rostbite

Rendering Architecture and

Real-time Procedural Shading & Texturing Technigues

Johan Andersson, Rendering Architect, DICE

Natalya Tatarchuk, Staff Research Engineer,
3D Application Research Group, AMD Graphics Products Group

GamEDEU#EE@ A M D .,4:,;[!

Outline

Introduction

Frostbite Engine
Examples from demos
Conclusions

Outline

* Introduction

= Frostbite Engine

= Examples from demos
= Conclusions

Complex Games of Tomorrow Demand
High Details and Lots of Attention

Everyone realizes the need to make immersive
environments

Doing so successfully requires many complex shaders
with many artist parameters

We created ~500 custom unigue shaders for ToyShop

Newer games and demos demand even more

= Unique materials aren’t going to be a reasonable solution in that
setting

= We also need to enable artists to work closely with the surface
materials so that the final game looks better

Shader permutation management is a serious problem
facing all game developers

Why Do We Care About Procedural
Generation?

= Recent and upcoming games display giant, rich,
complex worlds

= Varied art assets (Images and geometry) are
difficult and time-consuming to generate

= Procedural generation allows creation of many such
assets with subtle tweaks of parameters

= Memory-limited systems can benefit greatly from

procedural texturing
= Smaller distribution size

= Lots of variation
= No memory/bandwidth requirements

JIC= frostbite T AMD % Q.;E!

Procedural Helps You Avoid the
Resolution Problem

Any stored texture has limited resolution.

= |f you zoom in too closely, you will see a lack of detail

= Or even signs of the original pixels in the texture
Procedural patterns can have detall at all scales

= Zooming In : introduce new high frequency details as you zoom
Zooming out

= A prebaked texture will start tiling or show seams

= A procedural texture can be written to cover arbitrarily large
areas without seams or repetition

No mapping problem

= Don’t have to worry about texture seams, cracks and other
painful parameterization problems

= Solid textures

JIC= frostbite T AMD (T .(a!l!

Where Did That Tank Go?

= Networked games have to deal with sending
assets across the network

= Sending full content (assets, controls) through the
network is not the best plan for interactivity - delays

= Network bandwidth is not increasing at any close rate

to the speed of GPUs and CPUs

= Procedural techniques help with this

= We can send description in compact form to / from
server
= Master particles
= Grammar descriptions for objects
i EiCh.

= Content can be generated directly on the client

—1IC = frostbite S AMDt .,<!.;[!

Let’s Not Forget About Interactivity!

Real-time rendering is quickly becoming fully realistic
= Excellent foliage, effects, character rendering
= Often because we can author suitable static assets
Interactivity is the next frontier!
= Game play is the king!
Games are becoming more and more dynamic
= They make it look like you can blow up anything anywhere...
But we can’t use static resources and expect the same level of
Interactivity without price

= More objects means more draw calls, more memory, more authoring,
more textures, more, more, more....

= Eventually the cost becomes too excessive

We can generate objects with procedural techniques
= Then use rules to deform / destroy / modify / move them
= Better interactivity

= GameDevelopers® | .

L

Procedural Technigues: Now!

= Computers are fast enough so that procedural Is
real-time now!

= Flexible shader models allow us to directly translate
many of the offline shaders
= Direct3D10® opened new doors for procedural
generation in real-time: flexibility and power
= Convenience of geometry shaders and stream out
= More flexible use of texture / buffer resources
= Ability to directly render and filter volume textures
= |nteger and bitwise operations

GameDe:floEem@ ATi

REDEOI'I

Outline

= |ntroduction

" Frostbite Engine

= Examples from demos
= Conclusions

Eﬂﬂ‘ﬁﬁ%““@’ AMD gﬂ;l;i

Frostbite?

= DICE next-gen engine & framework

= Built from the ground up for
= Xbox 360
= PlayStation 3

= Multi-core PCs
= DirectX 9 SM3 & Direct3D 10

= To be used In future DICE games

s A MD D]

Battlefield: Bad Company

= Frostbite pilot project
= Xbox 360 & PlayStation 3
= Story- & character-driven
= Singleplayer & multiplayer ¥
= Large dynamic non-linear | ,IA/’;
environments X A \\L
= = you can blow stuff up © A <

I = frosthite G"'De AMD -t

Battlefield: Bad Company Teaser

http: //medla xbox360 [an. com/m di /713/713943/V|d 1921226.html

/l'l'i

REDEOI'I

Battlefield: Bad Company features

Dynamic skies P
VI “ght'ng & shadowing

/I'I'i

REDECII'I

Frostbite design

= Heavily influenced by BFBC features

= Big focus on dynamic memory efficient
systems & semi-procedural techniques
= Due to destruction & non-linear environment
= But precompute offline whenever possible
= Flexibility and scalability for future needs
= Not "only” a Battlefield-engine

REDEOI'I

GameDe:floEerS ATi

Frostbite concepts

= Editor (FrostED)

= Asset creation
= | evels, meshes, shaders, objects

= Fully separate and C#-based
= Pipeline
= Converts assets to runtime format
= Win32 only s
= Important for loading times and flexibility = &=
= Runtime
= "The Game”
= Gameplay, simulation, rendering
= Xbox 360, PS3, WIin32

—1IC = frostbite S AMD:l .,<!.;[!

Rendering systems overview

o

Game renderer

v

World renderer

Terrain

\ Particles 514Y Decals

Undergrowth /
VY ERIES /
! v

Shading system

S

'
= mﬂe—»mw < gﬂlﬂ

Shading system

= High-level platform-independent rendering API
= Simplifies and generalizes rendering, shading
and lighting
= To make it easy & fast to do high-quality shading

= Handles most of the communication with the
GPU and platform APIs r

53:

Ris

V-

ez M A MDD, g:.;!!

Shading system backends

= Multiple backends

= DirectX 9 SM3 for PC & Xbox 360
= | ow-level GPU communication on 360

= Direct3D 10 for Windows Vista
= IbGCM for PlayStation 3

= Allows other rendering system to focus on what
IS Important instead of platform differences

REDEOI'I

GameDe:floEem@ ATi

High-level shading states

Key feature of shading system

Rich high-level states instead of low-level
platform-dependent states

= More flexible for both user and system

/l'l'i

REDEOI'I

High-level state examples

[
g

Light sources L Y
= Amount, types, color, shadow

Geometry processing
= Skinning

= |nstancing

Effects

= Light-scattering, fog

Surface shaders
= |nstead of vertex & pixel shaders

= Very powerful
GameDevelo ers®
"r F: A M D a 4;';!

High-level state benefits

Easier to use and more productive for users
Share & reuse features between systems

Hides & manages shader permutation hell
= Generalized and centralized to shader pipeline
= Cumbersome manual management in RSC2 & BF2

Platforms may implement states differently
= Depending on capabllities
= Multi-pass lighting instead of single-pass

REDEOI'I

GameDe:floEem@ ATi

Surface shaders

= Term borrowed from Renderman

= Shader that calculates outgoing color and
opacity of a point on a surface

= Similar to pixel shaders, but not quite..

AMD1 Q,l!

Surface shaders vs pixel shaders

Graph-based instead of code
= Easier to build, tweak & manage for artists

Independent of lighting & environment

Rich data-centric control flow

= No need to manually specialize shaders to
enable/disable features

Calculations can be done on any level
= Per-pixel, per-vertex, per-object, per-frame
= Split to multiple passes

REDEOI'I

GameDe:floEem@ ATi

B

TUS_03 Mesh Pads

2US_03 Mesh MOLLE® | 7Clathing? |

*F frostED

File ‘“iew Edit Toolz ‘window Help

=) Zoor; ¥ ,f'
| J Database Explorer ; - ax
I -.Database-! 4 |32 |@ |f

Simple View + (2]

Mo Filker r [

&1 US_N2_Mesh_straps -

EﬂJ 1U5_0z _tesh_Straps_Bump
&1 US_02_Mesh_Visor

ﬂﬂ_| 115 _03_Mesh_aliceBackpack.
EﬂJ U5 _03_Mesh_arm3tandard —
A1 US_03_Mesh_beard

AT Us_03_Mesh_Boots

@71 US_03_Mesh_Buckles

ﬁﬂJ 1U5_03_Mesh_evebal

EﬁJ 1U5_03_Mesh_Evelashes

& Us_03_Mesh_Face

Eﬂ_l 115 _03_Mesh_cloves

EjJ U5 _03_Mesh_Headgear

AT Us_03_Mesh_Kits

&7 US_03_Mesh_LegStandard
&) Us_03_Mesh_MetalRing

I U5_03_Mesh_MOLLE

BT US_013_Mesh_Pads

EﬁJ US_03_Mesh_Pouches

AT US_03_Mesh_Straps

8 - b
< | »
[.] Database Explorer | e Terrain control panel |

ﬁProperties - 3 X

= 2l 2 7 [| &

Inputs s
AlphalnColormapEnable i
Camo B o,5/0,5/0,5 v
Color 1111111 W
Detail B o,5/0,5/0,5 ~
Dirk 1111 v
FresnelBias 0,1
FresnelExponent z —
Mormal . 0f0/0 W
MarmalBlend 0,5
MormalDetail Moo v
Oelusion it v
Opacity 1
roughness 0,7
Specular W o.05i0,08i0,08 v o

Type: Instances hadertMode

OCrefault Out
texCood3 |

X

N N
NN

W \\\"\\.
PR
R

I W "
RN

N\ \\\\‘\i\:ﬂﬁ\.
AR
) \\

Colarl
OutOF——OCalor2

RO
G0
BEO
2|

Out O—Oinput

Opacity

Ot

Normalize

. Jut
[Color |

OalphainColormapEnable
Cama

Color

Ditazil

8l ik
HFreznelBias
HFresnel Exponent
B Marmal

AMarmal Elend

B Hormal Cretail

' D'_/—cmord Out &
OCefault Qut OLod
texCond?

ODefaule

D_/—El[:oord
Cut OLod

E

Dukput

CIBCIRIEA]

UpdateIndexi):
OpenIndex () :

O0:00:00. 1243368
O0:00:08_20z231E&0

Partition 'Characters/U3/US Models/Shaders/US 03 Mesh MOLLE' modified.

Partition 'Characters/sU2/U8_Models/Shaders U3 03 _Mesh MOLLE'

sawved

Partition 'Characters/U3/US Models/Shaders/US 03 Mesh MOLLE' modified.

Oeclusion
A Opzcity
Broughness
O %pecular

Surface shader nodes

= Built-in nodes
Basic arithmetic (mul, add, divide)
Geometric (fresnel, refraction)
Logical (platform, or, side, conditional)
Parameters (scalar, vec2, vec4, bool)
Values (position, z, normal, eye vector)
Lighting (phong, sub-surface)
Root (general, offset, multi output)
Misc (curve, script, parallax offset)

urve
GameDevelopers® ‘ - i
Conference gy,
[,1{0?31 A M D (& Radeon

Surface shader complexity

= Tedious to create arithmetic-heavy shaders as
graphs
= Requires lots' small nodes with connections between
everything
= = Spaghetti shaders

= Script nodes can help
= Have arbitrary number of inputs and outputs
= Write HLSL function to process input to output
= Similar to how the shader pipeline works internally

GameDE\}%gz:ers@’ A M D a 4;';!

Surface shader compIeX|ty (cent)

Lots of people work with surface Sh'a'ders”“" _

= Rendering programmers;technical/iead artlsts
artists, outsourcing S

Not everybody want/need/can create stiaders

Mg

fully from' scratch _e—
= Should be able to work on the Ieyel most swtﬁ

Custom sfiaders on everyfiiing is bad
Quallty,kmalntenance perfosmance oo

But the abll'ﬂty to create Cuetom shaders 1S'good
= Experimentation, pre- progy tlon optimization

| AT

Shader complexity solutions

= Settle on a resonable middle-ground
= Common approach
= Most likley artist-centric

= Programmers mostly work on the code level instead
and expose new nodes

= Not as scaleable

= Directly support authoring at multiple levels
= More complex
= But exactly what we want

GameDe:floEem@ ATi

REDEOI'I

Instance shaders

Our solution

An instance shader is a graph network that can be
Instanced as a node In another shader
= Think C++ functions

Hide and encapsulate functionality on multiple levels by
choosing inputs & outputs to expose

Heavily used in BFBC

AT
rRaveon

StandardRoot instance shader

Programmer created
Phong BRDF

Basic inputs for diffuse,
specular, emissive, l
.

fresnel & occlusion

Transparency
properties

Base for 90% of our
shaders

—1IC = frostbite S AMDt .,<!.;[!

ObjectGm Instance shader

= Artist created

= | ocked down
shader for objects o e

= Very general, lots
of features In
same shader

= Many properties
Instead of Inputs

>

GameDevelopers® A l i
Conferenca g
LO ETE - [r))

L

RrRaveon

Inside ObjectGm shader

=

GameDev ibj’e s® AM D a 4;';!

Shading system pipeline

Big complex offline pre-processing system
= Systems report wanted state combinations

Generates shading solutions for runtime
= Solution for each shading state combination

= Example: A mesh with stream instancing, a surface
shader, light-scattering and affected by a outdoor light
source & shadow and 2 point lights for Xbox 360

Generates HLSL vertex & pixel shaders

Solutions contains complete state setup
= Passes, shaders, constants, parameters, textures..

/l'l'i

REDEOI'I

Shading system runtime

= User queues up render blocks
= Geometry & high-level state combinations

= L ooks up solutions for the state combinations
= Pipeline created these offline

= Blocks dispatched by backend to D3D/GCM

= Blocks are sorted (category & depth)

= Backend sets platform-specific states and shaders
= Determined by pipeline for that solution
= Thin & dumb

= Draw

REDEOI'I

GameDe:floEem@ ATi

Terrain

Important {o] many of our games
Ralllsport & Battlefield senes

Goals LR
Loengaview distance with true honzon \

o

ZRmvisible, 2x2 — 4x4 playable

i ‘.313 A =

Ground ‘destruction::

Yo ey

High detail up Closé a}:‘;afar YVaY s,

S

o

Artist contrel ¥, & ﬁ* G\
Low memory:! usage

Vi

r«;
v]

— . EgTrEREvelopE¥s® :
TJIC= frosthite /|Ti

REDEOI‘I

Terraln (cont.)

a I\/Iultlple hlgh—res helghtfleld textur.

grld LOl Wlth vertex texture fetc'é-"‘u
- s are calculated in the shader

= Semi ’ﬁm@-w;»:a’l surfa(;e shaders
;__s%- L ow memory usage: - '

-,Allows dynamic composmng

I = frosthite G"'De AMD ¢

Procedural shader splatting

- 3

Surface shaders for each matesiel

Access 10 per-pixel height; slope florrrzl, sparse
mask textures & decals |

Abitrary texture: Composmng Z plending

SVaterial’shaders are’mergedrant

For each-material-combination:
Heavy single= {Jass,shaders ™
L otis 6f dynamlc branching

\/ery flexible & scaleable ~
More gletalls at Slggraph 07 course

/I'I'i

Raaean

Without undergrowth

RHDEOI‘I

ERAPHFCS

With undergrowth

GameDevelopers®

Conference
RrRaoeon

. GRAPHICS

Undergrowth

- Grass plants stones, flelds Junk etc
= |nstanced low-poly meshes

= Procedurally dlstrlbuted on the fIy

- Usmg terraln ma;terlals & shaders
SR .

GameDevelopers®

Conference L
l Raoeon

GRAPHICS

Undergrowth generation

Patches are dynamically allocated around camera

When patches become visible or is changed

= GPU renders 8-12 material visibility values, terrain normal and
cached textures

= PPU/SPU processes textures and pseudo-randomly distributes
mesh instances within patch

Easy rendering after generation
= Arbitrary meshes and surface shaders can be used
= Rendered with standard stream instancing
= Only visual, no collision
Perfect fit for D3D10 Stream Output
= Keeps everything on GPU, reduces latency

1
Game{}g\ﬁ grjersci) A M D a 41!

Outline

= |ntroduction
= Frostbite Engine

= Examples from demos
= Conclusions

s A MD D]

Practical Example: Mountains Generation
and Realistic Snow Accumulation

GameDevelopers® A'l'i

U? ' REDEDI'I

Use fBm to Generate
Mountain Terrain

= Compute multiple octaves
(10-50) of fBm noise to use
as displacement

= Vertex texture-based
displacement

= Variety of options
= Compute displacement directly in the shader per frame
= Great for animating earthquakes
= Stream out and reuse as necessary
= Precompute for static geometry

= Use masks to vary noise computation / parameters as
needed

JICS frost T AMD]

Mountains: Wireframe

GameDevelopers®

Conference
@ Raoeon

Controlling Snow Accumulation

= Want snow accumulation to correlate to the
objects - automatically

= Determine snow coverage procedurally

= |dea: use the combination of the geometric

normal and the bump map normal to control
SNnow coverage

= With blending factors which control how we
"accumulate”

or "melt" snow

= |.e. Its appearance on the geometry (Eg: Mountain)
= Depending on the geometric normal orientation

s A MD D]

GameDevelopers® A l i
Conference
Raaeon

What If We Don't Use Noise?

= Straight-forward blend creates a sharp
crease between SNow and ground

v ‘ . W ; - I
- =AY - £ N .
4 L 3 o / - "
s G -~ s & '
W Tl §Y : ' y d
4 % ;
|
L

Break Up the Monotony

= Use noise to adjust the blend between
Snow and rock Ifor a natural transition

GameDevelo ATi

) -
) RrRaoeon

If You Want to Know More...

= About generating noise on the GPU
= Different types of procedural noise

= And more snow accumulation

= GDC “The Importance of Being Noisy: Fast,
High Quality Noise”, N. Tatarchuk

= On AMD developer website

s A MD D]

Other Procedural Techniques

= Procedural Tools and Technigues
for Current and Future Game
Platforms
by Jeremy Shopf (AMD) and
Sebastien Deguy (Allegorithmic)

GameDevelopers® | .
AMD JF<LL

Thanks!

= Chris Oat & Abe Wiley (snowy mountains)

E?:H'FEE{E“E“@ AMD gﬂ;l;i

ATI

REDEDI'I

ERAPHIDS

