Commercial concentrated solar power plants were first developed in the 1980s, and the 354 MW SEGS CSP installation is the largest solar power plant in the world and is located in the Mojave Desert of California. Other large CSP plants include the Solnova Solar Power Station (150 MW) and the Andasol solar power station (100 MW), both in Spain. The 97 MW Sarnia Photovoltaic Power Plant in Canada, is the world’s largest photovoltaic plant.
Solar power is the conversion of sunlight into electricity. Sunlight can be converted directly into electricity using photovoltaics (PV), or indirectly with concentrated solar power (CSP), which normally focuses the sun's energy to boil water which is then used to provide power, and other technologies, such as the Stirling engine dishes which use a Stirling cycle engine to power a generator. Photovoltaics were initially used to power small and medium-sized applications, from the calculator powered by a single solar cell to off-grid homes powered by a photovoltaic array.
A significant problem with solar power is installation cost. Developing countries in particular may not have the funds to build solar power plants, although small solar applications are now replacing other sources in the developing world.
A parabolic trough consists of a linear parabolic reflector that concentrates light onto a receiver positioned along the reflector's focal line. The receiver is a tube positioned right above the middle of the parabolic mirror and is filled with a working fluid. The reflector is made to follow the Sun during the daylight hours by tracking along a single axis. Parabolic trough systems provide the best land-use factor of any solar technology. The SEGS plants in California and Acciona's Nevada Solar One near Boulder City, Nevada are representatives of this technology. Compact Linear Fresnel Reflectors are CSP-plants which use many thin mirror strips instead of parabolic mirrors to concentrate sunlight onto two tubes with working fluid. This has the advantage that flat mirrors can be used which are much cheaper than parabolic mirrors, and that more reflectors can be placed in the same amount of space, allowing more of the available sunlight to be used. Concentrating linear fresnel reflectors can be used in either large or more compact plants.
The Stirling solar dish combines a parabolic concentrating dish with a Stirling engine which normally drives an electric generator. The advantages of Stirling solar over photovoltaic cells are higher efficiency of converting sunlight into electricity and longer lifetime. Parabolic dish systems give the highest efficiency among CSP technologies. The 50 kW Big Dish in Canberra, Australia is an example of this technology.
A solar power tower uses an array of tracking reflectors (heliostats) to concentrate light on a central receiver atop a tower. Power towers are more cost effective, offer higher efficiency and better energy storage capability among CSP technologies. The Solar Two in Barstow, California and the Planta Solar 10 in Sanlucar la Mayor, Spain are representatives of this technology.
Between 1970 and 1983 photovoltaic installations grew rapidly, but falling oil prices in the early 1980s moderated the growth of PV from 1984 to 1996. Since 1997, PV development has accelerated due to supply issues with oil and natural gas, global warming concerns, and the improving economic position of PV relative to other energy technologies. Photovoltaic production growth has averaged 40% per year since 2000 and installed capacity reached 10.6 GW at the end of 2007, and 14.73 GW in 2008. As of November 2010, the largest photovoltaic (PV) power plants in the world are the Finsterwalde Solar Park (Germany, 80.7 MW), Sarnia Photovoltaic Power Plant (Canada, 80 MW), Olmedilla Photovoltaic Park (Spain, 60 MW), the Strasskirchen Solar Park (Germany, 54 MW), the Lieberose Photovoltaic Park (Germany, 53 MW), and the Puertollano Photovoltaic Park (Spain, 50 MW).
+ World's largest photovoltaic power stations (50 MW or larger) | |||
PV power station !! Country !! DC peak power (Watt-peak | MWp) !! Notes | ||
Sarnia Photovoltaic Power Plant | Solar power in Canada>Canada | 97 | |
Montalto di Castro Photovoltaic Power Station | Italy| | 84.2 | Constructed 2009-2010 |
Finsterwalde Solar Park | Solar power in GermanyGermany || | 80.7 | Phase I completed 2009, phase II and III 2010 |
Rovigo Photovoltaic Power Plant | Solar power in ItalyItaly || | 70 | Completed November 2010 |
Olmedilla Photovoltaic Park | Solar power in SpainSpain || | 60 | Completed September 2008 |
Strasskirchen Solar Park | Germany| | 54 | |
Lieberose Photovoltaic Park | Germany| | 53 | Completed in 2009 |
Puertollano Photovoltaic Park | Spain| | 50 | 231,653 crystalline silicon modules, Suntech and Solaria, opened 2008 |
+Operational solar thermal power stations | |||||
(Megawatt>MW)!!Name!!Country!!Location!!Notes | |||||
Solar Energy Generating Systems | | | Mojave Desert California | Collection of 9 units | ||
align=right | 150 | Solnova Solar Power Station| | Seville | Completed 2010 | |
Andasol solar power station | | | Granada | Completed 2009 | ||
align=right | 64 | Nevada Solar One| | Boulder City, Nevada | ||
align=right | 50 | Ibersol Ciudad Real| | Puertollano, Ciudad Real | Completed May 2009 | |
align=right | 50 | Alvarado I| | Badajoz | Completed July 2009 | |
align=right | 50 | Extresol Solar Power StationExtresol 1 || | Torre de Miguel Sesmero (Badajoz) | Completed February 2010 | |
align=right | 50 | La Florida| | Alvarado (Badajoz) | completed July 2010 |
Concentrated Solar Power (CSP) facilities produce power more cheaply than photovoltaic systems and may eventually be price-competitive with conventional power plants. The Ivanpah Solar Power Facility is expected to produce power at costs comparable to natural gas.
Additionally, governments have created various financial incentives to encourage the use of solar power. Renewable portfolio standards impose a government mandate that utilities generate or acquire a certain percentage of renewable power regardless of increased energy procurement costs. In most states, RPS goals can be achieved by any combination of solar, wind, biomass, landfill gas, ocean, geothermal, municipal solid waste, hydroelectric, hydrogen, or fuel cell technologies. In Canada, the Renewable Energy Standard Offer Program (RESOP), introduced in 2006 and updated in 2009 with the passage of the Green Energy Act, allows residential homeowners in Ontario with solar panel installations to sell the energy they produce back to the grid (i.e., the government) at 42¢/kWh, while drawing power from the grid at an average rate of 6¢/kWh. The program is designed to help promote the government's green agenda and lower the strain often placed on the energy grid at peak hours. In March, 2009 the proposed FIT was increased to 80¢/kWh for small, roof-top systems (≤10 kW).
One financial disincentive to solar power is the large land area required. A 1000 Megawatt CSP facility requires 6000 acres of land while a similar coal-fired plant requires less than 640 acres of land. Producing 1000 Megawatts from photovoltaics requires over 12,000 acres of land. In the US, power companies may avoid purchasing land by leasing public land from the federal government to develop solar power facilities; however this entails different costs such as rental fees, megawatt surcharges, and the cost of compliance with a complex and time-consuming federal permitting process.
Solar energy can be stored at high temperatures using molten salts. Salts are an effective storage medium because they are low-cost, have a high specific heat capacity and can deliver heat at temperatures compatible with conventional power systems. The Solar Two used this method of energy storage, allowing it to store 1.44 TJ in its 68 m³ storage tank, enough to provide full output for close to 39 hours, with an efficiency of about 99%.
Off-grid PV systems have traditionally used rechargeable batteries to store excess electricity. With grid-tied systems, excess electricity can be sent to the transmission grid. Net metering programs give these systems a credit for the electricity they deliver to the grid. This credit offsets electricity provided from the grid when the system cannot meet demand, effectively using the grid as a storage mechanism. Credits are normally rolled over month to month and any remaining surplus settled annually.
Pumped-storage hydroelectricity stores energy in the form of water pumped when surplus electricity is available, from a lower elevation reservoir to a higher elevation one. The energy is recovered when demand is high by releasing the water: the pump becomes a turbine, and the motor a hydroelectric power generator.
Artificial photosynthesis involves the use of nanotechnology to store solar electromagnetic energy in chemical bonds, by splitting water to produce hydrogen fuel or then combining with carbon dioxide to make biopolymers such as methanol. Many large national and regional research projects on artificial photosynthesis are now trying to develop techniques integrating improved light capture, quantum coherence methods of electron transfer and cheap catalytic materials that operate under a variety of atmospheric conditions.
Concentrated photovoltaics (CPV) systems employ sunlight concentrated onto photovoltaic surfaces for the purpose of electrical power production. Solar concentrators of all varieties may be used, and these are often mounted on a solar tracker in order to keep the focal point upon the cell as the Sun moves across the sky. Luminescent solar concentrators (when combined with a PV-solar cell) can also be regarded as a CPV system. Luminescent solar concentrators are useful as they can improve performance of PV-solar panels drastically.
Thermoelectric, or "thermovoltaic" devices convert a temperature difference between dissimilar materials into an electric current. First proposed as a method to store solar energy by solar pioneer Mouchout in the 1800s, thermoelectrics reemerged in the Soviet Union during the 1930s. Under the direction of Soviet scientist Abram Ioffe a concentrating system was used to thermoelectrically generate power for a 1 hp engine. Thermogenerators were later used in the US space program as an energy conversion technology for powering deep space missions such as Cassini, Galileo and Viking. Research in this area is focused on raising the efficiency of these devices from 7–8% to 15–20%.
Space-based solar power is a theoretical design for the collection of solar power in space, for use on Earth. SBSP differs from the usual method of solar power collection in that the solar panels used to collect the energy would reside on a satellite in orbit, often referred to as a solar power satellite (SPS), rather than on Earth's surface. In space, collection of the Sun's energy is unaffected by the day/night cycle, weather, seasons, or the filtering effect of Earth's atmospheric gases. Average solar energy per unit area outside Earth's atmosphere is on the order of ten times that available on Earth's surface.
Category:Energy conversion Category:Alternative energy Power
af:Sonkrag ar:قوة شمسية da:Solkraft fr:Centrale solaire hi:सौर शक्ति no:Solkraft simple:Solar power plant ta:சூரிய மின்சக்தி te:సౌర శక్తి war:Kusog sirakThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.