Coordinates | 38°53′51.61″N77°2′11.58″N |
---|---|
Name | Georg Cantor |
Birth name | Georg Ferdinand Ludwig Philipp Cantor |
Birth date | March 03, 1845 |
Birth place | Saint Petersburg, Russian Empire |
Death date | January 06, 1918 |
Death place | Halle, Province of Saxony, German Empire |
Residence | Russian Empire (1845–1856),German Empire (1856–1918) |
Field | Mathematics |
Work institutions | University of Halle |
Alma mater | ETH Zurich, University of Berlin |
Doctoral advisor | Ernst KummerKarl Weierstrass |
Doctoral students | Alfred Barneck |
Known for | Set theory |
Religion | Lutheran |
Georg Ferdinand Ludwig Philipp Cantor ( ; ; – January 6, 1918) was a German mathematician, best known as the inventor of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between sets, defined infinite and well-ordered sets, and proved that the real numbers are "more numerous" than the natural numbers. In fact, Cantor's theorem implies the existence of an "infinity of infinities". He defined the cardinal and ordinal numbers and their arithmetic. Cantor's work is of great philosophical interest, a fact of which he was well aware.
Cantor's theory of transfinite numbers was originally regarded as so counter-intuitive—even shocking—that it encountered resistance from mathematical contemporaries such as Leopold Kronecker and Henri Poincaré and later from Hermann Weyl and L. E. J. Brouwer, while Ludwig Wittgenstein raised philosophical objections. Some Christian theologians (particularly neo-Scholastics) saw Cantor's work as a challenge to the uniqueness of the absolute infinity in the nature of God, on one occasion equating the theory of transfinite numbers with pantheism. and Kronecker's public opposition and personal attacks included describing Cantor as a "scientific charlatan", a "renegade" and a "corrupter of youth." Kronecker even objected to Cantor's proofs that the algebraic numbers are countable, and that the transcendental numbers are uncountable, results now included in a standard mathematics curriculum. Writing decades after Cantor's death, Wittgenstein lamented that mathematics is "ridden through and through with the pernicious idioms of set theory," which he dismissed as "utter nonsense" that is "laughable" and "wrong". but these episodes can now be seen as probable manifestations of a bipolar disorder.
The harsh criticism has been matched by later accolades. In 1904, the Royal Society awarded Cantor its Sylvester Medal, the highest honor it can confer for work in mathematics. David Hilbert defended it from its critics by famously declaring: "No one shall expel us from the Paradise that Cantor has created."
In 1874, Cantor married Vally Guttmann. They had six children, the last (Rudolph) born in 1886. Cantor was able to support a family despite modest academic pay, thanks to his inheritance from his father. During his honeymoon in the Harz mountains, Cantor spent much time in mathematical discussions with Richard Dedekind, whom he befriended two years earlier while on Swiss holiday.
Cantor was promoted to Extraordinary Professor in 1872 and made full Professor in 1879. To attain the latter rank at the age of 34 was a notable accomplishment, but Cantor desired a chair at a more prestigious university, in particular at Berlin, at that time the leading German university. However, his work encountered too much opposition for that to be possible. Kronecker, who headed mathematics at Berlin until his death in 1891, became increasingly uncomfortable with the prospect of having Cantor as a colleague, perceiving him as a "corrupter of youth" for teaching his ideas to a younger generation of mathematicians. Worse yet, Kronecker, a well-established figure within the mathematical community and Cantor's former professor, fundamentally disagreed with the thrust of Cantor's work. Kronecker, now seen as one of the founders of the constructive viewpoint in mathematics, disliked much of Cantor's set theory because it asserted the existence of sets satisfying certain properties, without giving specific examples of sets whose members did indeed satisfy those properties. Cantor came to believe that Kronecker's stance would make it impossible for Cantor to ever leave Halle.
In 1881, Cantor's Halle colleague Eduard Heine died, creating a vacant chair. Halle accepted Cantor's suggestion that it be offered to Dedekind, Heinrich M. Weber and Franz Mertens, in that order, but each declined the chair after being offered it. Friedrich Wangerin was eventually appointed, but he was never close to Cantor.
In 1882, the mathematical correspondence between Cantor and Dedekind came to an end, apparently as a result of Dedekind's refusal to accept the chair at Halle. Cantor also began another important correspondence, with Gösta Mittag-Leffler in Sweden, and soon began to publish in Mittag-Leffler's journal Acta Mathematica. But in 1885, Mittag-Leffler was concerned about the philosophical nature and new terminology in a paper Cantor had submitted to Acta. He asked Cantor to withdraw the paper from Acta while it was in proof, writing that it was "... about one hundred years too soon." Cantor complied, but wrote to a third party:
Cantor then sharply curtailed his relationship and correspondence with Mittag-Leffler, displaying a tendency to interpret well-intentioned criticism as a deeply personal affront.
Cantor suffered his first known bout of depression in 1884.
Cantor recovered soon thereafter, and subsequently made further important contributions, including his famous diagonal argument and theorem. However, he never again attained the high level of his remarkable papers of 1874–1884. He eventually sought a reconciliation with Kronecker, which Kronecker graciously accepted. Nevertheless, the philosophical disagreements and difficulties dividing them persisted. It was once thought that Cantor's recurring bouts of depression were triggered by the opposition his work met at the hands of Kronecker. Soon after that second hospitalization, Cantor's youngest son Rudolph died suddenly (while Cantor was delivering a lecture on his views on Baconian theory and William Shakespeare), and this tragedy drained Cantor of much of his passion for mathematics. Cantor was again hospitalized in 1903. One year later, he was outraged and agitated by a paper presented by Julius König at the Third International Congress of Mathematicians. The paper attempted to prove that the basic tenets of transfinite set theory were false. Since it had been read in front of his daughters and colleagues, Cantor perceived himself as having been publicly humiliated. Although Ernst Zermelo demonstrated less than a day later that König's proof had failed, Cantor remained shaken, even momentarily questioning God. Cantor suffered from chronic depression for the rest of his life, for which he was excused from teaching on several occasions and repeatedly confined in various sanatoria. The events of 1904 preceded a series of hospitalizations at intervals of two or three years. He did not abandon mathematics completely, however, lecturing on the paradoxes of set theory (Burali-Forti paradox, Cantor's paradox, and Russell's paradox) to a meeting of the Deutsche Mathematiker–Vereinigung in 1903, and attending the International Congress of Mathematicians at Heidelberg in 1904.
In 1911, Cantor was one of the distinguished foreign scholars invited to attend the 500th anniversary of the founding of the University of St. Andrews in Scotland. Cantor attended, hoping to meet Bertrand Russell, whose newly published Principia Mathematica repeatedly cited Cantor's work, but this did not come about. The following year, St. Andrews awarded Cantor an honorary doctorate, but illness precluded his receiving the degree in person.
Cantor retired in 1913, living in poverty and suffering from malnourishment during World War I. The public celebration of his 70th birthday was canceled because of the war. He died on January 6, 1918 in the sanatorium where he had spent the final year of his life.
In one of his earliest papers, Cantor proved that the set of real numbers is "more numerous" than the set of natural numbers; this showed, for the first time, that there exist infinite sets of different sizes, some infinite sets being larger than others. He was also the first to appreciate the importance of one-to-one correspondences (hereinafter denoted "1-to-1 correspondence") in set theory. He used this concept to define finite and infinite sets, subdividing the latter into denumerable (or countably infinite) sets and uncountable sets (nondenumerable infinite sets).
Cantor introduced fundamental constructions in set theory, such as the power set of a set A, which is the set of all possible subsets of A. He later proved that the size of the power set of A is strictly larger than the size of A, even when A is an infinite set; this result soon became known as Cantor's theorem. Cantor developed an entire theory and arithmetic of infinite sets, called cardinals and ordinals, which extended the arithmetic of the natural numbers. His notation for the cardinal numbers was the Hebrew letter (aleph) with a natural number subscript; for the ordinals he employed the Greek letter ω (omega). This notation is still in use today.
The Continuum hypothesis, introduced by Cantor, was presented by David Hilbert as the first of his twenty-three open problems in his famous address at the 1900 International Congress of Mathematicians in Paris. Cantor's work also attracted favorable notice beyond Hilbert's celebrated encomium. The US philosopher Charles Sanders Peirce praised Cantor's set theory, and, following public lectures delivered by Cantor at the first International Congress of Mathematicians, held in Zurich in 1897, Hurwitz and Hadamard also both expressed their admiration. At that Congress, Cantor renewed his friendship and correspondence with Dedekind. From 1905, Cantor corresponded with his British admirer and translator Philip Jourdain on the history of set theory and on Cantor's religious ideas. This was later published, as were several of his expository works.
Cantor established these results using two constructions. His first construction shows how to write the real algebraic numbers as a sequence a1, a2, a3, …. In other words, the real algebraic numbers are countable. Cantor starts his second construction with any sequence of real numbers. Using this sequence, he constructs nested intervals whose intersection contains a real number not in the sequence. Since every sequence of real numbers can be used to construct a real not in the sequence, the real numbers cannot be written as a sequence — that is, the real numbers are not countable. By applying his construction to the sequence of real algebraic numbers, Cantor produces a transcendental number. Cantor points out that his constructions prove more — namely, they provide a new proof of Liouville's theorem: Every interval contains infinitely many transcendental numbers. Cantor's next article contains a construction that proves the set of transcendental numbers has the same "power" (see below) as the set of real numbers.
Between 1879 and 1884, Cantor published a series of six articles in Mathematische Annalen that together formed an introduction to his set theory. At the same time, there was growing opposition to Cantor's ideas, led by Kronecker, who admitted mathematical concepts only if they could be constructed in a finite number of steps from the natural numbers, which he took as intuitively given. For Kronecker, Cantor's hierarchy of infinities was inadmissible, since accepting the concept of actual infinity would open the door to paradoxes which would challenge the validity of mathematics as a whole. Cantor also introduced the Cantor set during this period.
The fifth paper in this series, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre" ("Foundations of a General Theory of Aggregates"), published in 1883, was the most important of the six and was also published as a separate monograph. It contained Cantor's reply to his critics and showed how the transfinite numbers were a systematic extension of the natural numbers. It begins by defining well-ordered sets. Ordinal numbers are then introduced as the order types of well-ordered sets. Cantor then defines the addition and multiplication of the cardinal and ordinal numbers. In 1885, Cantor extended his theory of order types so that the ordinal numbers simply became a special case of order types.
In 1891, he published a paper containing his elegant "diagonal argument" for the existence of an uncountable set. He applied the same idea to prove Cantor's theorem: the cardinality of the power set of a set A is strictly larger than the cardinality of A. This established the richness of the hierarchy of infinite sets, and of the cardinal and ordinal arithmetic that Cantor had defined. His argument is fundamental in the solution of the Halting problem and the proof of Gödel's first incompleteness theorem.
Cantor wrote on the Goldbach conjecture in 1894.
In 1895 and 1897, Cantor published a two-part paper in Mathematische Annalen under Felix Klein's editorship; these were his last significant papers on set theory. The first paper begins by defining set, subset, etc., in ways that would be largely acceptable now. The cardinal and ordinal arithmetic are reviewed. Cantor wanted the second paper to include a proof of the continuum hypothesis, but had to settle for expositing his theory of well-ordered sets and ordinal numbers. Cantor attempts to prove that if A and B are sets with A equivalent to a subset of B and B equivalent to a subset of A, then A and B are equivalent. Ernst Schröder had stated this theorem a bit earlier, but his proof, as well as Cantor's, was flawed. Felix Bernstein supplied a correct proof in his 1898 PhD thesis; hence the name Cantor–Bernstein–Schroeder theorem.
In 1878, Cantor submitted another paper to Crelle's Journal, in which he defined precisely the concept of a 1-to-1 correspondence, and introduced the notion of "power" (a term he took from Jakob Steiner) or "equivalence" of sets: two sets are equivalent (have the same power) if there exists a 1-to-1 correspondence between them. Cantor defined countable sets (or denumerable sets) as sets which can be put into a 1-to-1 correspondence with the natural numbers, and proved that the rational numbers are denumerable. He also proved that n-dimensional Euclidean space Rn has the same power as the real numbers R, as does a countably infinite product of copies of R. While he made free use of countability as a concept, he did not write the word "countable" until 1883. Cantor also discussed his thinking about dimension, stressing that his mapping between the unit interval and the unit square was not a continuous one.
This paper displeased Kronecker, and Cantor wanted to withdraw it; however, Dedekind persuaded him not to do so and Weierstrass supported its publication. Nevertheless, Cantor never again submitted anything to Crelle.
In 1899, Cantor discovered his eponymous paradox: what is the cardinal number of the set of all sets? Clearly it must be the greatest possible cardinal. Yet for any set A, the cardinal number of the power set of A is strictly larger than the cardinal number of A (this fact is now known as Cantor's theorem). This paradox, together with Burali-Forti's, led Cantor to formulate a concept called limitation of size, according to which the collection of all ordinals, or of all sets, was an "inconsistent multiplicity" that was "too large" to be a set. Such collections later became known as proper classes.
One common view among mathematicians is that these paradoxes, together with Russell's paradox, demonstrate that it is not possible to take a "naive", or non-axiomatic, approach to set theory without risking contradiction, and it is certain that they were among the motivations for Zermelo and others to produce axiomatizations of set theory. Others note, however, that the paradoxes do not obtain in an informal view motivated by the iterative hierarchy, which can be seen as explaining the idea of limitation of size. Some also question whether the Fregean formulation of naive set theory (which was the system directly refuted by the Russell paradox) is really a faithful interpretation of the Cantorian conception.
Some Christian theologians saw Cantor's work as a challenge to the uniqueness of the absolute infinity in the nature of God. Cantor strongly believed that this view was a misinterpretation of infinity, and was convinced that set theory could help correct this mistake:
In 1888, Cantor published his correspondence with several philosophers on the philosophical implications of his set theory. In an extensive attempt to persuade other Christian thinkers and authorities to adopt his views, Cantor had corresponded with Christian philosophers such as Tilman Pesch and Joseph Hontheim, as well as theologians such as Cardinal Johannes Franzelin, who once replied by equating the theory of transfinite numbers with pantheism. Cantor even sent one letter directly to Pope Leo XIII himself, and addressed several pamphlets to him.
Cantor's philosophy on the nature of numbers led him to affirm a belief in the freedom of mathematics to posit and prove concepts apart from the realm of physical phenomena, as expressions within an internal reality. The only restrictions on this metaphysical system are that all mathematical concepts must be devoid of internal contradiction, and that they follow from existing definitions, axioms, and theorems. This belief is summarized in his famous assertion that "the essence of mathematics is its freedom." These ideas parallel those of Edmund Husserl.
Cantor's 1883 paper reveals that he was well aware of the opposition his ideas were encountering:
Hence he devotes much space to justifying his earlier work, asserting that mathematical concepts may be freely introduced as long as they are free of contradiction and defined in terms of previously accepted concepts. He also cites Aristotle, Descartes, Berkeley, Leibniz, and Bolzano on infinity.
There are documented statements that call this Jewish ancestry into question:
It is also later said in the same document: (the rest of the quote is finished by the very first quote above)
Thus Cantor has been called Jewish in his lifetime, but has also variously been called Russian, German, and Danish as well.
; Primary literature in German: . . Almost everything that Cantor wrote. .
; Secondary literature: . ISBN 0-7607-7778-0. A popular treatment of infinity, in which Cantor is frequently mentioned. . . The definitive biography to date. ISBN 978-0-691-02447-9 . Internet version published in Journal of the ACMS 2004. . . ISBN 3-7643-8349-6 Contains a detailed treatment of both Cantor's and Dedekind's contributions to set theory. . . ISBN 978-0-691-05858-0 . . ISBN 0-19-853283-0 . ISBN 3-540-90092-6 . ISBN 0-8126-9538-0 Three chapters and 18 index entries on Cantor. . . . ISBN 0-679-77631-1 Chapter 16 illustrates how Cantorian thinking intrigues a leading contemporary theoretical physicist. . ISBN 0-8176-1770-1 . ISBN 0-387-04999-1 . ISBN 0-553-25531-2 Deals with similar topics to Aczel, but in more depth. . . . ISBN 0-486-61630-4 Although the presentation is axiomatic rather than naive, Suppes proves and discusses many of Cantor's results, which demonstrates Cantor's continued importance for the edifice of foundational mathematics. . ISBN 0-393-00338-8 .
Category:People from Saint Petersburg Category:German mathematicians Category:German logicians Category:Set theorists Category:19th-century mathematicians Category:20th-century mathematicians Category:German philosophers Category:19th-century philosophers Category:20th-century philosophers Category:University of Halle-Wittenberg faculty Category:ETH Zurich alumni Category:German Lutherans Category:People with bipolar disorder Category:Baltic Germans Category:1845 births Category:1918 deaths
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.