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1 Periodic Cicadas

You have probably heard the cicadas sing a lazy summer afternoon in the coun-
tryside. You may not be aware though, that cicadas spend most of their life
underground, coming out only for about two weeks, during which they sing,
reproduce and die. Most surprising in this respect are two species of cicadas
that live in the Eastern and Southern United States. These cicadas spend re-
spectively seventeen and thirteen years underground. Then they emerge all at
once, in areas hundreds of miles wide, within a couple of days. They lay eggs
in trees; these eggs fall to the ground and, when new cicadas are born in the
form of nymphs, the nymphs enter the ground and attach themselves to roots.
There they slowly develop over the next thirteen or seventeen years (thirteen
in the South, seventeen in the Eastern United States), until within a couple of
days they are all out again to repeat the cycle. Thus there are “cicada years”,
rare events that take place every so many years that they come each time as
a surprise: suddenly there are myriads of holes in the ground, and cicadas all
around singing and mating.

The strange behavior of these periodic cicadas requires an explanation. Why
do they wait so long to come out? And why do they do it all at once? A
plausible answer [1] involves a mechanism called predator satiation. The idea is
the following: When the cicadas are out, predators —particularly birds— feed off
them. If the cicadas emerged frequently, these birds would prosper; so much in
fact that they could drive the cicadas to extintion. By emerging at very long
intervals, the cicadas make sure that no birds will make a living off them; at
most every third or fourth generation of birds will have a formidable banquet
once in their life. Moreover, when the cicadas come out, they do it by the
millons. Thus even if the birds manage to eat a few, there will always be very
many left to perpetuate the species; hence the name predator satiation.

This mechanism also explains the need for such precise synchronization: if
a cicada emerges too early or too late, it will make a sure prey for the waiting
birds. By coming at the same time as everybody else, it reduces significantly
the probability of ending up devoured.

For the lay person, this is probably the end of the mistery of the peculiar way



of life of the cicadas. But the mathematically aware person may still be worried:
he or she has probably noticed that the life-spans of the cicadas, thirteen and
seventeen years, are not just any large numbers: they are also prime. One may
wonder: is this a coincidence? Or is there any reason why prime numbers should
be evolutionary preferable to non-prime ones?

This is in fact a matter of debate for biologists: many think that 13 and 17
just came out of chance [3][4]. However, Stephen Jay Gould provides a beautiful
explanation of why prime numbers may have been selected [1]. His argument
goes as follows:

Many potential predators have 2—5—year life cycles. Such cycles are
not set by the availability of cicadas (for they peak too often in years
of nonemergence), but cicadas might be eagerly harvested when the
cycles coincide. Consider a predator with a life-cycle of five years:
if cicadas emerged every 15 years, each bloom would be hit by the
predator. By cycling at a large prime number, cicadas minimize the
number of coincidences (every 5x 17, or 85 years, in this case). Thir-
teen —and 17-year cycles cannot be tracked by any smaller number.

This argument, however enchanting, has its problems. In fact, we may use
essentially the same argument to prove that the cicadas may be better off with
anything but a prime number. For, if they live, say, 15 years, and their predators
5, they will not even see their predators at bloom if these blooming events do
not coincide with their years of emergence! The clue to this counter-argument,
as well as to its possible failure, is in the sentence “Such cycles are not set by
the availability of cicadas”. We rightly feel that this is not necessarily so: the
birds will adapt to the life-span of the cicadas and, after a while, will adjust
their cycle so as to peak simultaneously with the cicadas’ emergences.

But cicadas events occur so rarely, that they affect very little the life of the
birds: how can then these evolve to adapt to circumstances that take place only
once, and for only two weeks, every other three generations? The answer is
given by a mathematical concept: resonance; this is mechanism which permits
small perturbations to accumulate over long times, thus producing significant
effects.

2 Resonance

Perhaps the most familiar example of resonance takes place in playground
swings. If we push a swing even so slightly at regular intervals, and these
intervals are multiples of the period of the swing, the swing will reach higher
and higher altitudes. Similarly, each cicadas’ emergence acts as a “push” on the
population of their predators, the birds, which find themselves among an almost
unlimited supply of food. If these pushes take place regularly at a multiple of
the average life-span of one species of birds, this particular species will flourish,



which will eventually lead to the cicadas’ extinction. Thus the cicadas most fit
for survival are those which emerge at a prime number of years, since primes
are not multiples of any predator’s life-span.

How does the mathematics of resonance work? Let as consider the example
of the swing first. We can model a swing with the following simple ordinary
differential equation: ,

d’x g
where = represents the displacement of the swing from its equilibrium position,
g is the acceleration of gravity (approximately 10m/s?), and L the length of the
ropes holding the swing. Equation (1) has very simple solutions of the form

x(t) = zp(t) = Acos(wt — ), (2)
where w, the frequency of the swing, is given by

g

w=4/7 (3)
and A and « are arbitrary constants, which can be determined from the initial
conditions at t = 0. The name =z, stands for “homogeneous solution”, meaning
a solution for the unforced swing. The solutions in (2) represent periodic os-
cillations, with period T' = 27/w and amplitude A. Since we are not including
any friction in our model, the swing will continue to oscillate forever once set
into motion.

How can we model a forced swing, i.e. a swing that is being pushed? The
simplest equation describing such “forced oscillator” is the following variation
of (1):
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where f(t) is the time-dependent forcing. Let us consider periodic forcing,
intended to represent a person pushing the swing at regular intervals (just as the
cicadas “push” the birds every 17 years). A simple example is f(t) = B cos(At),
where )\ is the frequency of the forcing. It so happens that, with this choice for
the forcing, (4) has simple closed solutions of the form

o(t) = % cos(AL) + (1), (5)

We see that these solutions have two components: one homogeneous, zp(t),
which oscillates just as in the unforced case, and one non-homogeneous, which
oscillates at the frequency of the forcing. Notice that this latter part is very big
when the frequency A of the forcing is close to w, the “natural” frequency of the
swing. In fact, when the two are exactly equal, the solution (5) stops making
sense. It is easy to check that, in this latter case, the real solution is

() = gtsin(wt) +an(t). (6)



This solution oscillates at the frequency of the swing, but with an ever growing
amplitude! After a while, these oscillations are so big that the model (4) stops
making sense. This is a manifestation of the phenomenon of resonance.

Physically, what is going on is that we are pushing the swing once per os-
cillation, and this is adding more and more energy to the movement of swing.
What would happen if we should push the swing every two oscillations? It
appears at first sight that, with A = w/2, nothing much would happen in the
solution (5). Yet this does not sound physically right, and in fact it is not right
at all. Our pushes on the swing are periodic functions, yes, but not quite sines
and cosines. We know, however, that we can decompose any periodic function
into a sum of sines and cosines, its Fourier series. If the basic frquency is w/2,
then a term with frequency w will take part of the series. Since the solution (6)
corresponding to this term grows linearly in time, we shall see resonance again.
The same reasoning clearly applies whenever the period of the pushing is any
multiple of the period of the free swing.

Figure 1 displays numerical solutions to (4) for g/L =1 (so w = 1, and the
period is 27) and a forcing of the form

1 for0<t<%
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corresponding to periodic pushes with period T. We see that, when T ap-
proaches a multiple of the natural period 27, the oscillations of the swing get
very big. At precise multiples, the magnitude of these oscillations grows linearly
in time. The Matlab program used to perform these computations is described
in the appendix. The reader is strongly recommended to try some runs of
his/her own!

3 A Model for the Cicadas

In order to apply the concept of resonance to our cicadas and birds, we need
to make a few adjustments to (4). First of all, neither cicadas nor birds can
have just any natural frequency w: their typical life-spans need come in integer
number of years (By the way, the mechanisms by which living organisms adjust
themselves to the cycle of the seasons may involve resonances as well!). This
tells us that, rather than a model with a continuous time such as (4), we may
be better off with a discrete model, in which we measure the populations of
cicadas and birds once per year.

Following these lines, we shall develop here a computational model for ci-
cadas and birds, adapting a previous model by Hoppensteadt and Keller [2] for
cicadas alone, which did not include resonant effects. Our model will include
various species of cicadas and birds, each with a different life-span. The idea
is to test whether those species of cicadas with prime life-spans are more likely



to survive. In order to follow the evolution of each generation of cicadas over
the years, we shall keep track of the age of each cicada (and bird). Thus we
introduce the variables

nce Number of species of cicadas
x(j, k) Population of cicadas of species k and age j
na(k)  Life-span of the cicadas of species k

for the cicadas and

np Number of species of predators
y(j, k) Population of predators of species k and age j
ny(k)  Life-span of the predators of species k

for the birds. We shall monitor the evolution of z(j, k) and y(j, k) over the
years. To do this, we need to decide how to update these populations. For
1 < j < nax(k), 2" (4, k), the number of cicadas of species k in year n + 1, will
be given by «™(j — 1, k), i.e. the number of cicadas that were one year younger
the year before, times a coefficient az(k) measuring the cicadas yearly rate of
survival underground. In symbols,

"G+ 1, k) = ax(k) * 2" (j, k). (8)

Clearly a similar equation applies to the birds. However, in their case, the yearly
rate of survival depends, even though only slightly, on the number of adult
cicadas that come out each year. Thus, for the birds, we have the equation

YT A+ L k) = ay(k) « y" (4, k), 9)

where
ay(k) = ay0(k) + ayl(k) x an,

where zn is the total number of emerging adult cicadas.

What about the new-born cicadas, i.e. the z"71(1,k)? The number of these
depends on the number of adult cicadas coming out of the earth, 2™ (nx(k), k).
However, it depends on other things as well. For starters, the birds may eat
some cicadas before they have time to lay their eggs. Thus we need to multiply
x™(nx(k), k) by the probability of a cicada of species k being eaten. This prob-
ability is proportional to the number of birds (maybe weighted by their age,
since not all birds eat the same), and inversely proportional to the total number
of cicadas of all species out there, from which the birds make their pick. Thus
we have the equation

2" (1, k) = (ra(k) * ax(k) — 2y) * 2(na(k), k),

where rz(k) is the number of offspring per cicada, zy, the proportion of cicadas
of species k that are eaten, is given by

xy = dxy *yt/axn.



Here dxy is a constant, yt is the total number of birds, weighted by their age,
xn is the total number of adult cicadas.

However, the amount of nutrients underground is not infinite, so maybe not
all nymphs will have enough food to survive. In order to model this, we introduce
a number K, the capacity of the soil to support nymphs. After counting all the
nymphs already underground from previous years, say K;, we can only add
K — K; new nymphs. If more than these are born, the remaining nymphs will
not have a chance to make it into adulthood. Thus the quantity z"1(1,k)
computed above is further reduced, so that no more nymphs will survive that
thiose that fit underground.

We can place similar constraints on the number of newborn birds; we shall
not, however, incorporate any of their predators, in order to keep the model
simple.

Further details of this model are explained in the comments in the Matlab
program itself. Most of the art goes into tuning the parameters right, so as to
make sure that the conditions are not such that no species of cicadas can ever
survive (as would be the case if the birds reproduced too rapidly), or that life is
too comfortable, and cicadas can follow their own rithm without even noticing
the birds. We shoud also try not to bias our model toward any species of cicada
or bird, since we would like to check the effects of long-time resonances between
the two.

Figures 2 and 3 show two runs of the model, with random initial data. We
have chosen three species of cicadas, with life-spans of 12, 13 and 15 years
respectively, and three species of birds, with life-spans of 2, 3 and 5 years. We
would like to see whether the 13-year cicada is more likely to survive. The
plots represent the number of newborns of each species of cicadas and birds as
a function of the year.

We see that, intially, mass extintions take place, killing whole generations
of cicadas. At the end, at most one or two generations of one or two species
may survive. These surviving species are almost always the ones with prime life
spans, thus confirming our theory of resonances. Moreover, when an individual
generation of a particular species goes extint, it is nearly always accompanied by
a huge population growth in a species of bird whose life-span is an exact divisor
of the life-span of the corresponding species of cicadas. After the latter go extint,
this overpopulation of birds rapidly decays to a more normal condition.

In the run represented in figure 2, only 13 year cicadas survive; and of these,
only two generations. In the one in figure 3, only one generation of the 13 year
cicadas survives, in agreement with the reality of the Southern United States.
Figure 4 shows a detail of these latter results, with one generation of cicadas
emerging every thirteen years. The reader is strongly encouraged to modify the
matlab program provided, and do experiments of his/her own. What happens if
we start with only one species of non-prime cicadas? Does it go extinct? What
if we start with very many? And then, what is the effect of small changes in the
parameters in the program? Also, can you do any of the underlying hypothesis



more realistic? There are lots of questions to answer, and a simple experimental
set up to try them all!
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