a few cases, a river simply flows into the ground or dries up completely before reaching another body of water. Small rivers may also be called by several other names, including stream, creek, brook, rivulet, tributary and rill; there is no general rule that defines what can be called a river, although in some countries or communities a stream may be defined by its size. Many names for small rivers are specific to geographic location; one example is "burn" in Scotland and northeast England. Sometimes a river is said to be larger than a creek, but this is not always the case, because of vagueness in the language.
Rivers are part of the hydrological cycle. Water within a river is generally collected from precipitation through a drainage basin from surface runoff and other sources such as groundwater recharge, springs, and the release of stored water in natural ice and snowpacks (e.g., from glaciers). Potamology is the scientific study of rivers.
The water in a river is usually confined to a channel, made up of a stream bed between banks. In larger rivers there is also a wider floodplain shaped by flood-waters over-topping the channel. Flood plains may be very wide in relation to the size of the river channel. This distinction between river channel and floodplain can be blurred especially in urban areas where the floodplain of a river channel can become greatly developed by housing and industry. The term upriver refers to the direction leading to the source of the river, which is against the direction of flow. Likewise, the term downriver describes the direction towards the mouth of the river, in which the current flows.
The river channel typically contains a single stream of water, but some rivers flow as several interconnecting streams of water, producing a braided river. Extensive braided rivers are now found in only a few regions worldwide, such as the South Island of New Zealand. They also occur on peneplains and some of the larger river deltas. Anastamosing rivers are similar to braided rivers and are also quite rare. They have multiple sinuous channels carrying large volumes of sediment.
A river flowing in its channel is a source of energy which acts on the river channel to change its shape and form. According to Brahm's law (sometimes called Airy's law), the mass of objects that may be carried away by a river is proportional to the sixth power of the river flow speed. Thus, when the speed of flow increases two times, it can transport 64 times larger (i.e., more massive) objects. In mountainous torrential zones this can be seen as erosion channels through hard rocks and the creation of sands and gravels from the destruction of larger rocks. In U-shaped glaciated valleys, the subsequent river valley can often easily be identified by the V-shaped channel that it has carved. In the middle reaches where the river may flow over flatter land, meanders may form through erosion of the river banks and deposition on the inside of bends. Sometimes the river will cut off a loop, shortening the channel and forming an oxbow lake or billabong. Rivers that carry large amounts of sediment may develop conspicuous deltas at their mouths, if conditions permit. Rivers whose mouths are in saline tidal waters may form estuaries.
Throughout the course of the river, the total volume of water transported downstream will often be a combination of the free water flow together with a substantial contribution flowing through sub-surface rocks and gravels that underlie the river and its floodplain (called the hyporheic zone). For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow.
Alluvial rivers can be further classified by their channel pattern as meandering, braided, wandering, anastomose, or straight. The morphology of an alluvial river reach is controlled by a combination of sediment supply, substrate composition, discharge, vegetation, and bed aggradation.
The work of William Morris Davis at the turn of the 20th century used a classification based on river “age” as a way to characterise rivers.
Rivers have been used as a source of water, for obtaining food, for transport, as a defensive measure, as a source of hydropower to drive machinery, for bathing, and as a means of disposing of waste.
Rivers have been used for navigation for thousands of years. The earliest evidence of navigation is found in the Indus Valley Civilization, which existed in northwestern Pakistan around 3300 BC. Riverine navigation provides a cheap means of transport, and is still used extensively on most major rivers of the world like the Amazon, the Ganges, the Nile, the Mississippi, and the Indus. Since river boats are often not regulated, they contribute a large amount to global greenhouse gas emissions, and to local cancer due to inhaling of particulates emitted by the transports.
In some heavily forested regions such as Scandinavia and Canada, lumberjacks use the river to float felled trees downstream to lumber camps for further processing, saving much effort and cost by transporting the huge heavy logs by natural means.
Rivers have been a source of food since pre-history. They can provide a rich source of fish and other edible aquatic life, and are a major source of fresh water, which can be used for drinking and irrigation. It is therefore no surprise to find most of the major cities of the world situated on the banks of rivers. Rivers help to determine the urban form of cities and neighbourhoods and their corridors often present opportunities for urban renewal through the development of foreshoreways such as riverwalks. Rivers also provide an easy means of disposing of waste-water and, in much of the less developed world, other wastes.
Fast flowing rivers and waterfalls are widely used as sources of energy, via watermills and hydroelectric plants. Evidence of watermills shows them in use for many hundreds of years such as in Orkney at Dounby click mill. Prior to the invention of steam power, water-mills for grinding cereals and for processing wool and other textiles were common across Europe. In the 1890s the first machines to generate power from river water were established at places such as Cragside in Northumberland and in recent decades there has been a significant increase in the development of large scale power generation from water, especially in wet mountainous regions such as Norway
The coarse sediments, gravel and sand, generated and moved by rivers are extensively used in construction. In parts of the world this can generate extensive new lake habitats as gravel pits re-fill with water. In other circumstances it can destabilise the river bed and the course of the river and cause severe damage to spawning fish populations which rely on stable gravel formations for egg laying.
In upland rivers, rapids with whitewater or even waterfalls occur. Rapids are often used for recreation, such as whitewater kayaking.
Rivers have been important in determining political boundaries and defending countries. For example, the Danube was a long-standing border of the Roman Empire, and today it forms most of the border between Bulgaria and Romania. The Mississippi in North America and the Rhine in Europe are major east-west boundaries in those continents. The Orange and Limpopo Rivers in southern Africa form the boundaries between provinces and countries along their routes.
The organisms in the riparian zone respond to changes in river channel location and patterns of flow. The ecosystem of rivers is generally described by the River continuum concept, which has some additions and refinements to allow for spatial (dams, waterfalls) and temporal (extensive flooding). The basic idea is that the river can be described as a system that is continuously changing along its length in the physical parameters, the availability of food particles and the composition of the ecosystem. The food (energy) that is the leftover of the upstream part is being utilized downstream.
The general pattern is that the first order streams contain particulate matter (decaying leaves from the surrounding forests), which is processed there by shredders like Plecoptera larvae. The leftovers of the shredders are utilized by collectors, such as Hydropsyche, and further downstream algae that create the primary production become the main foodsource of the organisms. All changes are gradual and the distribution of each species can be described as a normal curve with the highest density where the conditions are optimal. In rivers succession is virtually absent and the composition of the ecosystem stays fixed in time.
Like many other Aquatic ecosystems, rivers too are under increasing threat of pollution. According to a study of the WWF's Global Freshwater Programme, the 10 most polluted rivers are: Ganges, Indus, Yangtze, Salween-Nu, Mekong-Lancang, Rio Grande/Rio Bravo, La Plata, Danube, Nile-Lake Victoria, and the Murray-Darling.
Flooding is a natural part of a river's cycle. The majority of the erosion of river channels and the erosion and deposition on the associated floodplains occur during flood stage. In many developed areas, human activity has changed river channel form, altering different magnitudes and frequencies of flooding. Some examples of this are the building of levees, the straightening of channels, and the draining of natural wetlands. In many cases human activities in rivers and floodplains have dramatically increased the risk of flooding. Straightening rivers allows water to flow more rapidly downstream increasing the risk of flooding places further downstream. Building on flood plains removes flood storage which again exacerbates downstream flooding. The building of levees may only protect the area behind the levees and not those further downstream. Levees and flood-banks can also increase flooding upstream because of back-water pressure as the upstream water has to squeeze between the levees.
Rivers flowing downhill, from river source to river mouth, do not necessarily take the shortest path. For alluvial streams, straight and braided rivers have very low sinuosity and flow directly down hill, while meandering rivers flow from side to side across a valley. Bedrock rivers typically flow in either a fractal pattern, or a pattern that is determined by weaknesses in the bedrock, such as faults, fractures, or more erodible layers.
Volumetric flow rate can be thought of as the mean velocity of the flow through a given cross-section, times that cross-sectional area. Mean velocity can be approximated through the use of the Law of the Wall. In general, velocity increases with the depth (or hydraulic radius) and slope of the river channel, while the cross-sectional area scales with the depth and the width: the double-counting of depth shows the importance of this variable in determining the discharge through the channel.
River management is a continuous activity as rivers tend to 'undo' the modifications made by people. Dredged channels silt up, sluice mechanisms deteriorate with age, levees and dams may suffer seepage or catastrophic failure. The benefits sought through managing rivers may often be offset by the social and economic costs of mitigating the bad effects of such management. As an example, in parts of the developed world, rivers have been confined within channels to free up flat flood-plain land for development. Floods can inundate such development at high financial cost and often with loss of life.
Rivers are increasingly managed for habitat conservation, as they are critical for many aquatic and riparian plants, resident and migratory fishes, waterfowl, birds of prey, migrating birds, and many mammals.
Crossings
Category:Fluvial landforms Category:Geomorphology Category:Sedimentology Category:Water streams
af:Rivier am:ወንዝ ar:نهر an:Río arc:ܢܗܪܐ ast:Ríu gn:Ysyry ay:Jawira az:Çay (coğrafiya) bn:নদী bjn:Sungay zh-min-nan:Hô be:Рака be-x-old:Рака bar:Fluss bo:ཆུ་རྒྱུན། bs:Rijeka (vodotok) br:Stêr bg:Река ca:Riu cv:Юхан шыв cs:Řeka cy:Afon da:Flod pdc:Rewwer de:Fluss et:Jõgi el:Ποταμός eml:Fiòmm myv:Лей es:Río eo:Rivero ext:Riu eu:Ibai fa:رود hif:Naddi fr:Rivière fy:Rivier fur:Flum ga:Abhainn gv:Awin gd:Abhainn gl:Río gan:江 ko:강 hy:Գետ hi:नदी hr:Rijeka (vodotok) io:Rivero id:Sungai iu:ᑰᒃ/kuuk ik:Kuuk os:Цæугæдон zu:Umfula is:Á (landslagsþáttur) it:Fiume he:נהר jv:Kali kn:ನದಿ krc:Суу (черек, къобан) ka:მდინარე kk:Өзен rw:Uruzi sw:Mto kv:Ю kg:Mubu ht:Rivyè ku:Çem la:Flumen lv:Upe lb:Floss lt:Upė li:Reveer ln:Ebale jbo:rirxe lmo:Fiüm hu:Folyó mk:Река mg:Renirano ml:നദി mr:नदी xmf:წყარმალუ arz:نهر ms:Sungai mwl:Riu mn:Гол my:မြစ် nah:Ātōyātl na:Ekaw nl:Rivier nds-nl:Revier cr:ᓰᐲ new:आऱु (सन् २००५या संकिपा) ja:川 nap:Sciummo no:Elv nn:Elv nrm:Riviéthe oc:Riu mhr:Эҥер pnb:دریا pap:Riu nds:Stroom (Water) pl:Rzeka pt:Rio ro:Râu rm:Flum qu:Mayu rue:Ріка ru:Река sah:Өрүс sq:Lumi scn:Ciumi si:ගඟ හෙවත් ඔය simple:River sk:Rieka sl:Reka szl:Rzyka so:Webiyada ckb:ڕووبار sr:Река sh:Rijeka (vodotok) fi:Joki sv:Flod tl:Ilog ta:ஆறு tt:Елга te:నది th:แม่น้ำ tg:Дарё chr:ᎤᏪᏴ tr:Nehir tk:Derýa uk:Річка ur:دریا vec:Fiume vi:Sông fiu-vro:Jõgi war:Salog wo:Dex yi:טייך yo:Odò zh-yue:河 bat-smg:Opė zh:河流
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.