- Order:
- Duration: 0:39
- Published: 13 Feb 2008
- Uploaded: 21 Aug 2011
- Author: biertjuh1958
A naval mine is a self-contained explosive device placed in water to destroy surface ships or submarines. Unlike depth charges, mines are deposited and left to wait until they are triggered by the approach of, or contact with, an enemy vessel. Naval mines can be used offensively—to hamper enemy shipping movements or lock vessels into a harbour; or defensively—to protect friendly vessels and create "safe" zones.
Mines can be laid in many ways: by purpose-built minelayers, refitted ships, submarines, or aircraft—and even by dropping them into a harbour by hand. They can be inexpensive: some variants can cost as little as US$1000, though more sophisticated mines can cost millions of dollars, be equipped with several kinds of sensors, and deliver a warhead by rocket or torpedo.
Their flexibility and cost-effectiveness make mines attractive to the less powerful belligerent in asymmetric warfare. The cost of producing and laying a mine is usually anywhere from 0.5% to 10% of the cost of removing it, and it can take up to 200 times as long to clear a minefield as to lay it. Parts of some World War II naval minefields still exist because they are too extensive and expensive to clear. It is possible for some of these 1940s-era mines to remain dangerous for many years to come.
Mines have been employed as offensive or defensive weapons in rivers, lakes, estuaries, seas, and oceans, but they can also be used as tools of psychological warfare. Offensive mines are placed in enemy waters, outside harbours and across important shipping routes with the aim of sinking both merchant and military vessels. Defensive minefields safeguard key stretches of coast from enemy ships and submarines, forcing them into more easily-defended areas, or keeping them away from sensitive ones.
Minefields designed for psychological effect are usually placed on trade routes and are used to stop shipping reaching an enemy nation. They are often spread thin, to create an impression of minefields existing across large areas. A single mine inserted strategically on a shipping route can stop maritime movements for days while the entire area is swept.
International law requires nations to declare when they mine an area, in order to make it easier for civil shipping to avoid the mines. The warnings do not have to be specific; during World War II, Britain declared simply that it had mined the English Channel, North Sea, and French coast.
The first plan for a sea mine in the West was by Ralph Rabbards, who presented his design to Queen Elizabeth I of England in 1574. The Dutch inventor Cornelius Drebbel was employed in the Office of Ordnance by King Charles I of England to make weapons, including a "floating petard" which proved a failure. Weapons of this type were apparently tried by the English at the Siege of La Rochelle in 1627.
's mines destroying a British ship in 1777]]
American David Bushnell invented the first practical mine, for use against the British in the American War of Independence. It was a watertight keg filled with gunpowder that was floated toward the enemy, detonated by a sparking mechanism if it struck a ship. It was used on the Delaware River as a drift mine, and was regarded as unethical.
The American Civil War also saw the successful use of mines. The first ship sunk by a mine was the USS Cairo in 1862 in the Yazoo River. Rear Admiral David Farragut's famous statement, "Damn the torpedoes, full speed ahead!" refers to a minefield laid at Mobile, Alabama.
In the 19th century, mines were called torpedoes, a name probably conferred by Dennis Fletcher after the torpedo fish, which gives powerful electric shocks. A spar torpedo was a mine attached to a long pole and detonated when the ship carrying it rammed another one. The H. L. Hunley used one to sink the USS Housatonic on February 17, 1864. A Harvey Torpedo was a type of floating mine towed alongside a ship, and was briefly in service in the Royal Navy in the 1870s. Other "torpedoes" attached to ships or propelled themselves. One such weapon, called the Whitehead torpedo after its inventor, caused the word "torpedo" to be used for self-propelled underwater missiles rather than static devices.
The next major use of mines was during the Russo-Japanese War of 1904-1905. They proved their worth as weapons in this conflict. For instance, two mines blew up when the Russian battleship Petropavlovsk struck them near Port Arthur, sending the holed vessel to the bottom and killing the fleet commander, Admiral Stepan Makarov, and most of her crew in the process. The toll inflicted by mines was not confined to the Russians, however. The Japanese Navy lost two battleships, four cruisers, two destroyers and a torpedo-boat to offensively laid mines during the war. Most famously, in May 1905, the Russian minelayer Amur planted a minefield off Port Arthur and succeeded in sinking the Japanese battleship Hatsuse.
Many early mines were fragile and dangerous to handle, as they contained glass containers filled with nitroglycerin or mechanical devices that activated a blast upon tipping. Several mine-laying ships were destroyed when their cargo exploded.
Beginning at the turn of the century, submarine mines played a major role in the defense of U.S. harbors against enemy attack. The mines employed were controlled mines, anchored to the bottoms of the harbors and detonated under control from large mine casemates on shore.
During World War I, mines were used extensively to defend coasts, coastal shipping, ports and naval bases around the globe. The Germans laid mines in shipping lanes to sink merchant and naval vessels serving Britain. The Allies targeted the German U-boats in the Strait of Dover and the Hebrides. In an attempt to seal up the northern exits of the North Sea, the Allies developed the North Sea Mine Barrage. During a period of five months from June almost 70,000 mines were laid spanning the North Sea's northern exits. The total number of mines laid in the North Sea, the British East Coast, Straits of Dover, and Heligoland Bight is estimated at 190,000 and the total number during the whole of WWI was 235,000 sea mines. Clearing the barrage after the war took 82 ships and 5 months, working around the clock.
Initially, contact mines—requiring a ship physically strike a mine to detonate it—were employed, usually tethered at the end of a cable just below the surface of the water. Contact mines usually hole ships’ hulls. By the beginning of World War II, most nations had developed mines that could be dropped from aircraft and floated on the surface, making it possible to lay them in enemy harbors. The use of dredging and nets was effective against this type of mine, but this consumed time and resources, and required harbors to be closed.
Later, some ships survived mine blasts, limping into port with buckled plates and broken backs. This appeared to be due to a new type of mine, detecting ships magnetically and detonating at a distance, causing damage with the shock wave of the explosion. Ships that had successfully run the gauntlet of the Atlantic crossing were sometimes destroyed entering freshly cleared British harbors. More shipping was being lost than could be replaced, and Churchill ordered the intact recovery of one of these new mines was of the highest priority.
The British experienced a stroke of luck in November 1939. A German mine was dropped from an aircraft onto the mud flats of the Thames estuary during low tide. As if this was not sufficiently good fortune, the land belonged to the army, and a base with men and workshops was at hand. Experts were dispatched from London to investigate the mine. They had some idea that the mines used magnetic sensors, so everyone removed all metal, including their buttons, and made tools of non-magnetic brass. They disarmed the mine and rushed it to labs at Portsmouth, where scientists discovered a new type of arming mechanism. A large ferrous object passing through the Earth's magnetic field will concentrate the field through it; the mine's detector was designed to trigger at the mid-point of a steel-hulled ship passing overhead. The mechanism had an adjustable sensitivity, calibrated in milligauss. (As it turned out, the German firing mechanism was overly sensitive, making sweeping easier.) The U.S. began adding delay counters to their magnetic mines in June 1945.
From these data, methods were developed to clear the mines. Early methods included the use of large electromagnets dragged behind ships or below low-flying aircraft (a number of older bombers like the Vickers Wellington were used for this). Both of these methods had the disadvantage of "sweeping" only a small strip. A better solution was found in the "Double-L Sweep" using electrical cables dragged behind ships that passed large pulses of current through the seawater. This induced a large magnetic field and swept the entire area between the two ships. The older methods continued to be used in smaller areas. The Suez Canal continued to be swept by aircraft, for instance. Wartime Japanese sweep methods, by contrast, never advanced much past 1930s standards, and failed entirely to keep up with new American mines, clearing no more than 15% of all the mines laid in Japan's coastal waters.
While these methods were useful for clearing mines from local ports, they were of little or no use for enemy-controlled areas. These were typically visited by warships, and the majority of the fleet then underwent a massive degaussing process, where their hulls had a slight "south" bias induced into them which offset the concentration effect almost to zero.
Initially, major warships and large troopships had a copper degaussing coil fitted around the perimeter of the hull, energized by the ship's electrical system whenever in suspected magnetic-mined waters. Some of the first to be so-fitted were the carrier HMS Ark Royal and the liners and , which were used as troopships. This was felt to be impracticable for the myriad of smaller warships and merchant vessels, not least due to the amount of copper that would be required. It was found that "wiping" a current-carrying cable up and down a ship' hull temporarily canceled the ships' magnetic signature sufficiently to nullify the threat. This started in late 1939, and by 1940 merchant vessels and the smaller British warships were largely immune for a few months at a time until they once again built up a field. Many of the boats that sailed to Dunkirk were degaussed in a marathon four day effort by degaussing stations.
The Allies deployed acoustic mines, against which even wooden-hulled ships (in particular minesweepers) remained vulnerable. After sweeping for almost a year, in May 1946, the Navy abandoned the effort with 13,000 mines still unswept. Over the next thirty years, more than 500 minesweepers (of a variety of types) were damaged or sunk in continuing clearance efforts.
During the Iran–Iraq War from 1980 to 1988, the belligerents mined several areas of the Persian Gulf and nearby waters. On April 14, 1988, the USS Samuel B. Roberts (FFG-58) struck an Iranian M-08/39 mine in the central Persian Gulf shipping lane, wounding 10 sailors.
In the summer of 1984, magnetic sea mines damaged at least 19 ships in the Red Sea. The U.S. concluded Libya was probably responsible for the minelaying. In response the U.S., Britain, France, and three other nations launched Operation Intense Look, a minesweeping operation in the Red Sea involving more than 46 ships.
On the orders of the Reagan administration, the CIA mined Nicaragua's Sandino port in 1984 in support of the Contra guerrilla group. A Soviet tanker was among the ships damaged by these mines. In 1986, in the case of Nicaragua v. United States, the International Court of Justice ruled that this mining was a violation of international law.
During the Gulf War, Iraqi naval mines severely damaged USS Princeton (CG-59) and USS Tripoli (LPH-10). When the war concluded, eight countries conducted clearance operations.
Early mines had mechanical mechanisms to detonate them, but these were superseded in the 1870s by the Hertz Horn (or chemical horn), which was found to work reliably even after the mine had been in the sea for several years. The mine's upper half is studded with hollow lead protuberances, each containing a glass vial filled with sulfuric acid. When a ship's hull crushes the metal horn, it cracks the vial inside it, allowing the acid to run down a tube and into a lead-acid battery which until then contains no acid electrolyte. This energizes the battery, which detonates the explosive.
Earlier forms of the detonator used a vial filled with sulfuric acid, surrounded by a mixture of potassium perchlorate and sugar. When the vial was crushed, the acid ignited the perchlorate-sugar mix, and the resulting flame ignited the gunpowder charge.
During the initial period of World War I, the British Navy used contact mines in the English Channel and later in large areas of the North Sea to hinder patrols by German submarines. Later, the American antenna mine was widely used because submarines could be at any depth from the surface to the seabed. This type of mine had a copper wire attached to a buoy that floated above the explosive charge which was weighted to the seabed with a steel cable. If a submarine's steel hull touched the copper wire, the slight voltage change caused by contact between two dissimilar metals was amplified and detonated the explosives.
Floating mines typically have a mass of around 200 kg, including 80 kg of explosives e.g. TNT, minol or amatol.
During WWII mine traps were used for blocking port entrances. Two floating mines were anchored some distance apart on either side of a shipping channel, linked by a chain. When a deep draft vessel passed through the trap it would pull the chain along with it, dragging the mines onto the sides of the ship; the resulting double explosion often sank it. This system was not used extensively, but proved effective in blocking ports.
Churchill promoted "Operation Royal Marine" in 1940 and again in 1944 where floating mines were put into the Rhine in France to float down the river, becoming active after a time calculated to be long enough to reach German territory.
After World War I the drifting contact mine was banned, but was occasionally used during World War II. The drifting mines were much harder to remove than tethered mines after the war, and they caused about the same damage to both sides.
These mines usually weighed 2 to 50 kg, including 1 to 40 kg of explosives (TNT or hexatonal).
Modern examples usually weigh 200 kg (440 lb), including 80 kg (175 lb) of explosives (TNT or hexatonal).
First used during the First World War, their use became more general in the Second World War. The sophistication of influence mine fuzes has increased considerably over the years as first transistors and then microprocessors have been incorporated into designs. Simple magnetic sensors have been superseded by total-field magnetometers. Whereas early magnetic mine fuzes would respond only to changes in a single component of a target vessel's magnetic field, a total field magnetometer responds to changes in the magnitude of the total background field (thus enabling it to better detect even degaussed ships). Similarly, the original broadband hydrophones of 1940s acoustic mines (which operate on the integrated volume of all frequencies) have been replaced by narrow-band sensors which are much more sensitive and selective. Mines can now be programmed to listen for highly specific acoustic signatures (e.g. a gas turbine powerplant and/or cavitation sounds from a particular design of propeller) and ignore all others. The sophistication of modern electronic mine fuzes incorporating these Digital Signal Processing capabilities makes it much more difficult to detonate the mine with electronic countermeasures because several sensors working together (e.g. magnetic, passive acoustic and water pressure) allow it to ignore signals which are not recognised as being the unique signature of an intended target vessel.
Modern influence mines such as the BAE Stonefish are computerised, with all the programmability that this implies e.g. the ability to quickly load new acoustic signatures into fuzes, or program them to detect a single, highly distinctive target signature. In this way, a mine with a passive acoustic fuze can be programmed to ignore all friendly vessels and small enemy vessels, only detonating when a very large enemy target passes over it. Alternatively, the mine can be programmed specifically to ignore all surface vessels regardless of size and exclusively target submarines.
Even as far back as the Second World War it was possible to incorporate a "ship counter" facility into mine fuzes e.g. set the mine to ignore the first two ships to pass over it (which could be mine-sweepers deliberately trying to trigger mines) but detonate when the third ship passes overhead—which could be a high-value target such as an aircraft carrier or oil tanker. Even though modern mines are generally powered by a long life lithium battery, it is important to conserve power because they may need to remain active for months or even years. For this reason, most influence mines are designed to remain in a semi-dormant state until an unpowered (e.g. deflection of a mu-metal needle) or low-powered sensor detects the possible presence of a vessel, at which point the mine fuze powers up fully and the passive acoustic sensors will begin to operate for some minutes. It is possible to program computerised mines to delay activation for days or weeks after being laid; similarly, they can be programmed to self-destruct or render themselves safe after a preset period of time, e.g., 12 days or 12 months. Generally, the more sophisticated the mine design, the more likely it is to have some form of anti-handling device fitted in order to hinder clearance by divers or remotely piloted submersibles.
These mines usually weigh between 150 and 1,500 kilograms (330 to 3,300 pounds), including between 125 and 1,400 kg (275 to 3,090 pounds) of explosives.
Several specialized mines have been developed for other purposes than the common minefield.
;Torpedo mine bomber]] The torpedo mine is a self-propelled variety, able to lie in wait for a target and then pursue it e.g. the CAPTOR mine. Other designs such as the Mk 67 Submarine Launched Mobile Mine (which is based on a Mark 37 torpedo) are capable of swimming as far as 10 miles through or into a channel, harbor, shallow water area and other zones which would normally be inaccessible to craft laying the device. After reaching the target area they sink to the sea bed and act like conventionally laid influence mines. Generally, torpedo mines incorporate computerised acoustic and magnetic fuzes.
The U.S. Mark 24 "mine", code-named FIDO, was actually an ASW homing torpedo. The mine designation was disinformation to conceal its function.
;Nuclear mine During the Cold War a test was conducted with naval mine fitted with tactical nuclear warheads Operation Crossroads. This weapon was experimental and never went into production.
;Daisy-chained mine This comprises two moored, floating contact mines which are tethered together by a length of steel cable or chain. Typically, each mine is situated approximately away from its neighbour, and each floats a few metres below the surface of the ocean. When the target ship hits the steel cable, the mines on either side are drawn down the side of the ship's hull, exploding on contact. In this manner it is almost impossible for target ships to pass safely between two individually moored mines. Daisy-chained mines are a very simple concept which was used during the Second World War.
;Dummy mine Plastic drums filled with sand or concrete are periodically rolled off the side of ships as real mines are laid in large mine-fields. These inexpensive false targets (designed to be of a similar shape and size as genuine mines) are intended to slow down the process of mine clearance: a mine-hunter is forced to investigate each suspicious sonar contact on the sea bed, whether it is real or not. Often a maker of Naval mines will provide both training and dummy versions of their mines.
Laying a minefield is a relatively fast process with specialized ships, which is still today the most common method. These minelayers can carry several thousand mines and manoeuvre with high precision. The mines are dropped at a predefined interval into the water behind the ship. Each mine is recorded for later clearing, but it is not unusual for these recordings to be lost together with the ships. Therefore many countries demand that all mining operations shall be planned on land and records kept so the mines can later be recovered more easily.
Other methods to lay minefields include:
In some cases, mines are automatically activated upon contact with the water. In others, a safety lanyard is pulled (e.g. one end attached to the rail of a ship, aircraft or torpedo tube) which starts an automatic timer countdown before the arming process is complete. Typically, the automatic safety-arming process takes some minutes to complete. This is in order to give the people laying the mines sufficient time to move out of its activation/blast zone.
As early as 1942, American mining experts such as Naval Ordnance Laboratory scientist Dr. Ellis A. Johnson, Commander, Naval Reserve, suggested massive aerial mining operations against Japan's "outer zone" (Korea and northern China) as well as the "inner zone", their home islands. First, aerial mines would have to be developed further and manufactured in large numbers. Second, laying the mines would require a sizable air group. The US Army Air Force had the carrying capacity but considered mining to be the Navy's job. The US Navy lacked suitable aircraft. Johnson set about convincing General Curtis LeMay of the efficacy of very heavy bombers laying aerial mines.
In the meantime, B-24 Liberator, PBY Catalina and other available bomber aircraft took part in localized mining operations in the Southwest Pacific and the China Burma India (CBI) Theaters, beginning with a very successful attack on the Yangon River in February 1943. Aerial minelaying operations involved a coalition of British, Australian and American aircrews, with the RAF and the Royal Australian Air Force (RAAF) carrying out 60% of the sorties and the USAAF and US Navy covering 40%. Both British and American mines were used. Japanese merchant shipping suffered tremendous losses, while Japanese mine sweeping forces were spread too thin attending to far-flung ports and extensive coastlines. Admiral Thomas C. Kinkaid, who directed nearly all RAAF mining operations in CBI, heartily endorsed aerial mining, writing in July 1944 that "aerial mining operations were of the order of 100 times as destructive to the enemy as an equal number of bombing missions against land targets." 12,000 aerial mines were laid, a significant barrier to Japan's access to outside resources. Prince Fumimaro Konoe said after the war that the aerial mining by B-29s had been "equally as effective as the B-29 attacks on Japanese industry at the closing stages of the war when all food supplies and critical material were prevented from reaching the Japanese home islands." The United States Strategic Bombing Survey (Pacific War) concluded that it would have been more efficient to combine the United States's effective anti-shipping submarine effort with land- and carrier-based air power to strike harder against merchant shipping and begin a more extensive aerial mining campaign earlier in the war. Survey analysts projected that this would have starved Japan, forcing an earlier end to the war. After the war, Dr. Johnson looked at the Japan inner zone shipping results, comparing the total economic cost of submarine-delivered mines versus air-dropped mines and found that, though 1 in 12 submarine mines connected with the enemy as opposed to 1 in 21 for aircraft mines, the aerial mining operation was about ten times less expensive per enemy ton sunk.
For the purpose of clearing all types of naval mines, the Royal Navy employed German crews and minesweepers from June 1945 to January 1948, organised in the German Mine Sweeping Administration, the GMSA, which consisted of 27,000 members of the former Kriegsmarine and 300 vessels. Mine clearing wasn't always successful: a number of ships were damaged or sunk by mines after the war. Two such examples were the Liberty ships Pierre Gibault which was scrapped after hitting a mine in a previously cleared area off the Greek island of Kythira in June 1945, and Nathaniel Bacon which hit a minefield off Civitavecchia, Italy in December 1945, caught fire, was beached, and broke in two.
The resulting gas cavitation and shock-front-differential over the width of the human body is sufficient to stun or kill divers.
A steel-hulled ship can be degaussed (more correctly, de-oerstedted or depermed) using a special degaussing station that contains many large coils and induces a magnetic field in the hull with alternating current to demagnetize the hull. This is a rather problematic solution, as magnetic compasses need recalibration and all metal objects must be kept in exactly the same place. Ships slowly regain their magnetic field as they travel through the Earth's magnetic field, so the process has to be repeated every six months.
A simpler variation of this technique, called wiping, was developed by Charles F. Goodeve which saved time and resources.
Between 1941 and 1943 the US Naval Gun factory (a division of the Naval Ordinance Laboratory) in Washington D.C. built physical models of all US Naval ships. Three kinds of steel were used in shipbuilding: mild steel for bulkheads, a mixture of mild steel and high tensile steel for the hull, and special treatment steel for armor plate. The models were placed within coils which could simulate the Earth's magnetic field at any location. The magnetic signatures were measured with degaussing coils. The objective was to reduce the vertical component of the combination of the Earth's field and the ship's field at the usual depth of German mines. From the measurements, coils were placed and coil currents determined to minimize the chance of detonation for any ship at any heading at any latitude.
Some ships are built with magnetic inductors, large coils placed along the ship to counter the ship's magnetic field. Using magnetic probes in strategic parts of the ship, the strength of the current in the coils can be adjusted to minimize the total magnetic field. This is a heavy and clumsy solution, suited only to small-to-medium sized ships. Boats typically lack the generators and space for the solution, while the amount of power needed to overcome the magnetic field of a large ship is impractical.
from HM-15 tows a minesweeping sled while conducting simulated mine clearing operations]] after striking a mine off Utah Beach, 7 June 1944. Note her broken back, with smoke pouring from amidships.]]
If a contact sweep hits a mine, the wire of the sweep rubs against the mooring wire until it is cut. Sometimes "cutters", explosive devices to cut the mine's wire, are used to lessen the strain on the sweeping wire. Mines cut free are recorded and collected for research or shot with a deck gun.
Minesweepers protect themselves with an oropesa or paravane instead of a second minesweeper. These are torpedo-shaped towed bodies, similar in shape to a Harvey Torpedo, that are streamed from the sweeping vessel thus keeping the sweep at a determined depth and position. Some large warships were routinely equipped with paravane sweeps near the bows in case they inadvertently sailed into minefields—the mine would be deflected towards the paravane by the wire instead of towards the ship by its wake. More recently, heavy-lift helicopters have dragged minesweeping sleds, as in the 1991 Persian Gulf War.
The distance sweep mimics the sound and magnetism of a ship and is pulled behind the sweeper. It has floating coils and large underwater drums. It is the only sweep effective against bottom mines.
During the Second World War, RAF Coastal Command used Vickers Wellington bombers Wellington DW.Mk I fitted with degaussing coils to trigger magnetic mines.
Modern influence mines are designed to discriminate against false inputs and are therefore much harder to sweep. They often contain inherent anti-sweeping mechanisms. For example, they may be programmed to respond to the unique noise of a particular ship-type, its associated magnetic signature and the typical pressure displacement of such a vessel. As a result, a mine-sweeper must accurately guess and mimic the required target signature in order to trigger detonation. The task is complicated by the fact that an influence mine may have one or more of a hundred different potential target signatures programmed into it.
Another anti-sweeping mechanism is a ship-counter in the mine fuze. When enabled, this allows detonation only after the mine fuze has been triggered a pre-set number of times. To further complicate matters, influence mines may be programmed to arm themselves (or disarm automatically—known as self-sterilization) after a pre-set time. During the pre-set arming delay (which could last days or even weeks) the mine would remain dormant and ignore any target stimulus, whether genuine or faked.
When influence mines are laid in an ocean minefield, they may have various combinations of fuze settings configured. For example, some mines (with the acoustic sensor enabled) may become active within three hours of being laid, others (with the acoustic and magnetic sensors enabled) may become active after two weeks but have the ship-counter mechanism set to ignore the first two trigger events, and still others in the same minefield (with the magnetic and pressure sensors enabled) may not become armed until three weeks have passed. Groups of mines within this mine-field may have different target signatures which may or may not overlap. The fuzes on influence mines allow many different permutations, which complicates the clearance process.
Mines with ship-counters, arming delays and highly specific target signatures in mine fuzes can falsely convince a belligerent that a particular area is clear of mines or has been swept effectively because a succession of vessels have already passed through safely.
s of the German Navy]]
Sea mammals (mainly the Bottlenose Dolphin) have been trained to hunt and mark mines, most famously by the U.S. Navy Marine Mammal Program. Mine-clearance dolphins were deployed in the Persian Gulf during the Iraq War in 2003. The Navy claims that these dolphins were effective in helping to clear more than 100 antiship mines and underwater booby traps from Umm Qasr Port.
French naval officer Jacques Yves Cousteau's Undersea Research Group was once involved in mine-hunting operations: They removed or detonated a variety of German mines, but one particularly defusion-resistant batch—equipped with acutely sensitive pressure, magnetic, and acoustic sensors and wired together so that one explosion would trigger the rest—was simply left undisturbed for years until corrosion would (hopefully) disable the mines.
An updated form of mine breaking is the use of small unmanned ROVs that simulate the acoustic and magnetic signatures of larger ships and are built to survive exploding mines. Repeated sweeps would be required in case one or more of the mines had its "ship counter" facility enabled i.e. were programmed to ignore the first 2, 3, or even 6 target activations.
MK67 SLMM Submarine Launched Mobile Mine The SLMM was developed by the United States as a submarine deployed mine for use in areas inaccessible for other mine deployment techniques or for covert mining of hostile environments. The SLMM is a shallow-water mine and is basically a modified Mark 37 torpedo.
General characteristics
MK65 Quickstrike The Quickstrike is a family of shallow-water aircraft-laid mines used by the United States, primarily against surface craft. The MK65 is a 2,000-lb (900 kg) dedicated, purpose-built mine. However, other Quickstrike versions (MK62, MK63, and MK64) are converted general-purpose bombs. These latter three mines are actually a single type of electronic fuze fitted to Mk82, Mk83 and Mk84 air-dropped bombs. Because this latter type of Quickstrike fuze only takes up a small amount of storage space compared to a dedicated sea mine, the air-dropped bomb casings have dual purpose i.e. can be fitted with conventional contact fuzes and dropped on land targets, or have a Quickstrike fuze fitted which converts them into sea mines.
General characteristics
MK56 General characteristics
:"...the Royal Navy does not have any mine stocks and has not had since 1992. Notwithstanding this, the United Kingdom retains the capability to lay mines and continues research into mine exploitation. Practice mines, used for exercises, continue to be laid in order to retain the necessary skills".
However, a British company (BAE Systems) does manufacture the Stonefish influence mine for export to friendly countries such as Australia, which has both war stock and training versions of Stonefish, in addition to stocks of smaller Italian MN103 Manta mines. The computerised fuze on a Stonefish mine contains acoustic, magnetic and water pressure displacement target detection sensors. Stonefish can be deployed by fixed-wing aircraft, helicopters, surface vessels and submarines. An optional kit is available to allow Stonefish to be air-dropped, comprising an aerodynamic tail-fin section and parachute pack to retard the weapon's descent. The operating depth of Stonefish ranges between 30 and 200 metres. The mine weighs 990 kilograms and contains a 600 kilogram aluminised PBX explosive warhead.
;Sources
;Further reading (Canonical general text about U.S. mine warfare) (Personal account of mine countermeasures operations in Operation Desert Storm during the Gulf War 1991, including the mining of USS Tripoli.) (Describes mine damage to a U.S. frigate) (Describes American efforts to combat Iranian mine campaign in the Persian Gulf)
Category:Explosive weapons Category:Anti-ship weapons Category:Anti-submarine weapons Category:Area denial weapons Category:Naval weapons of the United States Category:Traditional Chinese objects Category:American Civil War weapons
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.