Standard MIDI-File Format Spec. 1.1

Di stributed by:

The I nt ernati onal M Di
Associ ati on

5316 W 57th St.

Los Angel es, CA 90056

(213) 649-6434

0 - Introduction

The document outlines the specification for MDI Files. The purpose
of MDI Files is to provide a way of interchanging time-stanped M Dl
data between different prograns on the sanme or different conputers.
One of the prinmary designgoalsis conpact representation, which makes
it very appropriate for disk-based file format, but which m ght nake
it inappropriate for storing in nenory for quick access by a
sequencer program (It can be easily converted to a quickly-
accessible format on the fly as files are read in or witten out.)
It is not intended to replace the normal file format of any program
though it could be used for this purpose if desired.

M DI Files contain one or nore MDlI streans, withtine information for
each event. Song, sequence, and track structures, tenpo and tinme
signature information, are all supported. Track nanes and
other descriptiveinformation may be storedwiththe MDl data. This
format supports multiple tracks and nultiple sequences so that if
theuser of a program whichsupportsnultipletracksintendstonove
a file to another one, this format can allow that to happen.

This spec defines the 8-bit binary data streamused in the file. The
data can be stored in a binary file, nibbilized, 7-bit-ized for
efficient MD transmi ssion, converted to Hex ASCl|, or transl ated
synbolically to aprintable text file. This spec addresses what's
inthe 8-bit stream It does not address howa MDI File will be
transmitted over MD. It is the general feeling that a MD
transm ssion protocol will be developed for filesingeneral and M DI
Files will use this schene.

1 - Sequences, Tracks, Chunks: File Block Structure

CONVENTIONS
Inthis docunent, bit O neans the | east significant bit of a byte, and
bit 7 is the nmost significant.

Sone nunbers in MD Files are represented is a form called
VARI ABLE- LENGTH QUANTI TY. These nunbers are represented 7 bits per
byte, nost significant bits first. Al bytes except the | ast have bit
7 set, and the last byte has bit 7 clear. If the nunber is between
0 and 127, it is thus represented exactly as one byte.

Here are sone exanples of nunbers represented as variable-
length quantities:

00000000 00

00000040 40

0000007F 7F

00000080 81 00
00002000 Co 00
O0O0O0O03FFF FF 7F
00004000 81 80 00
00100000 CO 80 00
O001FFFFF FF FF 7F
00200000 81 80 80 00
08000000 CO 80 80 00
OFFFFFFF FF FF FF 7F

The largest nunmber which is allowed is OFFFFFFF so that the
variabl e-1 ength representations nust fit in 32 bits in aroutineto
wite variable-length nunbers. Theoretically, l|arger nunbers are
possi ble, but 2 x 10"8 96ths of a beat at a fast tenpo of 500 beats
per mnute is four days, |long enough for any delta-tine!

FILES

To any file system a MDI File is sinply a series of 8-bit bytes.
On the Macintosh, this byte streamis stored in the data fork of a
file (with file type '"MDI'), or on the Cipboard (with data type
"MDI'). Most other conputersstore8-bit bytestreansinfiles-- nam ng
or storage conventions for those conputers wi |l be defined as requi red.

CHUNKS

M DI Files are made up of -chunks-. Each chunk has a 4-character type
and a 32-bit length, whichis the nunber of bytes in the chunk. This
structure all ows future chunk types to be desi gned whi ch nmay be easily
be ignored if encountered by a programwitten before teh chunk type
is introduced. Your programs should EXPECT alien chunks and treat
themas if they weren't there.

Each chunk begins with a 4-character ASCII type. It is followed by a
32-bit length, nost significant byte first (a length of 6 is stored
as 00 00 00 06). This length refers to the nunber of bytes of data
which follow the eight bytes of type and |l ength are not included.
Therefore, a chunk with a length of 6 would actually occupy 14 bytes
in the disk file.

This chunk architecture issimlar tothat used by El ectronic Arts'
| FF format, and the chunks described herin could easily be placedin
an IFFfile. The MD Fileitself isnot anlFFfile: it contains
no nested chunks, and chunks are not constrained to be an even nunber
of bytes long. Converting it toan|IFFfileis as easy as paddi ng odd
I ength chunks, and sticking the whole thing inside a FORM chunk.

M DI Filescontaintwotypes of chunks: header chunks and track chunks.
A -header- chunk provides a mni mal anount of information pertaining
to theentire MDI file. A-track- chunk contains a sequential stream
of M DI data which may containinformationfor upto 16 M DI channel s.
The concepts of multiple tracks, nmultiple M DI outputs, patterns,
sequences, and songs nay all bei npl enment ed usi ng several track chunks.

A MD File always starts with a header chunk, and is foll owed by one
or nmore track chunks.

Mrhd <l ength of header data>
<header dat a>
Mtk <length of track data>
<track data>
Mtk <length of track data>
<track data>

2 - Chunk Descriptions

HEADER CHUNKS
The header chunk at the beginning of the file specifies sone
basic informati on about the data in the file. Here's the syntax of

the conpl ete chunk:

<Header Chunk> = <chunk type><l| engt h><f or mat ><nt r ks><di vi si on>

As described above, <chunk type> is the four ASCI| characters
' Mrhd' ;
<length>is a 32-bit representation of the number 6 (high byte first).

The data section contains three 16-bit words, stored nost-significant
byte first.

The first word, <format>, specifies the overall organization of the
file.
Only three values of <format> are specified:

O-the file contains a single multi-channel track

1-the fil e contains one or nore simultanious tracks (or M DI out puts)
of a sequence

2-the file contains one or nore sequentially independant
single-track patterns

More information about these formats is provided bel ow

The next word, <ntrks>, is the nunber of track chunks inthe file. It
will always be 1 for a format O file.

The thirdword, <division> specifiesthemeaningof the delta-tines.
It has two formats, one for netrical time, and one for tine-code-based
time:

| 15 | 14 817 0 |

If bit 15 of <division>is zero, thebits 14 thru O represent t he nunber
of delta tine "ticks" which make up a quarter-note. For instance, if
divisionis 96, then atine interval of an eighth-note between two
events in the file would be 48.

If bit 15 of <division>is aone, deltatinmesina file correspond

tosubdivisions of asecond, inawayconsistent with SMPTE and M DI
Ti me Code. Bits 14 thru 8 contai n one of the four val ues -24, -25, -29,
or -30, corresponding to the four standard SMPTE and M DI Ti ne Code
formats (-29 corresponds to 30 drop fronme), and represents the
nunmber of frames per second. These negative nunbers are stored in
two's conpliment form The second byte (stored positive) is the
resolution within a franme: typical values may be 4 (M D Tine Code
resolution), 8, 10, 80 (bit resolution), or 100. This streamall ows
exact specifications of time-code-based tracks, but also allows
m | i second- based tracks by specifying 25| franes/ sec and a
resolution of 40 units per frane. If the events in a file are stored
with a bit resolution of thirty-franel time code, the division word
woul d be E250 hex.

FORVATS 0, 1, AND 2

A Format O file has a header chunk followed by one track chunk. It
is the nost interchangabl e representation of data. It is very useful
for a sinple single-track player in a programwhich needs to nmake
synt hesi zers nmake sounds, but which is primarily concerened wth
sonething else such as mixers or sound effect boxes. It is very
desirable to be able to produce such a format, even if your program
is track-based, inorder towrk withthese sinple prograns. On the
ot her hand, perhaps soneone will wite a format conversion from
format 1 to format O which nmight be so easy to use in sonme setting
that it would save you the trouble of putting it into your program

A Format 1 or 2 file has a header chunk followed by one or nore
track chunks. programs which support several sinultanious tracks
should be able to save and read data in format 1, a vertically
one-denentional form that is, as a collection of tracks. Prograns

whi ch support several independent patterns shoul d be ableto save and
read data in format 2, a horizontally one-denentional form
Providing these mininum capabilities will ensure maxi mum

i nterchangability.

In a MDl systemw th a conputer and a SMPTE synchroni zer whi ch uses
Song Pointer and Timng dock, tenpo maps (which describe the tenpo
t hr oughout the track, and may al so i ncl ude tinme si gnature i nfornmati on,
so that the bar nunber nay be derived) are generally created on the
conputer. To use them with the synchronizer, it is necessary to
transfer themfromthe conputer. To nmake it easy for the synchronizer
toextract thisdatafromaMD File, tenpo information should al ways
be storedinthe first Mirk chunk. For aformat Ofile, thetenpowll
be scattered through the track and the tenpo map reader shoul dignore

the intervening events; for a format 1 file, the tenpo nmap nust be
storedasthefirst track. Itispolitetoa tenpo mapreader toofferr
your user the ability to make a fornmat O file wth just the tenpo,
unl ess you can use format 1.

All MD Files shouldspecifytenpoandtinesignature. If they donn't,
the time signature is assumed to be 4/ 4, and the tenpo 120 beats per
mnute. In format O, these nmeta-events should occur at |east at the
begi nning of the single nulti-channel track. In format 1, these
net a-events should be contained i| the first track. In format
2, each of the tenporallyindependant patterns should contain at
least initial tine signature and tenpo information.

W nmay decidetodefineother format | Dsto support other structures.
A programencountering an unknown fornmat I D rmay still read other MIrk
chunks it finds fromthe file, as format 1 or 2, if its user can nake
sense of themand arrange t hemi nt o sone ot her structureif appropri ate.
Al so, nore paraneters nmay be added to the Mrhd chunk in the future:
it isinmportant toread and honor the length, evenif it is |onger than
6.

TRACK CHUNKS

The track chunks (type Mirk) are where actual song data is stored.
Each track chunk is sinply a streamof MD events (and non-M DI
events), preceded by delta-time values. The format for Track
Chunks (described below) is exactly the sane for all three formats
(0, 1, and 2: see "Header Chunk" above) of MDI Files.

Here is the syntax of an MIrk chunk (the + nmeans "one or nore": at
| east one MIrk event nust be present):

<Track Chunk> = <chunk type><| engt h><MIrk event >+
The syntax of an MItrk event is very sinple:
<Mfrk event> = <delta-ti me><event>

<delta-time> is storedasavariable-lengthquantity. It represents
the amount of tine before the following event. If the first event in
a track occurs at the very beginning of a track, or if two
events occur sinultaineously, a delta-tine of zero is used.
Delta-times are always present. (Not storing delta-tines of O
requires at least two bytes for any other value, and nost
delta-times aren't zero.) Delta-tine is in sonefraction of abeat

(or a second, for recording a track with SMPTE tines), as specified
in the header chunk.

<event> = <M DI event> | <sysex event> | <meta-event>

<M DI event>is any M D channel nessage. Running status is used:
status bytes of M D channel messages nay be onmitted if the preceding
event is aMDH channel nessagew ththe sanme status. Thefirst event
in each Mrk chunk nust specifyy status. Delta-time is not
considered an event itself: it is anintegral part of the syntax for
an Mirk event. Notice that running status occurs across delta-tines.

<sysex event>is usedtospecify aMDl systemexclusive nessage, either
as one unit or in packets, or as an "escape" to specify any arbitrary
bytes to be transmitted. A normal conpl ete systemexclusive nessage
is stored in a MD File in this way:

FO <l ength> <bytes to be transnmitted after FO>

The length is stored as a variable-length quantity. It specifies the
nurmber of bytes which followit, not including the FO or the | ength
itself. For instance, thetransnitted nessage FO 43 12 00 07 F7 woul d
be stored in aMD File as FO 05 43 12 00 07 F7. It is required to
include the F7 at the end so that the reader of the M D File knows
that it has read the entire nessage.

Anot her form of sysex event is provided which does not inply that an
FO should be transmtted. This rmay be used as an "escape" to provide
for the transm ssion of things which would not otherw se be |egal,
i ncl udi ng systemrealti ne messages, song poi nter or select, MD Tine
Code, etc. This uses the F7 code:

F7 <length> <all bytes to be transmitted>

Unfortunately, some synthesizer manufacturers specify that their
syst emexcl usi ve nessages aretobetransnmttedas little packets. Each
packet isonlypart of anentire syntactical systemexcl usi ve nessage,
but the times they are transnmitted are inportant. Exanples of this
are the bytes sent inaCZpatchdunp, or the FB-01' s "syst emexcl usi ve
node" in which nicrotonal data can be transmitted. The FO and F7 sysex
events nmay be used together to break up syntactically conplete
system exclusive nessages into tined packets.

An FO sysex event is used for the first packet in a series -- it

is anessage in whichthe FO should be transnitted. An F7 sysex event
is used for theremainder of the packets, which do not begin w th FO.
(O course, the F7 is not considered part of the system exclusive
nessage) .

A syntactic systemexcl usive nessage nust al ways end with an F7, even
if thereal-life device didn't send one, so that you know when you' ve
reached the end of an entire sysex nessage w thout | ooking ahead to
the next event inthe MD File. If it's stored in one conpllete FO
sysex event, the |ast byte nmust be an F7. There al so nust not be any
transmittable M D events in between the packets of a nulti-packet
system exclusive nessage. This principle is illustrated in the
par agr aph bel ow.

HereisaMD Fileof amlti-packet systemexcl usi ve nessage: suppose
the bytes FO 43 12 00 were to be sent, followed by a 200-tick del ay,
foll owed by the bytes 43 12 00 43 12 00, fol |l owed by a 100-tick del ay,
followed by the bytes 43 12 00 F7, this would be in the MD File:

FO 03 43 12 00

81 48 200-tick delta tine
F7 06 43 12 00 43 12 00
64 100-tick delta tine

F7 04 43 12 00 F7

Wien readingaMDI File, and an F7 sysex event i s encountered without
a preceding FO sysex event to start a nulti-packet systemexclusive
nessage sequence, it should be presuned that the F7 event is being
used as an "escape". In this case, it is not necessary that it end
with an F7, wunless it is desired that the F7 be transnmitted.

<met a-event> specifies non-MDI information useful to this fornmat
or to sequencers, with this syntax:

FF <type> <l ength> <bytes>

Al nmeta-events begin wthFF, then have an event type byte (which
is always |ess than 128), and then have the | ength of the data stored
as avariable-length quantity, and thenthe dataitself. If thereis
no data, the lengthis 0. As with chunks, future neta-events nay be
desi gned which may not be known to existing programs, SO prograns
nmust properly ignore nmeta-events which they do not recognize, and

i ndeed shoul d expect to see them Progranms nust never ignore the
length of a nmeta-event which they do not recognize, and they
shouldn't be surprized if it's bigger than expected. If so,
t hey nust i gnore everyt hi ng past what they know about. However, they
nmust not add anything of their owmn to the end of the neta- event.
Sysex events and nmeta events cancel any running status which was in
ef fect. Runni ng status does not apply to and may not be used for these
nessages.

3 - Meta-Events

A few neta-events are defined herin. It is not required for every
programto support every neta-event.

In the syntax descriptions for each of the meta-events a set of
conventions is wused to describe paraneters of the events. The FF
whi ch begins each event, the type of each event, and the | engths of
events whi ch donot havea variable anount of dataaregivendirectly
in hexadecimal. A notation such as dd or se, which consists of two
| ower-case letters, menonically represents an 8-bit value. Four
identical |ower-case letters such as www mmenonically refer to a
16-bit value, stored nmost-significant-byte first. Six identical
| oner-case letters such as tttttt refer to a 24-bit value, stored
nost-significan-byte first. The notation len refers to teh Ilength
portion of the neta-event syntax, that is, a nunber, stored as a
vari abl e-length quantity, which specifies how nany bytes (possibly
text) data were just specified by the Iength.

In general, nmeta-events in a track which occur at the sanme tine nay
occur in any order. If a copyright event is used, it should be placed
as early as possible in the file, so it will be noticed easily.
Sequence Number and Sequence/ Track Nanme events, if present, nust
appear at time 0. An end-of- track event nmust occur as the | ast event
in the track.

Met a-events initially defined include:

FF 00 02 Sequence Numrber
This optional event, which must occur at the beginning of a
track, before any nonzero delta-tinmes, and before any

transmittable MDH events, specifies the nunmber of a sequence. In a
format 2 MDI File, it is used to identify each "pattern" so that a
"song" sequence using the Cue nessage to refer to the patterns. If
the IDnunbers are onitted, the sequences' lacations inorder inthe

file are used as defaults. In a format O or 1 MDI File, which only
contai n one sequence, this nunber should be contained in the first
(or only) track. |If transfer of several multitrack sequences is
requi red, this nmust be done as a group of format 1 files, each with
a different sequence nunber.

FF 01 len text Text Event

Any anpunt of text describing anything. It is a good idea to put
a text event right at the beginning of a track, with the nanme of the
track, a description of its intended orchestration, and any other
i nformati on which the user wants to put there. Text events may al so
occur at other timesinatrack, tobe usedas |yrics, or descriptions
of cue points. The text in this event should be printable ASCI
characters for maxi numinterchange. However, other characters codes
usi ng the high-order bit nmay be used for interchange of fil es between
different prograns on the sanme conputer which supports an extended
character set. Prograns on a conputer which does not support
non-ASCI| characters should ignore those characters.

Met a- event types 01 through OF are reserved for various types of
text events, each of which neets the specification of text events
(above) but is used for a different purpose:

FF 02 len text Copyright Notice

Contains a copyright notice as printable ASCI| text. The notice
shoul d contain the characters (C), the year of the copyright, and the
owner of the copyright. If several pieces of nusic are in the sane
MDI File, all of the copyright notices should be placed together in
this event sothat it will be at the beginning of the file. This event
should be the first event in the track chunk, at time O.

FF 03 len text Sequence/ Track Name
If inaformat O track, or the first track inaformat 1 file, the
name of the sequence. Otherw se, the name of the track

FF 04 len text I nst rument Name

Adescriptionof thetypeof instrumentati ontobeusedinthat track.
Moy be used withthe MD Prefix neta-event to specify which M DI
channel the description applies to, or the channel nmay be specified
as text in the event itself.

FF 05 len text Lyric
A lyric to be sung. Cenerally, each syllable will be a seperate
lyric event which begins at the event's tine.

FF 06 len text Mar ker

Normally in a format O track, or the first track in a format 1
file. The nane of that point i nthe sequence, suchas arehersal letter
or

section nanme ("First Verse", etc.)

FF 07 len text Cue Poi nt

A description of sonething happening on a filmor video screen or
stage at that point in the nusical score ("Car crashes into house",
"curtain opens", "she slaps his face", etc.)

FF 20 01 cc M DI Channeel Prefix

The MDI channel (0-15) containtedinthisevent may be used
to associate a M Dl channel with all events which follow, including
Systemexcl usive and neta-events. This channel is "effective" until
the next normal M DI event (which contains achannel) or the next M Dl
Channel Prefix meta-event. |If MD channels refer to "tracks", this
nessage may into a format O file, keeping their non-MD data
associated with atrack. This capability is also present in Yamaha's
ESEQ file fornat.

FF 2F 00 End of Track

This event is not optional. It is included so that an exact
endi ng poi nt may be specified for the track, so that an exect |ength,
whi ch is necessary for tracks which are | ooped or concatenat ed.

FF5103tttttt Set Tenpo(in m croseconds per M Dl quarter-note)

This event indicates a tenpo change. Another way of putting
"m croseconds per quarter-note" is "24ths of a microsecond per MD
cl ock". Repersentingtenpos as tinme per beat i nstead of beat per tine
al | ows absol utly exact | ong-termsynchroni zationwithatime-based sync
protocol such as SMPTEtine code or MDI tine code. This anount of
accuracy providedbythistenporesolutionallows afour-mnute piece
at 120 beats per mnute to be accurate within 500 usec at the end of
the piece. Ideally, these events shouldonly occur where M D cl ocks
would be located-- thisconventionisintendedto guarntee, or at
least increase the [liklihood, of compatibility wth other
synchroni zation devicessothat atinmesignature/tenmponap stored in
this format nmay easily be transfered to another device.

FF 54 05 hr m se fr ff SMPTE O f set
This event, if present, designates the SMPTE tinme at which the

track chunk issupposedtostart. It shoul dbe present at the begi nning
of the track, that is, before any nonzero delta-tinmes, and before
any transmttable MDI events. the hour nust be encoded wth the
SMPTE format, just as it isin MD Tinme Code. Inaformat 1 file, the
SMPTE O f set nust be stored with the tenpo nap, and has no nmeaning in
any of the other tracks. The ff field contains fractional franes, in
100ths of a frame, even in SMPTE-based tracks which specify a
different frame subdivision for delta-tines.

FF 58 04 nn dd cc bb Ti me Signhature

The time signature is expressed as four nunbers. nn and dd
represent the nunerator and denom nator of thetinme signatureas it
would be notated. The denominator is a neqative power of two: 2
represents a quarter-note, 3 represents an eighth-note, etc.
The cc paraneter expresses the nunber of MD clocks in a
netronone click. The bb paraneter expresses the nunber of
notated 32nd-notes in a MDI quarter-note (24 MD clocks). This
was added because there are already multiple progranms which allowa
user to specify that what M DI thinks of as a quarter-note (24 cl ocks)
is to be notated as, or related to in ternms of, sonething else.

Therefore, the conplete event for 6/8 time, where the netronone
clicks every three eighth-notes, but there are 24 clocks per
quarter-note, 72 to the bar, would be (in hex):

FF 58 04 06 03 24 08
That is, 6/8time (8is 2tothe 3rd power, so this is 06 03), 36

M DI clocks per dotted-quarter (24 hex!), and eight notated 32nd-
notes per quarter-note.

FF 59 02 sf mi Key Signature
sf =-7: 7 flats
sf =-1. 1 flat

sf = 0: key of C
sf = 1. 1 sharp
sf = 7: 7 sharps

m = 0: major key
m = 1. minor key
FF 7F len data Sequencer Specific Meta-Event

Speci al requirenments for particul ar sequencers nay use this event

t ype:

the first byte or bytes of data is a manufacturer ID (these are
one byte, or if the first byte is 00, three bytes). As with M DI
System Excl usive, nmanufacturers who define sonmething using this
net a-event should publish it so that others nmay be used by a
sequencer which elects to wuse this as its only file format;
sequencers with their established feature-specific formats
shoul d probably stick to the standard features when using this
fornmat .

4 - Program Fragments and Example MIDI Files

Here are sone of theroutines toread and wite variabl e-1ength nunbers
in MD Files. These routines are in C, and use getc and putc, which
read and wite single 8-bit characters fromito the files infile and
outfile.

WiteVarLen (val ue)
regi ster |Iong val ue;

(

regi ster long buffer;

buffer = val ue & 0x7f;
while ((value >>=7) > 0)

(
buffer <<= 8;
buffer | = 0x80;
buffer += (value & Ox7f);
)
whi |l e (TRUE)
(
putc(buffer,outfile);
if (buffer & 0x80)
buffer >>= 8;
el se
br eak;
)

doubl ewor d ReadVarLen ()
(

regi ster doubl eword val ue;
regi ster byte c;

if ((value = getc(infile)) & 0x80)
(
val ue &= Ox7f;
do
(
value = (value << 7) + ((c = getc(infile))) & Ox7f);
) while (c & 0x80);
)

return (val ue);

As an exanple, MDl Files for the foll owi ng excerpt are shown bel ow.
First, a format 0 file is shown, with all information interm ngl ed;
then, aformat 1 fileis showmmwithall data seperatedinto four tracks:
onefor tenpoandtine signature, andthreefor thenotes. Aresol ution
of 96 "ticks" per quarter note is used. Atime signature of 4/4 and
a tenpo of 120, though inplied, are explicitly stated.

|\
e
|/ . @)
Channel 1 D G T [--------
/ |
Preset 5 e A B e [--------
I |
o I R B
L
e N B B L L LT
-
|\
e
|/ \
Channel 2 D G D [--- - -
/ / |
Preset 46 e B R | ----mem e
I \ |
2 R N R (O L L L L
L (

--0O -
I\
Channel 3 -/ | mmmmmmm e
| .
Preset 70 ------ | mmmmmm e
/ o)
O
/
O

The contents of the M DI streamrepresented by this exanpl e are broken
down her e:

Delta-Tinme Event-Code O her Bytes Coment
(decinmal) (hex) (deci mal)
0 FF 58 04 04 02 24 08 4 bytes; 4/4 tine; 24 M DI

cl ocks/click, 8 32nd notes/
24 M Dl cl ocks

0 FF 51 03 500000 3 bytes: 500, 000 usec/
quarter note

0 Cco 5 Ch. 1 Program Change 5

0 c1 46 Ch. 2 Program Change 46

0 c2 70 Ch. 3 Program Change 70

0 92 48 96 Ch.3 Note On C2, forte

0 92 60 96 Ch.3 Note On C3, forte

96 91 67 64 Ch.2 Note On &3, nezzo-forte

96 90 76 32 Ch.1 Note On E4, piano

192 82 48 64 Ch.3 Note OFf C2, standard

0 82 60 64 Ch.3 Note OFf C3, standard

0 81 67 64 Ch.2 Note OFf G3, standard

0 80 76 64 Ch.1 Note OFf E4, standard

0 FF 2F 00 Track End

The entire format O MDI file contents in hex follow First, the
header chunk:
40 54 68 64 MThd

00 00 00 06
00 00
00 01
00 60

chunk I ength
format O

one track

96 per quarter-note

Then the track chunk. Its header followed by the events (notice the
running status is used in places):

4D 54 72 6B
00 00 00 3B

Del ta-Ti ne Event

00 FF 58 04 04 02 18 08
00 FF 51 03 07 Al 20
00 C0 05

00 Cl 2E

00 C2 46

00 92 30 60

00 3C 60

60 91 43 40

60 90 4C 20

81 40 82 30 40

00 3C 40

00 81 43 40

00 80 4C 40

00 FF 2F 00

A format 1 representation of the file is slightly different.

header chunk:

4D 54 68 64
00 00 00 06
00 01
00 04
00 60

First, the track chunk for the
header, followed by the events:

4D 54 72 6B
00 00 00 14

Del ta-Ti ne Event

MTTr k
chunk Il ength (59)

time signature
t enpo

runni ng status

two-byte delta-tine
runni ng status

end of track

MThd

chunk I ength
format 1
four tracks
96 per quarter note

time signature/tenmpo track

MTT k
chunk 1| ength (20)

Comment s

00 FF 58 04 04 02 18 08 time signature
00 FF 51 03 07 Al 20 t enpo
83 00 FF 2F 00 end of track

Then, the track chunk for the first nmusic track. The M DI convention
for note on/off running status is used in this exanple:

4D 54 72 6B MTr k
00 00 00 10 chunk | ength (16)
Del ta- Ti me Event Commrent s
00 Q0 05
81 40 90 4C 20
81 40 4C 00 Runni ng status: note on, vel =0
00 FF 2F 00

Then, the track chunk for the second nusic track:

4D 54 72 6B MTr k
00 00 00 OF chunk Il ength (15)
Del ta-Tinme Event Conmmrent s
00 Cl 2E
60 91 43 40
82 20 43 00 runni ng status
00 FF 2F 00 end of track

Then, the track chunk for the third nusic track:

4D 54 72 6B MTT k

00 00 00 15 chunk length (21)
Del ta-Ti ne Event Conment s
00 C2 46

00 92 30 60

00 3C 60 runni ng status

83 00 3000 two-bytedelta-tinme, runni ng status
00 3C 00 runni ng status

00 FF 2F 00 end of track

