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Complex Games of Tomorrow Demand 
High Details and Lots of Attention

� Everyone realizes the need to make immersive 
environments

� Doing so successfully requires many complex shaders 
with many artist parameters

� We created ~500 custom unique shaders for ToyShop
� Newer games and demos demand even more

� Unique materials aren’t going to be a reasonable solution in that 
setting

� We also need to enable artists to work closely with the surface 
materials so that the final game looks better

� Shader permutation management is a serious problem 
facing all game developers



Why Do We Care About Procedural 
Generation?

� Recent and upcoming games display giant, rich, 
complex worlds

� Varied art assets (images and geometry) are 
difficult and time-consuming to generate
� Procedural generation allows creation of many such 

assets with subtle tweaks of parameters
� Memory-limited systems can benefit greatly from 

procedural texturing
� Smaller distribution size
� Lots of variation
� No memory/bandwidth requirements



Procedural Helps You Avoid the 
Resolution Problem

� Any stored texture has limited resolution. 
� If you zoom in too closely, you will see a lack of detail 
� Or even signs of the original pixels in the texture

� Procedural patterns can have detail at all scales 
� Zooming in : introduce new high frequency details as you zoom

� Zooming out
� A prebaked texture will start tiling or show seams
� A procedural texture can be written to cover arbitrarily large 

areas without seams or repetition
� No mapping problem 

� Don’t have to worry about texture seams, cracks and other 
painful parameterization problems

� Solid textures



Where Did That Tank Go?
� Networked games have to deal with sending 

assets across the network
� Sending full content (assets, controls) through the 

network is not the best plan for interactivity - delays
� Network bandwidth is not increasing at any close rate 

to the speed of GPUs and CPUs
� Procedural techniques help with this
� We can send description in compact form to / from 

server
� Master particles
� Grammar descriptions for objects
� Etc…

� Content can be generated directly on the client



Let’s Not Forget About Interactivity!

� Real-time rendering is quickly becoming fully realistic
� Excellent foliage, effects, character rendering
� Often because we can author suitable static assets

� Interactivity is the next frontier!
� Game play is the king! 

� Games are becoming more and more dynamic
� They make it look like you can blow up anything anywhere…

� But we can’t use static resources and expect the same level of 
interactivity without price
� More objects means more draw calls, more memory, more authoring,

more textures, more, more, more….
� Eventually the cost becomes too excessive

� We can generate objects with procedural techniques
� Then use rules to deform / destroy / modify / move them
� Better interactivity 



Procedural Techniques: Now!

� Computers are fast enough so that procedural is 
real-time now!
� Flexible shader models allow us to directly translate 

many of the offline shaders
� Direct3D10® opened new doors for procedural 

generation in real-time: flexibility and power
� Convenience of geometry shaders and stream out
� More flexible use of texture / buffer resources
� Ability to directly render and filter volume textures
� Integer and bitwise operations
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Frostbite?Frostbite?

�� DICE nextDICE next--gen engine & framework gen engine & framework 
�� Built from the ground up forBuilt from the ground up for
�� Xbox 360Xbox 360
�� PlayStation 3 PlayStation 3 
�� MultiMulti--core PCscore PCs
�� DirectX 9 SM3 & Direct3D 10DirectX 9 SM3 & Direct3D 10

�� To be used in future DICE gamesTo be used in future DICE games



�� Frostbite pilot projectFrostbite pilot project
�� Xbox 360 & PlayStation 3Xbox 360 & PlayStation 3
�� StoryStory-- & character& character--driven driven 
�� Singleplayer & multiplayerSingleplayer & multiplayer
�� Large dynamic nonLarge dynamic non--linear linear 

environmentsenvironments
�� = you can blow stuff up = you can blow stuff up ☺☺

Battlefield: Bad CompanyBattlefield: Bad Company



Battlefield: Bad Company TeaserBattlefield: Bad Company Teaser

http://media.xbox360.ign.com/media/713/713943/vid_1921226.htmlhttp://media.xbox360.ign.com/media/713/713943/vid_1921226.html



Battlefield: Bad Company featuresBattlefield: Bad Company features

�� Large destructible landscapesLarge destructible landscapes
�� Jeeps, tanks, boats and helicoptersJeeps, tanks, boats and helicopters
�� Destructible buildings & objectsDestructible buildings & objects
�� Large forests with destructible foliage Large forests with destructible foliage 
�� Dynamic skiesDynamic skies
�� Dynamic lighting & shadowingDynamic lighting & shadowing



Frostbite designFrostbite design

�� Heavily influenced by BFBC featuresHeavily influenced by BFBC features
�� Big focus on dynamic memory efficient Big focus on dynamic memory efficient 

systems & semisystems & semi--procedural techniques procedural techniques 
�� Due to destruction & nonDue to destruction & non--linear environmentlinear environment
�� But precompute offline whenever possibleBut precompute offline whenever possible

�� Flexibility and scalability for future needsFlexibility and scalability for future needs
�� Not Not ””onlyonly”” a Battlefielda Battlefield--engineengine



Frostbite conceptsFrostbite concepts

�� Editor (FrostED)Editor (FrostED)
�� Asset creationAsset creation

�� Levels, meshes, shaders, objectsLevels, meshes, shaders, objects
�� Fully separate and C#Fully separate and C#--basedbased

�� PipelinePipeline
�� Converts assets to runtime formatConverts assets to runtime format
�� Win32 onlyWin32 only
�� Important for loading times and flexibilityImportant for loading times and flexibility

�� RuntimeRuntime
�� ””The GameThe Game””
�� Gameplay, simulation, renderingGameplay, simulation, rendering
�� Xbox 360, PS3, Win32Xbox 360, PS3, Win32



Rendering systems overviewRendering systems overview
Game renderer

World renderer UI

Shading system

Direct3D / libGCM

Meshes

Particles

Undergrowth

Sky Decals

Terrain



Shading systemShading system

�� HighHigh--level platformlevel platform--independent rendering APIindependent rendering API
�� Simplifies and generalizes rendering, shading Simplifies and generalizes rendering, shading 

and lightingand lighting
�� To make it easy & fast to do highTo make it easy & fast to do high--quality shadingquality shading

�� Handles most of the communication with the Handles most of the communication with the 
GPU and platform APIsGPU and platform APIs



Shading system backendsShading system backends

�� Multiple backendsMultiple backends
�� DirectX 9 SM3 for PC & Xbox 360DirectX 9 SM3 for PC & Xbox 360

�� LowLow--level GPU communication on 360level GPU communication on 360

�� Direct3D 10 for Windows VistaDirect3D 10 for Windows Vista
�� libGCM for PlayStation 3libGCM for PlayStation 3

�� Allows other rendering system to focus on what Allows other rendering system to focus on what 
is important instead of platform differencesis important instead of platform differences



HighHigh--level shading stateslevel shading states

�� Key feature of shading systemKey feature of shading system
�� Rich highRich high--level states instead of lowlevel states instead of low--level level 

platformplatform--dependent statesdependent states
�� More flexible for both user and systemMore flexible for both user and system



HighHigh--level state exampleslevel state examples

�� Light sourcesLight sources
�� Amount, types, color, shadowAmount, types, color, shadow

�� Geometry processing Geometry processing 
�� SkinningSkinning
�� InstancingInstancing

�� EffectsEffects
�� LightLight--scattering, fogscattering, fog

�� Surface shaders Surface shaders 
�� Instead of vertex & pixel shadersInstead of vertex & pixel shaders
�� Very powerfulVery powerful



HighHigh--level state benefitslevel state benefits

�� Easier to use and more productive for usersEasier to use and more productive for users
�� Share & reuse features between systemsShare & reuse features between systems
�� Hides & manages shader permutation hellHides & manages shader permutation hell
�� Generalized and centralized to shader pipelineGeneralized and centralized to shader pipeline
�� Cumbersome manual management in RSC2 & BF2Cumbersome manual management in RSC2 & BF2

�� Platforms may implement states differently Platforms may implement states differently 
�� Depending on capabilities Depending on capabilities 
�� MultiMulti--pass lighting instead of singlepass lighting instead of single--passpass



Surface shadersSurface shaders

�� Term borrowed from RendermanTerm borrowed from Renderman
�� Shader that calculates outgoing color and Shader that calculates outgoing color and 

opacity of a point on a surfaceopacity of a point on a surface
�� Similar to pixel shaders, but not quite..Similar to pixel shaders, but not quite..



Surface shaders vs pixel shadersSurface shaders vs pixel shaders

�� GraphGraph--based instead of codebased instead of code
�� Easier to build, tweak & manage for artistsEasier to build, tweak & manage for artists

�� Independent of lighting & environmentIndependent of lighting & environment
�� Rich dataRich data--centric control flowcentric control flow
�� No need to manually specialize shaders to No need to manually specialize shaders to 

enable/disable featuresenable/disable features

�� Calculations can be done on any levelCalculations can be done on any level
�� PerPer--pixel, perpixel, per--vertex, pervertex, per--object, perobject, per--frameframe
�� Split to multiple passesSplit to multiple passes





Surface shader nodesSurface shader nodes

�� BuiltBuilt--in nodesin nodes
�� Basic arithmetic (mul, add, divide)Basic arithmetic (mul, add, divide)
�� Geometric (fresnel, refraction)Geometric (fresnel, refraction)
�� Logical (platform, or, side, conditional)Logical (platform, or, side, conditional)
�� Parameters (scalar, vec2, vec4, bool)Parameters (scalar, vec2, vec4, bool)
�� Values (position, z, normal, eye vector)Values (position, z, normal, eye vector)
�� Lighting (phong, subLighting (phong, sub--surface)surface)
�� Root (general, offset, multi output)Root (general, offset, multi output)
�� Misc (curve, script, parallax offset)Misc (curve, script, parallax offset)



Surface shader complexitySurface shader complexity

�� Tedious to create arithmeticTedious to create arithmetic--heavy shaders as heavy shaders as 
graphsgraphs
�� Requires lots small nodes with connections between Requires lots small nodes with connections between 

everythingeverything
�� = Spaghetti shaders= Spaghetti shaders

�� Script nodes can helpScript nodes can help
�� Have arbitrary number of inputs and outputs Have arbitrary number of inputs and outputs 
�� Write HLSL function to process input to outputWrite HLSL function to process input to output
�� Similar to how the shader pipeline works internallySimilar to how the shader pipeline works internally



Surface shader complexity (cont.)Surface shader complexity (cont.)

�� Lots of people work with surface shadersLots of people work with surface shaders
�� Rendering programmers, technical/lead artists, Rendering programmers, technical/lead artists, 

artists, outsourcingartists, outsourcing
�� Not everybody want/need/can create shaders Not everybody want/need/can create shaders 

fully from scratchfully from scratch
�� Should be able to work on the level most suitedShould be able to work on the level most suited

�� Custom shaders on everything is badCustom shaders on everything is bad
�� Quality, maintenance, performanceQuality, maintenance, performance

�� But the ability to create custom shaders is goodBut the ability to create custom shaders is good
�� Experimentation, preExperimentation, pre--production, optimizationproduction, optimization



Shader complexity solutionsShader complexity solutions

�� Settle on a resonable middleSettle on a resonable middle--groundground
�� Common approachCommon approach
�� Most likley artistMost likley artist--centriccentric
�� Programmers mostly work on the code level instead Programmers mostly work on the code level instead 

and expose new nodesand expose new nodes
�� Not as scaleableNot as scaleable

�� Directly support authoring at multiple levelsDirectly support authoring at multiple levels
�� More complex More complex 
�� But exactly what we wantBut exactly what we want



Instance shadersInstance shaders

�� Our solutionOur solution
�� An instance shader is a graph network that can be An instance shader is a graph network that can be 

instanced as a node in another shaderinstanced as a node in another shader
�� Think C++ functionsThink C++ functions

�� Hide and encapsulate functionality on multiple levels by Hide and encapsulate functionality on multiple levels by 
choosing inputs & outputs to exposechoosing inputs & outputs to expose

�� Heavily used in BFBCHeavily used in BFBC



StandardRoot instance shaderStandardRoot instance shader

�� Programmer created Programmer created 
�� Phong BRDFPhong BRDF
�� Basic inputs for diffuse, Basic inputs for diffuse, 

specular, emissive, specular, emissive, 
fresnel & occlusionfresnel & occlusion

�� Transparency Transparency 
propertiesproperties

�� Base for 90% of our Base for 90% of our 
shadersshaders



ObjectGm instance shaderObjectGm instance shader

�� Artist createdArtist created
�� Locked down Locked down 

shader for objectsshader for objects
�� Very general, lots Very general, lots 

of features in of features in 
same shadersame shader
�� Many properties Many properties 

instead of inputsinstead of inputs

Note: buggy editor screenshot, node should have few inputs



Inside ObjectGm shaderInside ObjectGm shader



Shading system pipelineShading system pipeline

�� Big complex offline preBig complex offline pre--processing systemprocessing system
�� Systems report wanted state combinationsSystems report wanted state combinations

�� Generates shading solutions for runtimeGenerates shading solutions for runtime
�� Solution for each shading state combinationSolution for each shading state combination
�� Example: A mesh with stream instancing, a surface Example: A mesh with stream instancing, a surface 

shader, lightshader, light--scattering and affected by a outdoor light scattering and affected by a outdoor light 
source & shadow and 2 point lights for Xbox 360source & shadow and 2 point lights for Xbox 360

�� Generates HLSL vertex & pixel shadersGenerates HLSL vertex & pixel shaders
�� Solutions contains complete state setupSolutions contains complete state setup
�� Passes, shaders, constants, parameters, textures..Passes, shaders, constants, parameters, textures..



Shading system runtimeShading system runtime

�� User queues up User queues up render blocksrender blocks
�� Geometry & highGeometry & high--level state combinationslevel state combinations

�� Looks up solutions for the state combinationsLooks up solutions for the state combinations
�� Pipeline created these offlinePipeline created these offline

�� Blocks dispatched by backend to D3D/GCMBlocks dispatched by backend to D3D/GCM
�� Blocks are sorted (category & depth)Blocks are sorted (category & depth)
�� Backend sets platformBackend sets platform--specific states and shaders specific states and shaders 
�� Determined by pipeline for that solutionDetermined by pipeline for that solution
�� Thin & dumbThin & dumb

�� DrawDraw



TerrainTerrain

�� Important for many of our games Important for many of our games 
�� Rallisport & Battlefield seriesRallisport & Battlefield series

�� GoalsGoals
�� Long view distance with true horizonLong view distance with true horizon
�� 32x32 km visible, 2x2 32x32 km visible, 2x2 –– 4x4 playable4x4 playable

�� Ground destructionGround destruction
�� High detail up close and far awayHigh detail up close and far away
�� Artist controlArtist control
�� Low memory usageLow memory usage



Terrain (cont.)Terrain (cont.)

�� Multiple highMultiple high--res heightfield texturesres heightfield textures
�� Easy destructionEasy destruction
�� Fixed grid LOD with vertex texture fetchFixed grid LOD with vertex texture fetch

�� Normals are calculated in the shaderNormals are calculated in the shader
�� Very high detail in a distanceVery high detail in a distance
�� Saves memorySaves memory

�� SemiSemi--procedural surface shadersprocedural surface shaders
�� Low memory usage Low memory usage 
�� Allows dynamic compositingAllows dynamic compositing



Procedural shader splattingProcedural shader splatting

�� Surface shaders for each materialSurface shaders for each material
�� Access to perAccess to per--pixel height, slope, normal, sparse pixel height, slope, normal, sparse 

mask textures & decalsmask textures & decals
�� Abitrary texture compositing & blendingAbitrary texture compositing & blending

�� Material shaders are merged and blendedMaterial shaders are merged and blended
�� For each material combinationFor each material combination
�� Heavy singleHeavy single--pass shaderspass shaders
�� Lots of dynamic branchingLots of dynamic branching

�� Very flexible & scaleableVery flexible & scaleable
�� More details at SiggraphMore details at Siggraph’’07 course07 course



Without undergrowth



With undergrowth



UndergrowthUndergrowth

�� HighHigh--density foliage and debrisdensity foliage and debris
�� Grass plants, stones, fields, junk, etcGrass plants, stones, fields, junk, etc

�� Instanced lowInstanced low--poly meshespoly meshes
�� Procedurally distributed on the fly Procedurally distributed on the fly 
�� Using terrain materials & shadersUsing terrain materials & shaders
�� Gigabyte of memory if storedGigabyte of memory if stored
�� Easy to regenerate areas for destructionEasy to regenerate areas for destruction

�� AlphaAlpha--tested / alphatested / alpha--toto--coverage coverage 
�� Because of fillrate and sortBecause of fillrate and sort--independenceindependence



Undergrowth generationUndergrowth generation
�� Patches are dynamically allocated around cameraPatches are dynamically allocated around camera
�� When patches become visible or is changedWhen patches become visible or is changed

�� GPU renders 8GPU renders 8--12 material visibility values, terrain normal and 12 material visibility values, terrain normal and 
cached texturescached textures

�� PPU/SPU processes textures and pseudoPPU/SPU processes textures and pseudo--randomly distributes randomly distributes 
mesh instances within patchmesh instances within patch

�� Easy rendering after generationEasy rendering after generation
�� Arbitrary meshes and surface shaders can be usedArbitrary meshes and surface shaders can be used
�� Rendered with standard stream instancingRendered with standard stream instancing
�� Only visual, no collisionOnly visual, no collision

�� Perfect fit for D3D10 Stream Output Perfect fit for D3D10 Stream Output 
�� Keeps everything on GPU, reduces latencyKeeps everything on GPU, reduces latency
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Practical Example: Mountains Generation 
and Realistic Snow Accumulation



Use fBm to Generate 
Mountain Terrain

� Compute multiple octaves 
(10-50) of fBm noise to use 
as displacement
� Vertex texture-based 

displacement

� Variety of options
� Compute displacement directly in the shader per frame

� Great for animating earthquakes
� Stream out and reuse as necessary
� Precompute for static geometry 

� Use masks to vary noise computation / parameters as 
needed



Mountains: Wireframe



Controlling Snow Accumulation

� Want snow accumulation to correlate to the 
objects - automatically

� Determine snow coverage procedurally
� Idea: use the combination of the geometric 

normal and the bump map normal to control 
snow coverage
� With blending factors which control how we 

"accumulate" 
or "melt" snow

� i.e. its appearance on the geometry (Eg: Mountain)
� Depending on the geometric normal orientation 





What If We Don’t Use Noise?

� Straight-forward blend creates a sharp 
crease between snow and ground



Break Up the Monotony

� Use noise to adjust the blend between 
snow and rock for a natural transition



Demo



If You Want to Know More…

� About generating noise on the GPU
� Different types of procedural noise
� And more snow accumulation
� GDC “The Importance of Being Noisy: Fast, 

High Quality Noise”, N. Tatarchuk
� On AMD developer website



Other Procedural Techniques

� Procedural Tools and Techniques
for Current and Future Game 
Platforms 
by Jeremy Shopf (AMD) and 
Sebastien Deguy (Allegorithmic)



Thanks!

� Chris Oat & Abe Wiley (snowy mountains)



Questions?Questions?

Contact:Contact:
johan.andersson@dice.sejohan.andersson@dice.se

natalya.tatarchuk@amd.comnatalya.tatarchuk@amd.com


