
Plug-in Based Debugging For Embedded Systems

Shahabeddin Farokhzad1, Gokhan Tanyeri2, Trish Messiter2, Paul Beckett1,
1 RMIT University, 2Clarinox Technologies Pty. Ltd.

s3175161@student.rmit.edu.au, gokhan@clarinox.com

Abstract
A flexible, plug-in based debugger is described. The

debug system, built as a C++ interface class, is inde-
pendent of the physical layer, which can be a network, a
serial connection (e.g., RS232), or even a file on hard
disk or flash memory. The plug-in mechanism is de-
scribed and an example presented of how these are writ-
ten to fit into the debugger environment.

1. Introduction

It is little surprise that the single most requested area
of improvement in embedded design support is debugging
tools [1]. Debugging has always been amongst the biggest
concerns of designers and embedded systems are becom-
ing increasingly complex and have unique constraints
which make them hard to debug. As test and debug con-
tinues to consume the largest slice of the development
and maintenance cycle [2], new approaches to debugging
are required.

In contrast to the general purpose computer software
design environment, a primary characteristic of embedded
environments is the sheer number of different platforms
available to the developers (CPU architectures, vendors,
operating systems and their variants). Embedded systems
are, by definition, not general-purpose designs: they are
typically developed for a single task (or small range of
tasks), and the platform is chosen specifically to optimize
that application. Not only does this fact make life tough
for embedded system developers, it also makes debugging
and testing of these systems harder as well, since different
debugging tools are needed in different platforms.

Put simply, embedded systems debuggers have two
key requirements:
1. to identify and fix bugs in the system (e.g. logical or

synchronization problems in the code, or a design er-
ror in the hardware);

2. to collect information about the operating states of
the system that may then be used to analyze the sys-
tem: to find ways to boost its performance or to op-

timize other important characteristics (e.g. energy
consumption, reliability, real-time response etc.).

The second requirements plays a greater role in embedded
system design than it does in the general purpose domain as
the resources accessible by the embedded system developers
are far more constrained. It is likely that the designer will
have to balance a complex interrelationship between com-
peting considerations such as low power, robustness, small
size and weight, real-time requirements, long life cycle, cost
and low (or zero) tolerance for malfunctions. As a result, it is
often not straightforward to determine all of the resources
needed at the planning stage or even at the design stage of
the development procedure. Part of design improvement
procedure is always done during the testing/debugging
stage. It is important to take advantage of state-of-the-art
tools to facilitate this procedure.

In this paper, we describe a flexible, plug-in based de-
bugger developed to address these requirements. We will
describe the plug-in mechanism and how these are written
to fit into the debugger environment. The approach pre-
sented here was conceived and implemented by Clarinox
Technologies [3] to overcome the major barriers to fast
and efficient debugging of embedded systems and is
based upon many years of experience in the embedded
industry. The key features of the debugger are:
• it is built as a C++ interface class that is independent

of the physical layer. The physical layer can be a
network, a serial connection (e.g., RS232), or even a
file on hard disk or flash memory;

• a robust DLL-based plug-in interface for the debug-
ger enables developers to add their own debugging
functionality to the base environment. A plug-in can
receive and parse special messages sent by the debug
target and can maintain its own window and thread
context.

To date, the technique has been used to develop several
blocks as part of the standard deployment of the debugger,
including protocol monitor for Bluetooth, GPRS and RFID,
a memory analyzer and symbol loader.

The remainder of this paper proceeds as follows. In
Section 2, conventional approaches to embedded debug-
gers are examined, and in particular how these compare to

our approach. Section 3 briefly describes the overall de-
bugger environment, including its typical physical layer
interface. In Section 4, we also introduce the concept of
plug-in based debugging, and how plug-in modules are
written for the system. We illustrate this using an example
plug-in. Finally, Section 5 concluded the paper and com-
ments briefly on future work.

2. Debugging Embedded Systems

A good debugger and profiler are essential in the em-
bedded domain in which applications need to operate for
long periods of time. Debug tools exist to make the em-
bedded system controllable and observable at a number of
levels, including assembly and source-level, syntax level
and in-circuit. The typical debugging process starts on the
host machine using emulation and operates at increasingly
more realistic levels [4]. Traditionally the final level
would involve special purpose test hardware incorporated
into the target device. However, the increasing need for
hardware/software co-design along with vastly shorter
development cycles makes this In-circuit Emulation (ICE)
approach less viable. This has led to the development of
software-only approaches (e.g., [5]) in which platform-
independent components of an application execute native-
ly on the host, while the platform dependent sections are
run using a tightly coupled instruction set simulator for
the target processor. As the host typically exhibits signifi-
cantly higher (raw) performance than an embedded target
processor, the overheads of this approach can be relative-
ly small.

Additional difficulties arise when developing hetero-
geneous, distributed and resource constrained systems.
Unpredictable and obscure errors can arise due to the
complex interactions between concurrent software (i.e.,
the application, operating system and any middleware
support) and the hardware platform and its interconnect-
ing networks. In [6], this problem is addressed by porting
the operating system to a virtual machine monitor
(VMM), thereby presenting a number of useful the hard-
ware and software abstractions to the debug system. Run-
ning each component of the application in its own virtual
machine offers the designed greater control over the as-
pects of the application and its environment.

However, it is unclear what direct effect this type of
virtualization process has on the interactions it is trying to
reveal, given that embedded systems tend to operate very
close to their maximum resource limits. This is especially
true in highly distributed systems such as wireless sensor
networks. The multi-hop, resource-constrained, and tim-
ing dependent nature of these networks, mandates an ap-
proach that minimizes its IO latency memory overhead.
Various approaches have been proposed. For example,
the Emstar environment [7] uses a multi-process service

model that sacrifices some level of performance in return
for increased robustness in debugging heterogeneous em-
bedded sensor-actuator networks. The Clairvoyant tool
[8] tries to maintain a high level of performance by em-
bedding debugging commands into the target binary
(called dynamic binary instrumentation). Although this
approach succeeds in running the program at native speed
directly on the hardware without using extra hardware or
making changes to the program’s source code, issues such
as limited memory and flash lifetime severely limit the
resources available for debugging on the actual sensor
nodes. The profiling system proposed in [9] uses a hybrid
hardware and software approach based on dynamic in-
struction stream editing [10] to sample the executing in-
struction stream.

While the details of the actual debug mechanism will
vary widely across the range of specific embedded tar-
gets, the process almost invariably involves remote trac-
ing of the program execution, watching variables and
dumping data to a host computer console. The JavaES
framework [11] consists of a set of tools targeting JAVA
applications that allow the internal state of the JRE to be
monitored in real-time including digital and analog input-
output values, free memory, number of active threads,
timers, etc. In addition, the framework supports the re-
mote IO values modifications and the redirection of the
standard outputs for remote reading. Similarly, the Java
based Avrora framework [12] includes a model that emu-
lates each target device and supports interaction with the
application code. All of these software emulation ap-
proaches rely on the speed of the host processor to pre-
serve the timing and synchronization behavior of the tar-
get application.

3. Plug-in Based Debugging:

Although all of the tools identified in §2, above, are
found in common use, they exhibit various drawbacks
that can make them less useful in particular contexts. For
example, debug tools tend to be platform specific and can
require significant effort to port the design to a new plat-
form, with its dedicated environment and user interface.
Some of these tools require specific debug-related code to
be inserted into the application code, further complicating
the porting process.

Further, all debug tools necessarily produce a huge
amount of data that is difficult and error prone to analyze
by hand. However, any attempt to filter and categorize the
data may serve to hide valuable information, especially
when the analysis is spread across a number of separate
tools. Tools that operate separately and independently
may not effectively capture important time-related and
synchronization information. Finally, developers may be
forced to write their own debugging tools that suite their

well-established design and development environment
(e.g. a proprietary event-based debugger, or protocol ana-
lyzer etc.). However, apart from the obvious difficulties
with writing a new tool from scratch, the time needed to
develop a new debugging tool may be not justifiable if
the tool is disposable in nature (i.e., when it is needed for
one design only). The temptation is strong in this case to
stay with existing design techniques and environment,
even if it is marginally appropriate and can increase de-
bug costs in the longer term.

Figure 1. Plug-in based Debugging Framework

In order to overcome these issues, we propose a de-
bugging architecture based on plug-in modules. The
overall structure (Figure 1) is a unified debugging tool
which provides the fundamental functionality to which
plug-in modules are attached to provide specific capabili-
ties. The architecture provides a channel that handles all
of the underlying communications required between the
debugger and system being debugged, including any sig-
nal or protocol translation. As the debugger typically runs
on a PC, these two are generally located in different envi-
ronments.

The channel infrastructure supports any form of physi-
cal communication (e.g. UART, wired or wireless net-
work, embedded busses, etc.) and any form of logical
communication (e.g. full-duplex, binary data transmis-

sion, packet-based data transmission). The architecture
also provides for both online and offline debugging. In
the offline debugging scenario, data are stored locally
(e.g. in hard disk or flash memory), and then transferred
to the debugger machine for analysis. This facility is par-
ticularly useful for small embedded systems with no
means of external communication.

Figure 2. Debug Architecture Layer

The overall structure is based on middleware that en-
capsulates and hides the underlying platform differences,
and provides a common interface to the higher-layer ap-
plication developers. This approach ensures that the ar-
chitecture can operate in different platforms without a
need for modification. The debug architecture receives
and analyzes debug data from the target and dispatches
them to the appropriate plug-in tool. The plug-in develop-
er does not need to know anything about how the under-
lying architecture works. The Plug-in modules install
handlers which are called when the related data are re-
ceived. They have to analyze the data, and (if necessary)
return a report to the main tool.

The architecture provides a simple and common inter-
face to the plug-in modules. Modules are able to com-
municate with the central platform, with other modules or
with the embedded system being debugged, thereby
avoiding the need to provide special interfaces between
proprietary debug tools. The interface must be very sim-

ple to the extent that it will justify any attempt to develop
a special plug-in tool, even a disposable one.

Because all data come from the same communication
channel and are then dispatched to the different plug-in
modules, the data generation order is preserved. This or-
der provides extremely important information on the ef-
fectiveness of parallelism in the code and reveals syn-
chronization issues. The underlying architecture provides
means for the user to take advantage of information hid-
den in the order. Furthermore, the architecture provides
categorization and filtering facilities to the plug-in devel-
opers, allowing developers to be able to filter the data
based on order.

Figure 3. The Softframe® API

A substantial part of the Graphical User Interface is
completely handled by the architecture, obviating the
need fort the plug-in developer to become involved with
GUI design tasks. On the other hand, the architecture
permits developers to develop their own user interfaces
and connect these to the tools interface, providing a very
robust and powerful means of analysis report demonstra-
tion to the user while decreasing overall debugging time.

The debug code automatically compiles into the appli-
cation as part of the middleware used. Although this frees
the developer from having to insert it manually there may
still be a need to define the debugging configuration pa-
rameters (e.g., what communication hardware to use, and
its related parameters). Thus, the debugging technique is
impractical for source-level and assembly level debug-
ging (these debuggers must reside outside of and running
in parallel with the application, so they can completely
control the execution path of the code). But, given the
fact that source-level debuggers are tightly coupled with

the CPU and operating system on which the application
runs and even the compiler used to generate the code,
there is no sense in including source-level debugging as
part of an architecture which means to be independent
from the platform and be portable to any embedded envi-
ronment. However, this architecture is suitable for all
other types of debug tools.

The Debug Architecture Layer depicted in Figure 2
comprises the Communication Channel Adaptation Layer
(CCAL) and an associated message buffer. The CCAL is
a layer of software which provides a common logic com-
munication interface to the upper layer and communicates
with the related hardware driver on behalf of the applica-
tion. The interface must be flexible enough to encapsulate
and integrate different type of communication channels
(e.g., there is a concept of “connection” and “disconnec-
tion” in some communication technologies, while absent
in others technologies).

3.1 The Debugger Environment

This work is based on the debugging framework im-
plemented as part of Clarinox SoftFrame® Middleware
(Figure 3), which includes a GUI tool used to remotely
debug SoftFrame® based embedded applications. The OS
Wrapper includes functions such as threading, timers,
semaphores, mutexes, dynamic memory management,
inter-process message passing, event/message handling,
finite state machine templates, serial device driver encap-
sulation, USB device driver and TCP/UDP Socket encap-
sulation. The framework extends the debugging tools and
Board Support Package or Hardware Adaptation Layer
provided by RTOS manufactures (e.g., the Intel SA-110,
SA-1100, SA-1110, SA-120, SA-1500 evaluation boards)
and offers debugging tools that can handle multi threaded
applications that are not specific to only one environment.

3.2 Application/Debugger Message Passing

In the debugging framework as implemented, the basic
tool is a Windows GUI application which is able to dy-
namically attach to plug-in DLLs, eliminating a need to
recompile the tool for each new plug-in. From now on,
this tool will be referred to as the debugger. The debugger
is able to receive messages sent by an application and to
analyze and format the messages in real time. The user
can also send command messages to the application to
control the debug process. Messages are categorized as
follows:
1. Thread related messages, including thread control;
2. Profiling and stack trace messages describing the

call and return history and profiling information;
3. Informative (text) messages, including logs, warning

and fatal events.

4. Memory messages providing information on alloca-
tions, and de-allocations in the code;

5. Protocol Stack Monitoring messages, including mon-
itors for Bluetooth, RFID, and GPRS. These messag-
es identify all stack activity, revealing all low-level
protocol data and messages in real time.

3.3 Physical Layer Interface

This section examines the architectural layer interface
of the debugging framework. Any code which is written
with the aid of the SoftFrame and compiled in Debug
Mode automatically includes this layer which manages
the debug buffers, sending them to debugger via an arbi-
trary physical layer (Ethernet, RS232, Bluetooth, File
etc.).

Physical Communication Channel (Ethernet, RS‐232, File etc.)

The Physical Layer Interface (ClxCommInterface.h)

The Link Layer Interface (Debug Module)

Debugging Macros

Figure 4. Basic Hierarchy of Debug Architecture Layer

The debugging architecture (Figure 4) has the follow-
ing structure:
• A number of C/C++ macros which obtain the debug-

ging messages/data from the developer, and format
them into the debugging buffer.

• A thread (created by the class DebugModule) man-
ages the link layer of the debugging system. It waits
for control messages from the debugger, and also
sends the buffer contents to the debugger, either
when the timeout expires or when the buffer is full,
ensuring a maximum delay between when the debug
message is generated and when it is parsed and
shown on the debugger main screen.

4. Developing Plug-in Debugging Modules

This section explains how to develop a plug-in DLL
for the debugger software.

4.1 Writing a Plug-in

The debugger receives text, and binary debugging
messages sent by any program written using SoftFrame
(in debug configuration). Text messages simply provide
logging information, or specify errors which take place
during the program execution. In contrast, binary messag-
es cannot be directly displayed inside the Clarinox De-
bugger environment. They need to be analyzed first.
Analysis is performed by plug-ins attached to the debug-
ger software.

One or more DLL files (called plug-ins) may be at-
tached to debugger framework to provide further services.
A plug-in can do any or all of the following:
• analyze a user-defined message type;
• provide services to other installed plug-in modules;
• provide one or more items in the context popup menu

(that is opened using a right click function on the de-
buggers main screen).

A plug-in DLL comprises only one exportable function.
This function creates an instance of the main C++ class, and
passes a pointer to the instance, to the debugger. Therefore,
the main part of a plug-in is a C++ class. This class must
inherit from the basic CDPluginInterface class, an abstract
class with one compulsory method and several optional
methods. The exportable function will identify the object
methods to the debugger by passing the address of an in-
stance of the plug-in class to the debugger. The user needs to
write a C++ class (inherited from the debugger base class)
and overload the appropriate methods. The overloaded func-
tion must pass some general information about the plug-in
(i.e., the plug-in name, general description, etc.) and register
the relevant message types with the framework.

It is then necessary to write a parser function to receive
and analyze the messages of those registered types. This
method is called every time a message of one of regis-
tered types is received from the target application, each
time the user triggers the message representation on the
main screen and when there is a search procedure in pro-
gress. The function would then typically create a human
readable representation of the message to display, store or
return to the debugger interface.

Figure 5. A simple RS232 packet structure

4.2 An Example Plug-in

In this section, we will write a simple plug-in, which is
a protocol monitor for a typical RSSI tag reader. These
readers read proprietary active tags, and measure the
power level of the signal coming from the tags. Then,
they produce a one-byte value called RSSI (which is ap-
proximately inversely proportional to the distance of the
tag from the reader). RSSIs will be encoded into a packet
and will be sent to a computer or an embedded system via
RS232 (Figure 5). This example depicts how a protocol
monitor for a proprietary RFID protocol can be quickly
designed and deployed.

These packets are captured by the target software and
also moved to the debugger machine for processing. Us-

ing a simple pre-defined macro, a header containing in-
formation such as an arbitrary message ID is inserted to
the packets before being sent to the debugger. On the de-
bugger machine, a small plug-in is used to monitor and
analyze the packets of the chosen message ID and show
the results on the debugger main screen.

The item to be handled by the developer is to write a
class which derives from CDPluginInterface, and to over-
load some of its methods. The method exportPluginInfo.
provides general information about the plug-in such as its
name, a general description, etc. A second method, ex-
portMessageID registers the message ID(s) in which the
plug-in is interested. In this example, only one arbitrarily
chosen message ID is used (assuming only one type of
packets exists). The main method to overload is a mes-
sage handler called messageParser. All messages of the
registered message ID are delivered to this function by
the debugger. The method is written to parse the reader
packets (encoded in the format mentioned in Figure 5)
and then to return a human-readable text about the packet,
to be shown at the debugger interface.

All other details (e.g. handling physical communica-
tion, dispatching the messages to the appropriate plug-in,
handling user interface details, loading and initializing the
DLL plug-ins etc.) are handled by the Softframe debug-
ging framework. Since the packets are redirected by the
target system (rather than being captured directly from the
reader), the plug-in demonstrates whether or not the target
system is able to receive and properly separate the incom-
ing data stream into independent packets. Furthermore,
the result can be used effectively to find the state of the
target system when other errors happen and are captured
by the debugger (e.g. what packet was being parsed by
the remote system at the time the error happened).

5. Conclusions

We have described a plug-in based debugger that is
built as a C++ interface class and is independent of the
physical layer, which can be a network, a serial connec-
tion (e.g., RS232), or even a file on hard disk or flash
memory. The overall objective of the debug system is to
reduce risks associated with commonly required code and
therefore to reduce overall debug times. It also offers pre-
built common architectural blocks (finite state machines,
inter-process communication, timers, integrated debug-
ging), along with wireless and wired protocols and I/O
interfaces.

6. References

[1] Nass, R., Annual study uncovers the embedded
market, Sept 2, 2007, [online]:

http://www.eetimes.com/design/other/4007166/Ann
ual-study-uncovers-the-embedded-market.

[2] Cravotta, R., Shedding light on embedded
debugging, 2008, [online]:
http://www.edn.com/article/472158-
Shedding_light_on_embedded_debugging.php.

[3] Clarinox Technologies Pty. Ltd., The Clarinox
Softframe, 2010, [online]: www.clarinox.com.

[4] Stan Schneider and Lori Fraleigh, The Ten Secrets
of Embedded Debugging, September 2004,
[online]:
http://www.eetimes.com/design/other/4025015/The-
ten-secrets-of-embedded-debugging.

[5] Kraemer, S., et al., "HySim: a Fast Simulation
Framework for Embedded Software Development,"
in Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and
system synthesis Salzburg, Austria: ACM, 2007, pp.
75-80.

[6] Ho, A., Hand, S., and Harris, T., "PDB: Pervasive
Debugging with Xen," in Proceedings of the Fifth
IEEE/ACM International Workshop on Grid
Computing, 2004, pp. 260-265.

[7] Girod, L., et al., "Emstar: A Software Environment
for Developing and Deploying Heterogeneous
Sensor-Actuator Networks," ACM Trans. Sen.
Netw., vol. 3, p. 13, 2007.

[8] Yang, J., et al., "Clairvoyant: a Comprehensive
Source-Level Debugger for Wireless Sensor
Networks," in Proceedings of the 5th international
conference on Embedded networked sensor systems
Sydney, Australia: ACM, 2007, pp. 189-203.

[9] Nagpurkar, P., et al., "Efficient Remote Profiling for
Resource-Constrained Devices," ACM Trans. Archit.
Code Optim., vol. 3, pp. 35-66, 2006.

[10] Corliss, M. L., Lewis, E. C., and Roth, A., "DISE: a
Programmable Macro Engine for Customizing
Applications," International Symposium on
Computer Architecture (ISCA), vol. 31, pp. 362-373,
2003.

[11] Holgado-Terriza, J. A. and Viudez-Aivar, J., "A
Flexible Java Framework for Embedded Systems,"
in Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems Madrid, Spain: ACM, 2009, pp. 21-30.

[12] Titzer, B. L. and Palsberg, J., "Nonintrusive
Precision Instrumentation of Microcontroller
Software," in Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems Chicago,
Illinois, USA: ACM, 2005, pp. 59-68.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

