Archive

Archive for January, 2010

Red Dwarf Metallicities

January 17th, 2010 11 comments

A core prediction of the core accretion model for giant planet formation is that the frequency of readily detectable giant planets should increase with both increasing stellar metallicity and with increasing stellar mass:

It’s now well established that the above diagram is zeroth-order correct, but until fairly recently, the conventional wisdom held that there is little evidence for a strong planet-metallicity correlation among the handful M-dwarf stars (for example, Gliese 876) that are known to harbor giant planets. One is then naturally led to speculate that the odd giant planets in a systems like Gliese 876 might be the outcome of gravitational instability rather than core accretion.

The profusion of molecular lines in the atmospheres of M dwarfs make it hard to determine their metallicities using the techniques of spectral synthesis that work well for hotter stars like the Sun. Fortunately, though, the red dwarfs’ legendary stinginess provides another opportunity for assessing metallicity. Red dwarfs are so thrifty, and they evolve so slowly, that every single one that’s ever formed has barely touched its store of hydrogen. With all the fuel gauges pegged to full, a critical parameter’s worth of confusion is removed. Red dwarfs of a particular mass should form a well-defined one-parameter sequence in the Hertzsprung Russell diagram, and that parameter should be metallicity. If one can accurately plot a particular low-mass star on a color-magnitude diagram, then there should exist a unique and high-quality mapping to both the star’s mass and its metallicity. Physically, an increase in metallicity leads to a higher photospheric opacity, which provides an effective layer of insulation for a star. Add metals to a red dwarf and it will move down and to the right in the Hertzsprung Russell diagram.

Because of the nightmarish complexity of red dwarf atmospheres, it’s not easy to find the calibration that allows one to make the transformation between an observed absolute magnitude and color index (e.g. M_K and V-K) to the stellar mass and metallicity. In 2005, however, Xavier Bonfils and his collaborators made a breakthrough by employing a simple should’ve-thought-of-that-myself technique: Binary stars generally stem from a common molecular cloud core, and so the members of a binary pair should thus generally have very similar metallicities. In particular, if you measure the metallicity of an F, G, or K binary companion to an M-dwarf, then you can assume that the M-dwarf has the same metallicity. Do this often enough, and you can infer the lines of constant M-dwarf metallicity on a color-magnitude diagram. With the calibration in place, metallicity determinations for field red dwarfs are simply a matter of reading off the nearest iso-metallicity locus. Here’s the key diagram from the Bonfils et al. paper:

The puzzling outcome of the Bonfils et al metallicity calibration was that the rare giant-planet bearing M-dwarfs such as Gliese 876 and Gliese 849 didn’t appear to be particularly metal rich, and that worked to undermine confidence in the core accretion picture. One would naively expect that a low-mass disk will need all the help it can get in order to build giant planet cores before the gas is gone. If anything, the planet-metallicity correlation should be strongest among the M-dwarfs.

Important recent progress was made last year by John Johnson and Kevin Apps, who published a reevaluation of Bonfil et al’s. isometallicity loci in the color-magnitude diagram. Johnson and Apps point out that application of the Bonfils et al. calibration produces an aggregate of local M-dwarf stars that have a significantly lower average metallicity than that for the local FGK stars. There’s little reason to expect such a dichotomy, which implies that the Bonfils et al. correlation may be systematically underestimating metallicity by roughly a factor of two. No small potatoes!

Johnson and Apps adjusted the calibration to bring the metallicities of the local M dwarfs into line with the metallicities of the local FGK dwarfs. Here’s a slightly adapted version of their key diagram:

With the revised calibration, Gliese 876 turns up with a metallicity twice that of the Sun, and there is excellent evidence that the planet-metallicity correlation holds strongly for the M dwarfs that harbor relatively massive planets. Furthermore, it’s hard to argue with the two recent papers (one, two) from the California Planet Survey which report the detection of relatively massive planets orbiting two nearby M dwarfs, both of which have extremely high metallicities with the revised calibration.

The statistics are still small-number, but there’s a strong hint that the planet-metallicity correlation for Neptune and sub-Neptune mass planets orbiting M-dwarfs is stronger than it appears to be at FGK (where it’s effectively non-existent). Gliese 176, and Gliese 436, for example, are both quite metal-rich. I bet that a survey like Mearth could jack up its yield by shading its telescope visits to favor the high-metallicity stars on the observing list…

Indeed, if we plot Gliese 1214 (V=15.1±0.6, K=8.78±0.02, parallax=0.0772±0.0054”, distance modulus=0.562±0.16) in comparison to the stars in the local volume, it looks like Gliese 1214 has of order twice solar metallicity if we adopt the nominal values for V,K and the distance. That’s very intriguing…

Follow Up

January 14th, 2010 3 comments

Astronomers worldwide staggered into work this morning, some of them rudely elbowing their way to the front of the lines at the espresso machines, clear evidence that events surrounding the January 2010 ’606 holiday season have finally drawn to a close.

Hopefully the data will turn out to be of high quality! As I mentioned in yesterday’s post, ground observers in both Europe and North America were out in force for the event, collecting photometric and spectroscopic data. The action was covered from space as well. We were awarded a generous 84-hour block of time on Warm Spitzer. The telescope started collecting 4.5-micron photometry more than a day prior to the secondary transit, and ended more than two days after the periastron passage.

What do we hope to learn? By observing the run-up to the secondary transit, we should be able to establish an improved baseline temperature for the planet, which should afford a better sense of how much tidal heating is occurring. And during the days following periastron, we expect to see a near-complete drop-off in flux from the planet as the periastron nightside hemisphere rotates fully into view. The 2007 observations came to a frustrating end just as this should have been starting to occur.

In addition to the secondary eclipse and the ground-based observations, Guillaume Hebrard and his collaborators were awarded 19 hours on Warm Spitzer to observe the primary transit at 4.5 microns. Their photometric time series will enable an improved radius measurement for the planet — both because of the highly accurate photometry and because the effects of stellar limb darkening are negligible in the infrared. Their time series will establish a very precise ephemeris for the transit, which will enable future observations to monitor the system for orbital precession.

Looking forward to the results…

Categories: worlds Tags: , ,

in eclipse

January 13th, 2010 1 comment

It’s 4pm Wednesday Jan 13th here in Santa Cruz, and the HD 80606b transit has been underway for a few hours. A whole slew of observers worldwide are watching the event, with Northern Europe getting the best view (if the weather is clear).

Last weekend, the Spitzer telescope carried out an 84-hour observation of the system during the window surrounding the secondary eclipse. Our goal was to watch the planet heat up and then cool down rapidly as the unheated night side rotates into view.

Good luck to everyone who’s out there on the sky!

Kepler’s first crop

January 4th, 2010 18 comments


The long-awaited initial discoveries from the 600M Kepler mission are in!

At a scientific talk at the AAS Meeting in Washington DC this morning, and in an afternoon press briefing packed with journalists, bright lights and television cameras, the Kepler Team announced the discovery of five new transiting planets. Four are inflated hot Jupiters, and one is a hot Neptune reminiscent of Gliese 436b and HAT-P-11b. Most importantly, the Kepler satellite appears by all accounts to be performing beautifully as it continuously monitors over 150,000 stars for planetary transits.

Here’s a to-scale line-up of the Kepler starting five. Kepler-4b is so small that it’s just barely resolved at a scale where its orbit spans 480 pixels.

The Kepler planets are primarily orbiting high-metallicity, slightly inflated, slightly evolved stars. These particular parent stars were likely selected for high-priority confirmation observations because their abundant, narrow spectral lines should permit maximally efficient, cost-effective Doppler-velocity follow-up.

Among the planets, Kepler-4b, with its composition that’s likely largely water-based, provides further evidence that the majority of short-period planets formed far from their parent stars, beyond the iceline in the protostellar disk, and subsequently migrated inward. Kepler-7b is approximately the density of styrofoam. In a conversation with a reporter, I scrambled for an analogy:

It’s like looking at a football team. You might guess from the team photo that they’re all 250 to 300 pounds. But then you find out that some of them are 25 pounds; that would come as a surprise…

Everyone is looking forward to the big-picture results that will be coming from Kepler a few years hence, as it probes into the habitable zones of Solar-type stars. In the interim, though, the veritable flood of ultra-high precision photometric data arriving via the the Deep Space Network will keep Doppler velocity follow-up observers working the late-night shifts. The parent stars of the new planets are in the V=12.6 to V=13.9 range, roughly 100 times fainter than the prime transit-bearing stars such as HD 209458 and HD 189733.

According to a S&T editor Bob Naeye, who reported on Bill Borucki’s scientific talk this morning, the first 43 days of photometric observations from the satellite generated 175 transit candidates, of which 50 were followed up in detail to extract the 5 announced planets. The Keck I telescope has been the major workhorse for the high-precision RV follow-up efforts that are required to get accurate masses. According to the Keck I Telescope Schedule, 17 nights were allocated to the Kepler team from July through December of last year. Within this time alotment, roughly 50 RV measurements for the 5 new planets were obtained. The velocity precision for Kepler-4b looks to be of order 2-3 m/s, which is excellent. Here are two thumbnails from Borucki’s talk (look carefully to read the y-axis scale):

With a slew of nights and good weather during 2010, it should be possible to get a significant number of additional planets confirmed…

Categories: worlds Tags: ,