
Johan Andersson, Rendering Architect, DICEJohan Andersson, Rendering Architect, DICE

Natalya Tatarchuk, Staff Research Engineer,Natalya Tatarchuk, Staff Research Engineer,
3D Application Research Group, AMD Graphics Products Group3D Application Research Group, AMD Graphics Products Group

Rendering Architecture and

Real-time Procedural Shading & Texturing Techniques



Outline

� Introduction
� Frostbite Engine
� Examples from demos
� Conclusions



Outline

� Introduction
� Frostbite Engine
� Examples from demos
� Conclusions



Complex Games of Tomorrow Demand 
High Details and Lots of Attention

� Everyone realizes the need to make immersive 
environments

� Doing so successfully requires many complex shaders 
with many artist parameters

� We created ~500 custom unique shaders for ToyShop
� Newer games and demos demand even more

� Unique materials aren’t going to be a reasonable solution in that 
setting

� We also need to enable artists to work closely with the surface 
materials so that the final game looks better

� Shader permutation management is a serious problem 
facing all game developers



Why Do We Care About Procedural 
Generation?

� Recent and upcoming games display giant, rich, 
complex worlds

� Varied art assets (images and geometry) are 
difficult and time-consuming to generate
� Procedural generation allows creation of many such 

assets with subtle tweaks of parameters
� Memory-limited systems can benefit greatly from 

procedural texturing
� Smaller distribution size
� Lots of variation
� No memory/bandwidth requirements



Procedural Helps You Avoid the 
Resolution Problem

� Any stored texture has limited resolution. 
� If you zoom in too closely, you will see a lack of detail 
� Or even signs of the original pixels in the texture

� Procedural patterns can have detail at all scales 
� Zooming in : introduce new high frequency details as you zoom

� Zooming out
� A prebaked texture will start tiling or show seams
� A procedural texture can be written to cover arbitrarily large 

areas without seams or repetition
� No mapping problem 

� Don’t have to worry about texture seams, cracks and other 
painful parameterization problems

� Solid textures



Where Did That Tank Go?
� Networked games have to deal with sending 

assets across the network
� Sending full content (assets, controls) through the 

network is not the best plan for interactivity - delays
� Network bandwidth is not increasing at any close rate 

to the speed of GPUs and CPUs
� Procedural techniques help with this
� We can send description in compact form to / from 

server
� Master particles
� Grammar descriptions for objects
� Etc…

� Content can be generated directly on the client



Let’s Not Forget About Interactivity!

� Real-time rendering is quickly becoming fully realistic
� Excellent foliage, effects, character rendering
� Often because we can author suitable static assets

� Interactivity is the next frontier!
� Game play is the king! 

� Games are becoming more and more dynamic
� They make it look like you can blow up anything anywhere…

� But we can’t use static resources and expect the same level of 
interactivity without price
� More objects means more draw calls, more memory, more authoring,

more textures, more, more, more….
� Eventually the cost becomes too excessive

� We can generate objects with procedural techniques
� Then use rules to deform / destroy / modify / move them
� Better interactivity 



Procedural Techniques: Now!

� Computers are fast enough so that procedural is 
real-time now!
� Flexible shader models allow us to directly translate 

many of the offline shaders
� Direct3D10® opened new doors for procedural 

generation in real-time: flexibility and power
� Convenience of geometry shaders and stream out
� More flexible use of texture / buffer resources
� Ability to directly render and filter volume textures
� Integer and bitwise operations



Outline

� Introduction

� Frostbite Engine
� Examples from demos
� Conclusions



Frostbite?Frostbite?

�� DICE nextDICE next--gen engine & framework gen engine & framework 
�� Built from the ground up forBuilt from the ground up for
�� Xbox 360Xbox 360
�� PlayStation 3 PlayStation 3 
�� MultiMulti--core PCscore PCs
�� DirectX 9 SM3 & Direct3D 10DirectX 9 SM3 & Direct3D 10

�� To be used in future DICE gamesTo be used in future DICE games



�� Frostbite pilot projectFrostbite pilot project
�� Xbox 360 & PlayStation 3Xbox 360 & PlayStation 3
�� StoryStory-- & character& character--driven driven 
�� Singleplayer & multiplayerSingleplayer & multiplayer
�� Large dynamic nonLarge dynamic non--linear linear 

environmentsenvironments
�� = you can blow stuff up = you can blow stuff up ☺☺

Battlefield: Bad CompanyBattlefield: Bad Company



Battlefield: Bad Company TeaserBattlefield: Bad Company Teaser

http://media.xbox360.ign.com/media/713/713943/vid_1921226.htmlhttp://media.xbox360.ign.com/media/713/713943/vid_1921226.html



Battlefield: Bad Company featuresBattlefield: Bad Company features

�� Large destructible landscapesLarge destructible landscapes
�� Jeeps, tanks, boats and helicoptersJeeps, tanks, boats and helicopters
�� Destructible buildings & objectsDestructible buildings & objects
�� Large forests with destructible foliage Large forests with destructible foliage 
�� Dynamic skiesDynamic skies
�� Dynamic lighting & shadowingDynamic lighting & shadowing



Frostbite designFrostbite design

�� Heavily influenced by BFBC featuresHeavily influenced by BFBC features
�� Big focus on dynamic memory efficient Big focus on dynamic memory efficient 

systems & semisystems & semi--procedural techniques procedural techniques 
�� Due to destruction & nonDue to destruction & non--linear environmentlinear environment
�� But precompute offline whenever possibleBut precompute offline whenever possible

�� Flexibility and scalability for future needsFlexibility and scalability for future needs
�� Not Not ””onlyonly”” a Battlefielda Battlefield--engineengine



Frostbite conceptsFrostbite concepts

�� Editor (FrostED)Editor (FrostED)
�� Asset creationAsset creation

�� Levels, meshes, shaders, objectsLevels, meshes, shaders, objects
�� Fully separate and C#Fully separate and C#--basedbased

�� PipelinePipeline
�� Converts assets to runtime formatConverts assets to runtime format
�� Win32 onlyWin32 only
�� Important for loading times and flexibilityImportant for loading times and flexibility

�� RuntimeRuntime
�� ””The GameThe Game””
�� Gameplay, simulation, renderingGameplay, simulation, rendering
�� Xbox 360, PS3, Win32Xbox 360, PS3, Win32



Rendering systems overviewRendering systems overview
Game renderer

World renderer UI

Shading system

Direct3D / libGCM

Meshes

Particles

Undergrowth

Sky Decals

Terrain



Shading systemShading system

�� HighHigh--level platformlevel platform--independent rendering APIindependent rendering API
�� Simplifies and generalizes rendering, shading Simplifies and generalizes rendering, shading 

and lightingand lighting
�� To make it easy & fast to do highTo make it easy & fast to do high--quality shadingquality shading

�� Handles most of the communication with the Handles most of the communication with the 
GPU and platform APIsGPU and platform APIs



Shading system backendsShading system backends

�� Multiple backendsMultiple backends
�� DirectX 9 SM3 for PC & Xbox 360DirectX 9 SM3 for PC & Xbox 360

�� LowLow--level GPU communication on 360level GPU communication on 360

�� Direct3D 10 for Windows VistaDirect3D 10 for Windows Vista
�� libGCM for PlayStation 3libGCM for PlayStation 3

�� Allows other rendering system to focus on what Allows other rendering system to focus on what 
is important instead of platform differencesis important instead of platform differences



HighHigh--level shading stateslevel shading states

�� Key feature of shading systemKey feature of shading system
�� Rich highRich high--level states instead of lowlevel states instead of low--level level 

platformplatform--dependent statesdependent states
�� More flexible for both user and systemMore flexible for both user and system



HighHigh--level state exampleslevel state examples

�� Light sourcesLight sources
�� Amount, types, color, shadowAmount, types, color, shadow

�� Geometry processing Geometry processing 
�� SkinningSkinning
�� InstancingInstancing

�� EffectsEffects
�� LightLight--scattering, fogscattering, fog

�� Surface shaders Surface shaders 
�� Instead of vertex & pixel shadersInstead of vertex & pixel shaders
�� Very powerfulVery powerful



HighHigh--level state benefitslevel state benefits

�� Easier to use and more productive for usersEasier to use and more productive for users
�� Share & reuse features between systemsShare & reuse features between systems
�� Hides & manages shader permutation hellHides & manages shader permutation hell
�� Generalized and centralized to shader pipelineGeneralized and centralized to shader pipeline
�� Cumbersome manual management in RSC2 & BF2Cumbersome manual management in RSC2 & BF2

�� Platforms may implement states differently Platforms may implement states differently 
�� Depending on capabilities Depending on capabilities 
�� MultiMulti--pass lighting instead of singlepass lighting instead of single--passpass



Surface shadersSurface shaders

�� Term borrowed from RendermanTerm borrowed from Renderman
�� Shader that calculates outgoing color and Shader that calculates outgoing color and 

opacity of a point on a surfaceopacity of a point on a surface
�� Similar to pixel shaders, but not quite..Similar to pixel shaders, but not quite..



Surface shaders vs pixel shadersSurface shaders vs pixel shaders

�� GraphGraph--based instead of codebased instead of code
�� Easier to build, tweak & manage for artistsEasier to build, tweak & manage for artists

�� Independent of lighting & environmentIndependent of lighting & environment
�� Rich dataRich data--centric control flowcentric control flow
�� No need to manually specialize shaders to No need to manually specialize shaders to 

enable/disable featuresenable/disable features

�� Calculations can be done on any levelCalculations can be done on any level
�� PerPer--pixel, perpixel, per--vertex, pervertex, per--object, perobject, per--frameframe
�� Split to multiple passesSplit to multiple passes





Surface shader nodesSurface shader nodes

�� BuiltBuilt--in nodesin nodes
�� Basic arithmetic (mul, add, divide)Basic arithmetic (mul, add, divide)
�� Geometric (fresnel, refraction)Geometric (fresnel, refraction)
�� Logical (platform, or, side, conditional)Logical (platform, or, side, conditional)
�� Parameters (scalar, vec2, vec4, bool)Parameters (scalar, vec2, vec4, bool)
�� Values (position, z, normal, eye vector)Values (position, z, normal, eye vector)
�� Lighting (phong, subLighting (phong, sub--surface)surface)
�� Root (general, offset, multi output)Root (general, offset, multi output)
�� Misc (curve, script, parallax offset)Misc (curve, script, parallax offset)



Surface shader complexitySurface shader complexity

�� Tedious to create arithmeticTedious to create arithmetic--heavy shaders as heavy shaders as 
graphsgraphs
�� Requires lots small nodes with connections between Requires lots small nodes with connections between 

everythingeverything
�� = Spaghetti shaders= Spaghetti shaders

�� Script nodes can helpScript nodes can help
�� Have arbitrary number of inputs and outputs Have arbitrary number of inputs and outputs 
�� Write HLSL function to process input to outputWrite HLSL function to process input to output
�� Similar to how the shader pipeline works internallySimilar to how the shader pipeline works internally



Surface shader complexity (cont.)Surface shader complexity (cont.)

�� Lots of people work with surface shadersLots of people work with surface shaders
�� Rendering programmers, technical/lead artists, Rendering programmers, technical/lead artists, 

artists, outsourcingartists, outsourcing
�� Not everybody want/need/can create shaders Not everybody want/need/can create shaders 

fully from scratchfully from scratch
�� Should be able to work on the level most suitedShould be able to work on the level most suited

�� Custom shaders on everything is badCustom shaders on everything is bad
�� Quality, maintenance, performanceQuality, maintenance, performance

�� But the ability to create custom shaders is goodBut the ability to create custom shaders is good
�� Experimentation, preExperimentation, pre--production, optimizationproduction, optimization



Shader complexity solutionsShader complexity solutions

�� Settle on a resonable middleSettle on a resonable middle--groundground
�� Common approachCommon approach
�� Most likley artistMost likley artist--centriccentric
�� Programmers mostly work on the code level instead Programmers mostly work on the code level instead 

and expose new nodesand expose new nodes
�� Not as scaleableNot as scaleable

�� Directly support authoring at multiple levelsDirectly support authoring at multiple levels
�� More complex More complex 
�� But exactly what we wantBut exactly what we want



Instance shadersInstance shaders

�� Our solutionOur solution
�� An instance shader is a graph network that can be An instance shader is a graph network that can be 

instanced as a node in another shaderinstanced as a node in another shader
�� Think C++ functionsThink C++ functions

�� Hide and encapsulate functionality on multiple levels by Hide and encapsulate functionality on multiple levels by 
choosing inputs & outputs to exposechoosing inputs & outputs to expose

�� Heavily used in BFBCHeavily used in BFBC



StandardRoot instance shaderStandardRoot instance shader

�� Programmer created Programmer created 
�� Phong BRDFPhong BRDF
�� Basic inputs for diffuse, Basic inputs for diffuse, 

specular, emissive, specular, emissive, 
fresnel & occlusionfresnel & occlusion

�� Transparency Transparency 
propertiesproperties

�� Base for 90% of our Base for 90% of our 
shadersshaders



ObjectGm instance shaderObjectGm instance shader

�� Artist createdArtist created
�� Locked down Locked down 

shader for objectsshader for objects
�� Very general, lots Very general, lots 

of features in of features in 
same shadersame shader
�� Many properties Many properties 

instead of inputsinstead of inputs

Note: buggy editor screenshot, node should have few inputs



Inside ObjectGm shaderInside ObjectGm shader



Shading system pipelineShading system pipeline

�� Big complex offline preBig complex offline pre--processing systemprocessing system
�� Systems report wanted state combinationsSystems report wanted state combinations

�� Generates shading solutions for runtimeGenerates shading solutions for runtime
�� Solution for each shading state combinationSolution for each shading state combination
�� Example: A mesh with stream instancing, a surface Example: A mesh with stream instancing, a surface 

shader, lightshader, light--scattering and affected by a outdoor light scattering and affected by a outdoor light 
source & shadow and 2 point lights for Xbox 360source & shadow and 2 point lights for Xbox 360

�� Generates HLSL vertex & pixel shadersGenerates HLSL vertex & pixel shaders
�� Solutions contains complete state setupSolutions contains complete state setup
�� Passes, shaders, constants, parameters, textures..Passes, shaders, constants, parameters, textures..



Shading system runtimeShading system runtime

�� User queues up User queues up render blocksrender blocks
�� Geometry & highGeometry & high--level state combinationslevel state combinations

�� Looks up solutions for the state combinationsLooks up solutions for the state combinations
�� Pipeline created these offlinePipeline created these offline

�� Blocks dispatched by backend to D3D/GCMBlocks dispatched by backend to D3D/GCM
�� Blocks are sorted (category & depth)Blocks are sorted (category & depth)
�� Backend sets platformBackend sets platform--specific states and shaders specific states and shaders 
�� Determined by pipeline for that solutionDetermined by pipeline for that solution
�� Thin & dumbThin & dumb

�� DrawDraw



TerrainTerrain

�� Important for many of our games Important for many of our games 
�� Rallisport & Battlefield seriesRallisport & Battlefield series

�� GoalsGoals
�� Long view distance with true horizonLong view distance with true horizon
�� 32x32 km visible, 2x2 32x32 km visible, 2x2 –– 4x4 playable4x4 playable

�� Ground destructionGround destruction
�� High detail up close and far awayHigh detail up close and far away
�� Artist controlArtist control
�� Low memory usageLow memory usage



Terrain (cont.)Terrain (cont.)

�� Multiple highMultiple high--res heightfield texturesres heightfield textures
�� Easy destructionEasy destruction
�� Fixed grid LOD with vertex texture fetchFixed grid LOD with vertex texture fetch

�� Normals are calculated in the shaderNormals are calculated in the shader
�� Very high detail in a distanceVery high detail in a distance
�� Saves memorySaves memory

�� SemiSemi--procedural surface shadersprocedural surface shaders
�� Low memory usage Low memory usage 
�� Allows dynamic compositingAllows dynamic compositing



Procedural shader splattingProcedural shader splatting

�� Surface shaders for each materialSurface shaders for each material
�� Access to perAccess to per--pixel height, slope, normal, sparse pixel height, slope, normal, sparse 

mask textures & decalsmask textures & decals
�� Abitrary texture compositing & blendingAbitrary texture compositing & blending

�� Material shaders are merged and blendedMaterial shaders are merged and blended
�� For each material combinationFor each material combination
�� Heavy singleHeavy single--pass shaderspass shaders
�� Lots of dynamic branchingLots of dynamic branching

�� Very flexible & scaleableVery flexible & scaleable
�� More details at SiggraphMore details at Siggraph’’07 course07 course



Without undergrowth



With undergrowth



UndergrowthUndergrowth

�� HighHigh--density foliage and debrisdensity foliage and debris
�� Grass plants, stones, fields, junk, etcGrass plants, stones, fields, junk, etc

�� Instanced lowInstanced low--poly meshespoly meshes
�� Procedurally distributed on the fly Procedurally distributed on the fly 
�� Using terrain materials & shadersUsing terrain materials & shaders
�� Gigabyte of memory if storedGigabyte of memory if stored
�� Easy to regenerate areas for destructionEasy to regenerate areas for destruction

�� AlphaAlpha--tested / alphatested / alpha--toto--coverage coverage 
�� Because of fillrate and sortBecause of fillrate and sort--independenceindependence



Undergrowth generationUndergrowth generation
�� Patches are dynamically allocated around cameraPatches are dynamically allocated around camera
�� When patches become visible or is changedWhen patches become visible or is changed

�� GPU renders 8GPU renders 8--12 material visibility values, terrain normal and 12 material visibility values, terrain normal and 
cached texturescached textures

�� PPU/SPU processes textures and pseudoPPU/SPU processes textures and pseudo--randomly distributes randomly distributes 
mesh instances within patchmesh instances within patch

�� Easy rendering after generationEasy rendering after generation
�� Arbitrary meshes and surface shaders can be usedArbitrary meshes and surface shaders can be used
�� Rendered with standard stream instancingRendered with standard stream instancing
�� Only visual, no collisionOnly visual, no collision

�� Perfect fit for D3D10 Stream Output Perfect fit for D3D10 Stream Output 
�� Keeps everything on GPU, reduces latencyKeeps everything on GPU, reduces latency



Outline

� Introduction
� Frostbite Engine
� Examples from demos
� Conclusions



Practical Example: Mountains Generation 
and Realistic Snow Accumulation



Use fBm to Generate 
Mountain Terrain

� Compute multiple octaves 
(10-50) of fBm noise to use 
as displacement
� Vertex texture-based 

displacement

� Variety of options
� Compute displacement directly in the shader per frame

� Great for animating earthquakes
� Stream out and reuse as necessary
� Precompute for static geometry 

� Use masks to vary noise computation / parameters as 
needed



Mountains: Wireframe



Controlling Snow Accumulation

� Want snow accumulation to correlate to the 
objects - automatically

� Determine snow coverage procedurally
� Idea: use the combination of the geometric 

normal and the bump map normal to control 
snow coverage
� With blending factors which control how we 

"accumulate" 
or "melt" snow

� i.e. its appearance on the geometry (Eg: Mountain)
� Depending on the geometric normal orientation 





What If We Don’t Use Noise?

� Straight-forward blend creates a sharp 
crease between snow and ground



Break Up the Monotony

� Use noise to adjust the blend between 
snow and rock for a natural transition



Demo



If You Want to Know More…

� About generating noise on the GPU
� Different types of procedural noise
� And more snow accumulation
� GDC “The Importance of Being Noisy: Fast, 

High Quality Noise”, N. Tatarchuk
� On AMD developer website



Other Procedural Techniques

� Procedural Tools and Techniques
for Current and Future Game 
Platforms 
by Jeremy Shopf (AMD) and 
Sebastien Deguy (Allegorithmic)



Thanks!

� Chris Oat & Abe Wiley (snowy mountains)



Questions?Questions?

Contact:Contact:
johan.andersson@dice.sejohan.andersson@dice.se

natalya.tatarchuk@amd.comnatalya.tatarchuk@amd.com


