An arthropod is an invertebrate animal having an exoskeleton (external skeleton), a segmented body, and jointed appendages. Arthropods are members of the phylum Arthropoda (from Greek , "joint", and "foot", which together mean "jointed feet"), and include the insects, arachnids, crustaceans, and others. Arthropods are characterized by their jointed limbs and cuticles, which are mainly made of α-chitin; the cuticles of crustaceans are also biomineralized with calcium carbonate. The rigid cuticle inhibits growth, so arthropods replace it periodically by molting. The arthropod body plan consists of repeated segments, each with a pair of appendages. It is so versatile that they have been compared to Swiss Army knives, and it has enabled them to become the most species-rich members of all ecological guilds in most environments. They have over a million described species, making up more than 80% of all described living animal species, and are one of only two animal groups that are very successful in dry environments – the other being the amniotes. They range in size from microscopic plankton up to forms a few meters long.
Arthropods' primary internal cavity is a hemocoel, which accommodates their internal organs and through which their blood circulates; they have open circulatory systems. Like their exteriors, the internal organs of arthropods are generally built of repeated segments. Their nervous system is "ladder-like", with paired ventral nerve cords running through all segments and forming paired ganglia in each segment. Their heads are formed by fusion of varying numbers of segments, and their brains are formed by fusion of the ganglia of these segments and encircle the esophagus. The respiratory and excretory systems of arthropods vary, depending as much on their environment as on the subphylum to which they belong.
Their vision relies on various combinations of compound eyes and pigment-pit ocelli: in most species the ocelli can only detect the direction from which light is coming, and the compound eyes are the main source of information, but the main eyes of spiders are ocelli that can form images and, in a few cases, can swivel to track prey. Arthropods also have a wide range of chemical and mechanical sensors, mostly based on modifications of the many setae (bristles) that project through their cuticles.
Arthropods' methods of reproduction and development are diverse; all terrestrial species use internal fertilization, but this is often by indirect transfer of the sperm via an appendage or the ground, rather than by direct injection. Aquatic species use either internal or external fertilization. Almost all arthropods lay eggs, but scorpions give birth to live young after the eggs have hatched inside the mother. Arthropod hatchlings vary from miniature adults to grubs and caterpillars that lack jointed limbs and eventually undergo a total metamorphosis to produce the adult form. The level of maternal care for hatchlings varies from nonexistent to the prolonged care provided by scorpions.
The versatility of the arthropod modular body plan has made it difficult for zoologists and paleontologists to classify them and work out their evolutionary ancestry, which dates back to the Cambrian period. From the late 1950s to late 1970s, it was thought that arthropods were polyphyletic, that is, there was no single arthropod ancestor. Now they are generally regarded as monophyletic. Historically, the closest evolutionary relatives of arthropods were considered to be annelid worms, as both groups have segmented bodies. This hypothesis is by now largely rejected, with annelids and molluscs forming the superphylum Lophotrochozoa. Many analyses support a placement of arthropods with cycloneuralians (or their constituent clades) in a superphylum Ecdysozoa. Overall however, the basal relationships of Metazoa are not yet well resolved. Likewise, the relationships between various arthropod groups are still actively debated.
Arthropods contribute to the human food supply both directly as food, and more importantly as pollinators of crops. Some specific species are known to spread severe disease to humans, livestock, and crops.
They are important members of marine, freshwater, land and air ecosystems, and are one of only two major animal groups that have adapted to life in dry environments; the other is amniotes, whose living members are reptiles, birds and mammals. One arthropod sub-group, insects, is the most species-rich member of all ecological guilds (ways of making a living) in land and fresh-water environments. The lightest insects weigh less than 25 micrograms (millionths of a gram), while the heaviest weigh over . Some living crustaceans are much larger; for example, the legs of the Japanese spider crab may span up to .
The original structure of arthropod appendages was probably biramous, with the upper branch acting as a gill while the lower branch was used for walking. In some segments of all known arthropods the appendages have been modified, for example to form gills, mouth-parts, antennae for collecting information, or claws for grasping; arthropods are "like Swiss Army knives, each equipped with a unique set of specialized tools." In many arthropods, appendages have vanished from some regions of the body, and it is particularly common for abdominal appendages to have disappeared or be highly modified. The most conspicuous specialization of segments is in the head. The four major groups of arthropods – Chelicerata (includes spiders and scorpions), Crustacea (shrimps, lobsters, crabs, etc.), Tracheata (arthropods that breathe via channels into their bodies; includes insects and myriapods), and the extinct trilobites – have heads formed of various combinations of segments, with appendages that are missing or specialized in different ways. In addition some extinct arthropods, such as Marrella, belong to none of these groups, as their heads are formed by their own particular combinations of segments and specialized appendages. Working out the evolutionary stages by which all these different combinations could have appeared is so difficult that it has long been known as "the arthropod head problem". In 1960 R. E. Snodgrass even hoped it would not be solved, as trying to work out solutions was so much fun.|group=Note}}
The exoskeletons of most aquatic crustaceans are biomineralized with calcium carbonate extracted from the water. Some terrestrial crustaceans have developed means of storing the mineral, since on land they cannot rely on a steady supply of dissolved calcium carbonate. Biomineralization generally affects the exocuticle and the outer part of the endocuticle. Two recent hypotheses about the evolution of biomineralization in arthropods and other groups of animals propose that it provides tougher defensive armor, and that it allows animals to grow larger and stronger by providing more rigid skeletons; and in either case a mineral-organic composite exoskeleton is cheaper to build than an all-organic one of comparable strength.
The cuticle can have setae (bristles) growing from special cells in the epidermis. Setae are as varied in form and function as appendages. For example, they are often used as sensors to detect air or water currents, or contact with objects; aquatic arthropods use feather-like setae to increase the surface area of swimming appendages and to filter food particles out of water; aquatic insects, which are air-breathers, use thick felt-like coats of setae to trap air, extending the time they can spend under water; heavy, rigid setae serve as defensive spines.
Although all arthropods use muscles attached to the inside of the exoskeleton to flex their limbs, some still use hydraulic pressure to extend them, a system inherited from their pre-arthropod ancestors; for example, all spiders extend their legs hydraulically and can generate pressures up to eight times their resting level.
The exoskeleton cannot stretch and thus restricts growth. Arthropods therefore replace their exoskeletons by molting, or shedding the old exoskeleton after growing a new one that is not yet hardened. Molting cycles run nearly continuously until an arthropod reaches full size.
In the initial phase of molting, the animal stops feeding and its epidermis releases molting fluid, a mixture of enzymes that digests the endocuticle and thus detaches the old cuticle. This phase begins when the epidermis has secreted a new epicuticle to protect it from the enzymes, and the epidermis secretes the new exocuticle while the old cuticle is detaching. When this stage is complete, the animal makes its body swell by taking in a large quantity of water or air, and this makes the old cuticle split along predefined weaknesses where the old exocuticle was thinnest. It commonly takes several minutes for the animal to struggle out of the old cuticle. At this point the new one is wrinkled and so soft that the animal cannot support itself and finds it very difficult to move, and the new endocuticle has not yet formed. The animal continues to pump itself up to stretch the new cuticle as much as possible, then hardens the new exocuticle and eliminates the excess air or water. By the end of this phase the new endocuticle has formed. Many arthropods then eat the discarded cuticle to reclaim its materials.
Because arthropods are unprotected and nearly immobilized until the new cuticle has hardened, they are in danger both of being trapped in the old cuticle and of being attacked by predators. Molting may be responsible for 80 to 90% of all arthropod deaths.
Arthropods have open circulatory systems, although most have a few short, open-ended arteries. In chelicerates and crustaceans, the blood carries oxygen to the tissues, while hexapods use a separate system of tracheae. Many crustaceans, but few chelicerates and tracheates, use respiratory pigments to assist oxygen transport. The most common respiratory pigment in arthropods is copper-based hemocyanin; this is used by many crustaceans and a few centipedes. A few crustaceans and insects use iron-based hemoglobin, the respiratory pigment used by vertebrates. As with other invertebrates and unlike among vertebrates, the respiratory pigments of those arthropods that have them are generally dissolved in the blood and rarely enclosed in corpuscles.
The heart is typically a muscular tube that runs just under the back and for most of the length of the hemocoel. It contracts in ripples that run from rear to front, pushing blood forwards. Sections not being squeezed by the heart muscle are expanded either by elastic ligaments or by small muscles, in either case connecting the heart to the body wall. Along the heart run a series of paired ostia, non-return valves that allow blood to enter the heart but prevent it from leaving before it reaches the front.
Arthropods have a wide variety of respiratory systems. Small species often do not have any, since their high ratio of surface area to volume enables simple diffusion through the body surface to supply enough oxygen. Crustacea usually have gills that are modified appendages. Many arachnids have book lungs. Tracheae, systems of branching tunnels that run from the openings in the body walls, deliver oxygen directly to individual cells in many insects, myriapods and arachnids.
Living arthropods have paired main nerve cords running along their bodies below the gut, and in each segment the cords form a pair of ganglia from which sensory and motor nerves run to other parts of the segment. Although the pairs of ganglia in each segment often appear physically fused, they are connected by commissures (relatively large bundles of nerves), which give arthropod nervous systems a characteristic "ladder-like" appearance. The brain is in the head, encircling and mainly above the esophagus. It consists of the fused ganglia of the acron and one or two of the foremost segments that form the head – a total of three pairs of ganglia in most arthropods, but only two in chelicerates, which do not have antennae or the ganglion connected to them. The ganglia of other head segments are often close to the brain and function as part of it. In insects these other head ganglia combine into a pair of subesophageal ganglia, under and behind the esophagus. Spiders take this process a step further, as all the segmental ganglia are incorporated into the subesophageal ganglia, which occupy most of the space in the cephalothorax (front "super-segment").
There are two different types of arthropod excretory systems. In aquatic arthropods, the end-product of biochemical reactions that metabolise nitrogen is ammonia, which is so toxic that it needs to be diluted as much as possible with water. The ammonia is then eliminated via any permeable membrane, mainly through the gills. All crustaceans use this system, and its high consumption of water may be responsible for the relative lack of success of crustaceans as land animals. Various groups of terrestrial arthropods have independently developed a different system: the end-product of nitrogen metabolism is uric acid, which can be excreted as dry material; the Malpighian tubule system filters the uric acid and other nitrogenous waste out of the blood in the hemocoel, and dumps these materials into the hindgut, from which they are expelled as feces. Most aquatic arthropods and some terrestrial ones also have organs called nephridia ("little kidneys"), which extract other wastes for excretion as urine.
with three ocelli (centre), and compound eyes at the left and right]] Most arthropods have sophisticated visual systems that include one or more usually both of compound eyes and pigment-cup ocelli ("little eyes"). In most cases ocelli are only capable of detecting the direction from which light is coming, using the shadow cast by the walls of the cup. However the main eyes of spiders are pigment-cup ocelli that are capable of forming images, and those of jumping spiders can rotate to track prey.
Compound eyes consist of fifteen to several thousand independent ommatidia, columns that are usually hexagonal in cross section. Each ommatidium is an independent sensor, with its own light-sensitive cells and often with its own lens and cornea. Compound eyes have a wide field of view, and can detect fast movement and, in some cases, the polarization of light. On the other hand the relatively large size of ommatidia makes the images rather coarse, and compound eyes are shorter-sighted than those of birds and mammals – although this is not a severe disadvantage, as objects and events within are most important to most arthropods. Several arthropods have color vision, and that of some insects has been studied in detail; for example, the ommatidia of bees contain receptors for both green and ultra-violet.
Most arthropods lack balance and acceleration sensors, and rely on their eyes to tell them which way is up. The self-righting behavior of cockroaches is triggered when pressure sensors on the underside of the feet report no pressure. However many malacostracan crustaceans have statocysts, which provide the same sort of information as the balance and motion sensors of the vertebrate inner ear.
The proprioceptors of arthropods, sensors that report the force exerted by muscles and the degree of bending in the body and joints, are well understood. However, little is known about what other internal sensors arthropods may have.
Most arthropods lay eggs, but scorpions are viviparous: they produce live young after the eggs have hatched inside the mother, and are noted for prolonged maternal care. Newly born arthropods have diverse forms, and insects alone cover the range of extremes. Some hatch as apparently miniature adults (direct development), and in some cases, such as silverfish, the hatchlings do not feed and may be helpless until after their first molt. Many insects hatch as grubs or caterpillars, which do not have segmented limbs or hardened cuticles, and metamorphose into adult forms by entering an inactive phase in which the larval tissues are broken down and re-used to build the adult body. Dragonfly larvae have the typical cuticles and jointed limbs of arthropods but are flightless water-breathers with extendable jaws. Crustaceans commonly hatch as tiny nauplius larvae that have only three segments and pairs of appendages.
The earliest fossil crustaceans date from about in the Cambrian, and fossil shrimp from about apparently formed a tight-knit procession across the seabed. Crustacean fossils are common from the Ordovician period onwards. They have remained almost entirely aquatic, possibly because they never developed excretory systems that conserve water.
Arthropods provide the earliest identifiable fossils of land animals, from about in the Late Silurian, and terrestrial tracks from about appear to have been made by arthropods. Arthropods were well pre-adapted to colonize land, because their existing jointed exoskeletons provided protection against desiccation, support against gravity and a means of locomotion that was not dependent on water. Around the same time the aquatic, scorpion-like eurypterids became the largest ever arthropods, some as long as .
The oldest known arachnid is the trigonotarbid Palaeotarbus jerami, from about in the Silurian period.|group=Note}} Attercopus fimbriunguis, from in the Devonian period, bears the earliest known silk-producing spigots, but its lack of spinnerets means it was not one of the true spiders, which first appear in the Late Carboniferous over . The Jurassic and Cretaceous periods provide a large number of fossil spiders, including representatives of many modern families. Fossils of aquatic scorpions with gills appear in the Silurian and Devonian periods, and the earliest fossil of an air-breathing scorpion with book lungs dates from the Early Carboniferous period.
The oldest definitive insect fossil is the Devonian Rhyniognatha hirsti, dated at , but its mandibles are of a type found only in winged insects, which suggests that the earliest insects appeared in the Silurian period. The Mazon Creek lagerstätten from the Late Carboniferous, about , include about 200 species, some gigantic by modern standards, and indicate that insects had occupied their main modern ecological niches as herbivores, detritivores and insectivores. Social termites and ants first appear in the Early Cretaceous, and advanced social bees have been found in Late Cretaceous rocks but did not become abundant until the Mid Cenozoic.
A contrary view was presented in 2003, when Jan Bergström and Xian-Guang Hou argued that, if arthropods were a "sister-group" to any of the anomalocarids, they must have lost and then re-evolved features that were well-developed in the anomalocarids. The earliest known arthropods ate mud in order to extract food particles from it, and possessed variable numbers of segments with unspecialized appendages that functioned as both gills and legs. Anomalocarids were, by the standards of the time, huge and sophisticated predators with specialized mouths and grasping appendages, fixed numbers of segments some of which were specialized, tail fins, and gills that were very different from those of arthropods. This reasoning implies that Parapeytoia, which has legs and a backward-pointing mouth like that of the earliest arthropods, is a more credible closest relative of arthropods than is Anomalocaris. In 2006, they suggested that arthropods were more closely related to lobopods and tardigrades than to anomalocarids. Relationships of Ecdysozoa to each other and to annelids, etc., including euthycarcinoids
Higher up the "family tree", the Annelida have traditionally been considered the closest relatives of the Panarthropoda, since both groups have segmented bodies, and the combination of these groups was labelled Articulata. There had been competing proposals that arthropods were closely related to other groups such as nematodes, priapulids and tardigrades, but these remained minority views because it was difficult to specify in detail the relationships between these groups.
In the 1990s, molecular phylogenetic analyses of DNA sequences produced a coherent scheme showing arthropods as members of a superphylum labelled Ecdysozoa ("animals that molt"), which contained nematodes, priapulids and tardigrades but excluded annelids. This was backed up by studies of the anatomy and development of these animals, which showed that many of the features that supported the Articulata hypothesis showed significant differences between annelids and the earliest Panarthropods in their details, and some were hardly present at all in arthropods. This hypothesis groups annelids with molluscs and brachiopods in another superphylum, Lophotrochozoa.
If the Ecdysozoa hypothesis is correct, then segmentation of arthropods and annelids either has evolved convergently or has been inherited from a much older ancestor and subsequently lost in several other lineages, such as the non-arthropod members of the Ecdysozoa.
Aside from these major groups, there are also a number of fossil forms, mostly from the Early Cambrian, which are difficult to place, either from lack of obvious affinity to any of the main groups or from clear affinity to several of them. Marrella was the first one to be recognized as significantly different from the well-known groups.
The phylogeny of the major extant arthropod groups has been an area of considerable interest and dispute. The most recent studies tend to suggest a paraphyletic Crustacea with different hexapod groups nested within it. Myriapoda is grouped with Chelicerata in some recent studies (forming Myriochelata), and with Pancrustacea in other studies (forming Mandibulata). The placement of the extinct trilobites is also a frequent subject of dispute.
Since the International Code of Zoological Nomenclature recognises no priority above the rank of family, many of the higher-level groups can be referred to by a variety of different names.
However, the greatest contribution of arthropods to human food supply is by pollination: a 2008 study examined the 100 crops that FAO lists as grown for food, and estimated pollination's economic value as €153 billion, or 9.5% of the value of world agricultural production used for human food in 2005. Besides pollinating, bees produce honey, which is the basis of a rapidly growing industry and international trade.
The red dye cochineal, produced from a Central American species of insect, was economically important to the Aztecs and Mayans, and while the region was under Spanish control, becoming Mexico's second most-lucrative export; and it is now regaining some of the ground it lost to synthetic competitors. The blood of horseshoe crabs contains a clotting agent Limulus Amebocyte Lysate which is now used to test that antibiotics and kidney machines are free of dangerous bacteria, and to detect spinal meningitis and some cancers. Forensic entomology uses evidence provided by arthropods to establish the time and sometimes the place of death of a human, and in some cases the cause. Recently insects have also gained attention as potential sources of drugs and other medicinal substances.
The relative simplicity of the arthropods' body plan, allowing them to move on a variety of surfaces both on land and in water, have made them useful as models for robotics. The redundancy provided by segments allows arthropods and biomimetic robots to move normally even with damaged or lost appendages.
+ Diseases transmitted by insects | Disease !! Insect !! Cases per year !! Deaths per year | ||
Malaria | Anopheles mosquito | align="center"267 M || align="center" |1 to 2 M | |
Yellow fever | Aedes mosquito| | 4,432 | 1,177 |
Filariasis | Culex mosquito| | 250 M | unknown |
Many species of arthropods, principally insects but also mites, are agricultural and forest pests. The mite Varroa destructor has become the largest single problem faced by beekeepers worldwide. Efforts to control arthropod pests by large-scale use of pesticides have caused long term effects on human health and on biodiversity. Increasing arthropod resistance to pesticides has led to the development of integrated pest management using a wide range of meaures including biological control. Predatory mites may be useful in controlling some mite pests.
ar:مفصليات الأرجل an:Arthropoda roa-rup:Arthropoda az:Buğumayaqlılar zh-min-nan:Chat-kha tōng-bu̍t ba:Быуынтыҡ аяҡлылар be:Членістаногія be-x-old:Чэлясаногія bs:Zglavkari bg:Членестоноги ca:Artròpode cs:Členovci co:Arthropoda cy:Arthropod da:Leddyr de:Gliederfüßer nv:Chʼosh bijáád dahólónígíí et:Lülijalgsed el:Αρθρόποδα es:Arthropoda eo:Artropodoj eu:Artropodo fa:بندپایان hif:Arthropod fo:Liðadýr fr:Arthropode ga:Artrapód gl:Artrópodo ko:절지동물 hy:Հոդվածոտանիներ hi:आर्थ्रोपोडा संघ hr:Člankonošci io:Artropodo id:Artropoda ia:Arthropodo is:Liðdýr it:Arthropoda he:פרוקי-רגליים jv:Arthropoda ka:ფეხსახსრიანები kk:Буынаяқтылар sw:Arithropodi ht:Atwopòd ku:Artropod la:Arthropoda lv:Posmkāji lb:Glidderfüssler lt:Nariuotakojai li:Gelidpoetege hu:Ízeltlábúak mk:Членконоги ml:ആർത്രോപോഡ് ms:Artropod mn:Үет хөлтөн my:အင်န်သရိုပေါ့ဒ် nl:Geleedpotigen ja:節足動物 frr:Laspuateten no:Leddyr nn:Leddyr oc:Arthropoda pnb:ارتھروپوڈ nds:Liddfööt pl:Stawonogi pt:Artrópode ro:Artropode qu:Sillwichaki ru:Членистоногие sco:Arthropod sq:Këmbënyjorët scn:Arthropoda simple:Arthropod sk:Článkonožce sl:Členonožci sr:Зглавкари sh:Zglavkari fi:Niveljalkaiset sv:Leddjur tl:Arthropoda ta:கணுக்காலி te:ఆర్థ్రోపోడా th:สัตว์ขาปล้อง to:Veʻehokohoko tr:Eklem bacaklılar uk:Членистоногі vi:Động vật Chân khớp war:Arthropoda zh:节肢动物
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.