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Preface

§P.1. How the book came to be and its peculiarities

This book presents an introduction to hyperbolic partial differential equations. A major subtheme
is geometric optics linear and nonlinear. The two central results of linear microlocal analysis are
derived from geometric optics. The nonlinear geometric optics presents an introduction to methods
developed within the last twenty years including a rethinking of the linear case.

Much of the material has grown out of courses that I have taught. The crucial step was a series
of eight lectures on nonlinear geometric optics at the Institute for Advanced Study Park City
Mathematics Institute in July 1995. The Park City notes were prepared with the assistance of
Markus Keel and were published in Volume 5 of the IAS/Park City Math Series. The notes
presented a straight line path to some theorems in nonlinear geometric optics. Two graduate
courses at the University of Michigan in 1993 and 2008 were also important. Much of the material
was refined in inivited minicouses;

• Ecole Normale Superieure de Cachan, 1997,

• Nordic Conference on Conservation Laws at the Mittag-Leffler Institute and KTH in Stockholm,
December 1997 (chapters 9-11).

• Centro DiGiorgi of the Scuola Normale Superiore in Pisa, February 2004,

• Univeristé de Provence, Marseille, March 2004 (§5.4.2-5.4.4, appendix II.1),

• Università di Pisa, February-May 2005, March-April 2006 (chapter. 3, §6.7,6.8), March-April
2007(chapters 9-11).

• Université de Paris Nord, February 2006, 2007, 2008 (§1.4-1.7),

The auditors included many at the beginnings of their careers and I would like to thank in particular
R. Carles, E. Dumas, J. Bronski, J. Colliander, M. Keel, L. Miller, K. McLaughlin, R. McLaughlin,
H. Zag, G. Crippa and A. Figalli, and N. Visciglia, for many interesting questions and comments.

The book is aimed at the level of graduate students who have studied one hard course in partial
differential equations. Following the lead of the book of Guillemin and Pollack, there are exercises
scattered throughout the text. The goal is to teach graduate students the habit of reading with a
pencil, filling in and verifying as you go. Experience shows that passing from passive reading to
active acquisition is a difficult transitions. Instructor’s corrections of exercises offer the opportunity
to teach the writing of mathematics, a skill vital for theses.

The choice of subject matter is guided by several principles. By restricting to symmetric hyperbolic
systems, the basic energy estimates come from integration by parts. The majority of examples from
applications fall under this umbrella.

The treatment of constant coefficient problems does not follow the usual path of describing classes
of operators for which the Cauchy problem is weakly well posed. Such results are described in
a brief appendix along with the Kreiss matrix theorem. Rather, Fourier transform methods are
used to analyse the dispersive properties of constant coefficient symmetric hyperbolic equations
including Brenner’s theorem and Strichartz estimates.

Pseudodifferential operators are neither presented nor used. This is not because they are in any
sense vile, but to get to the core without too many pauses to develop machinery. There are several
good sources on pseudodifferential operators and the reader is encouraged to consult them to get
alternate viewpoints on some of the material. It is interesting to see how far one can go without
them. In a sense, the expansions of geometric are a natural replacement for that machinery. The
Lax parametrix requires the analysis of oscillatory integrals as in the theory of Fourier integral
operators . The results require only the method of nonstationary phase and are included.
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The topic of caustics and caustic crossing is not treated. The sharp linear results use more mi-
crolocal machinery and the nonlinear analogues are topics of current research. The same is true
for supercritical nonlinear geometric optics which is not discussed. The subjects of dispersive and
diffractive nonlinear geometric optics in contrast have reached a mature state. Readers of this
book should be in a position to readily attack the papers describing that material.

There is no discussion of modeling of practical applications. There is no discussion of mixed initial
boundary value problems a subject with many interesting applications and a solid theory with
many difficult challenges. There is no discussion of the geometric optics approach to shocks.

I have omitted several areas where there are already good sources. For example, the books of
Smoller, Serre, Dafermos, Majda, and Bressan on conservation laws, and the books of Hörmander
and Taylor on the use of pseudodifferential techniques in nonlinear problems. Other books on
hyperbolic partial differential equations include those of Hadamard, Leray, Gårding, and Mizohata
and, Benzoni-Gavage and Serre. Lax’s 1963 Stanford notes occupy a special place in my heart. A
revised and enlarged version is his book Hyperbolic Partial Differential Equations. I owe a great
intellectual debt to the notes, and to all that Peter Lax has taught me through the years.

The book represent a first step aimed at a large and rich subject and I hope that readers are
sufficiently attracted to probe further.

§P.2. A bird’s eye view of hyperbolic equations

The central theme of this book is hyperbolic partial differential equations. These equations are
important for a variety of reasons. It is worth while to keep these ideas in mind while reading.
They have many different expressions in the computations and theorems in the book.

The first encounter with the concept is usually in considering scalar real linear second order partial
differential operators in two variables,

aux1x1
+ b ux1x2

+ c ux2x2
+ lower order terms .

It is assumed that at least one of a, b, c is nonzero. The operator is called elliptic, (strictly)
hyperbolic, or parabolic (this last is an incorrect definition) when the associated quadratic form

a ξ21 + b ξ1ξ2 + c ξ22

is positive or negative definite, nondegenerate and indefinite, or degenerate. In the elliptic cases
one has strong local regularity theorems and solvability of the Dirichlet problem on small discs. In
the hyperbolic cases, the initial value problem is locally well set at noncharacteristic surfaces and
there is finite speed of propagation. Singularities or oscillations in Cauchy data propagate along
characteristic curves. The defining properties of hyperbolic problems include well posed Cauchy
problems, finite speed of propagation, and the existence of wave like structures with infinitely
varied form. To see the latter, consider initial data with the form of a short wavelength wave
packet localized near a point p on a noncharateristic surface. The solution will launch wave
packets along each of two characteristic curves. The envelopes are computed from those of the
intitial data and can take any form. One can send essentially arbitrary amplitude modulated
signals. The infinite variety of wave forms make hyperbolic equations the preferred mode for
sending information for example in hearing, sight, television, and radio. The model equations for
the first is linearized compressible invsicid fluid dynamics, a.k.a. acoustics. For the latter three it is
Maxwell’s equations and most particularly Maxwell’s equations in vacuum, since the atmosphere is
nearly indistinguishable from the vacuum at the low intensities considered. The last two examples
illustrate the fourth key characteristic of some hyperbolic problems which is propagation with no,
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or very small, losses over large distances. With these origins in mind, the importance of short
wavelength and of large time analyses are central problems.

Well posed Cauchy problems with finite speed lead to hyperbolic equations.† Since the fundamental
laws of physics must respect the principles of relativity, finite speed is required. This together with
causality require hyperbolicity. Thus there are many equations from Physics. Those which are
most fundamental tend to have close relationships with Lorentzian geometry. D’Alembert’s wave
equation and the Maxwell equations are two such fundamental equations.

Problems with origins in general relativity are of increasing interest in the mathematical community
and it is the hope of hyperbolicians, that the wealth of geometric applications of elliptic equations
in Riemannian geometry will one day be paralled by Lorenzian cousins of hyperbolic type.

A source of countless mathematical and technnological problems of hyperbolic type are the equa-
tions of inviscid compressible fluid dynamics. Linearization of those equations yields linear acous-
tics. It is common that viscous forces are important only near boundaries, and therefore for many
phenomena inviscid theories suffice. Inviscid models are often easier to compute numerically. This
is easily understood as a small viscous term ǫ2∂2/∂x2 introduces a length scale ∼ ǫ and accurate
numerics require a discretization small enough to resolve this scale say ∼ 1/10ǫ. In dimensions
1 + d discretization of a unit volume for times of order 1 on such a scale requires 104ǫ−4 mesh
points. For ǫ only modestly small, this drives computations beyond the practical. Faced with this
one can employ meshes which are only locally fine, or try to construct, numerical schemes which
resolve features on longer scales without resolving the short scale structures. Alternatively one can
use asymptotic methods like those in this book to describe the boundary layers where the viscosity
can not be neglected (see for example [Grenier-Gues], [Gerard-Varet]) All of these are active areas
of research.

One of the key features of inviscid fluid dynamics is that smooth large solutions often break
down in finite time. The continuation of such solutions as nonsmooth solutions containing shock
waves satisfying suitable conditions (often called entropy conditions) is an important subarea of
hyperbolic theory which is not discussed at all in this book. The interested reader is referred to the
conservation law references cited earlier. An interesting counterpoint is that for suitably dispersive
equations in high dimensions, small smooth data yield global smooth (hence shock free) solutions
(see §6.7).

The subject of geometric optics is a major theme of this book. The subject begins with the earliest
understanding of the propagation of light. Simple observation of sun beams streaming through a
partial break in clouds, or a flashlight beam in a dusty room gives the impression that light travels
in straight lines. At mirrors the lines reflect with the usual law of equal angles of incidence and
reflection. Passing from air to water the lines are bent. These phenomena are described by the
three fundamental principals of a physical theory called geometric optics. They are, rectilinear
propagation, and the laws of reflection and refraction.

All three phenomena are explained by Fermat’s principal of least time. The rays are locally paths
of least time. Refraction at an interface is explained by positing that light travels at different
speeds in the two media. This description is purely geometrical involving only broken rays and
times of transit. The appearance of a minimum principal had important philosophical impact,
since it was consistent with a world view holding that nature acts in a best possible way. Fermat’s
prinicpal was enunciated twenty years before Römer demonstrated the finiteness of the speed of
light based on observations of the moons of jupiter.

† See [Lax, 1963, 2006] for a proof in the constant coefficient linear case. The necessity of hyperpolic-
ity in the variable coefficient case dates to [Lax, 1957] and extensions are discussed [Mizohata].
See [Nishitani] for the state of the art.
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Today light is understood as an electromagnetic phenomenon. It is described by the time evolution
of electromagnetic fields which are solutions of a system of partial differential equations. When
quantum effects are important, this theory must be quantized. A mathematically solid foundation
for the quantization of the electromagnetic field in 1+3 dimensional space time has not yet been
found.

The reason that a field theory involving partial differential equations can be replaced by a geometric
theory involving rays is that visible light has very short wavelength compared to the size of human
sensory organs and common physical objects. Thus, much observational data involving light occurs
in an asymptotic regime of very short wavelength. The short wavelength asymptotic study of
systems of partial differential equations often involves significant simplifications. In particular
there are often good descriptions involving rays. We will use the phrase geometric optics to be
synonymous with short wavelength asymptotic analysis of solutions of systems of partial differential
equations.

In optical phenomena, not only is the wavelength short but the wave trains are long. The study
of structures which have short wavelength and are in addition very short, say a short pulse, also
yields a geometric theory. Long wavetrains have a longer time to allow nonlinear interactions which
makes nonlinear effects more important. Long propagation distances also increase the importance
of nonlinear effects. An extreme example is the propagation of light across the ocean in optical
fibers. The nonlinear effects are very weak, but over 5000 kilometers, the cumulative effects can be
large. To control signal degradation in such fibers the signal is treated about every 30 kilometers.
Still, there is free propagation for 30 kilometers which needs to be understood. This poses serious
analytic, computational, and engineering challenges.

A second way to bring nonlinear effects to the fore is to increase the amplitude of disturbances. It
was only with the advent of the laser that sufficiently intense optical fields are produced so that
nonlinear effects are routinely observed. The conclusion is that for nonlinearity to be important,
either the fields or the propagation distances must be large. For the latter, dissipative losses must
be small.

The ray description as a simplification of the Maxwell equations is analogous to the fact that
classical mechanics gives a good approximation to solutions of the Schrödinger equation of quantum
mechanics. The associated method is called the quasiclassical approximation. The role of rays
in optics is played by the paths of classical mechanics. There is an important difference in the
two cases. The Schrödinger equation has a small parameter, Planck’s constant. The quasiclassical
approximation is an approximation valid for small Planck’s constant. The mathematical theory
involves the limit as this constant tends to zero. Maxwell’s equations apparently have a small
parameter too, the inverse of the speed of light. One might guess that rays occur in a theory
where this speed tends to infinity. This is not the case. For Maxwell’s equations in vacuum
the small parameter which appears is the wavelength which is introduced via the initial data. It
is not in the equation. The equations describing the dispersion of light when it interacts with
matter do have a small parameter, the inverse of the resonant frequencies of the material, and the
analysis involves data tuned to this frequency just as the quasiclassical limit involves data tuned
to Planck’s constant. This topic is one of my favorites and interested readers are referred to the
articles [Donnat-Rauch], [Rauch, A travers un prism].

Short wavelength phenomena cannot simply be studied by numerical simulations. If one were to
discretize a cubic meter of space with mesh size 10−5 cm. so as to have five mesh points per
wavelength, there would be 1021 data points in each time slice. Since this is nearly as large as
the number of atoms per cubic centimeter, there is no chance for the memory of a computer to
be sufficient to store enough data, let alone make calculations. Such brute force approaches are
doomed to fail. A more intelligent approach would be to use radical local mesh refinement so that
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the fine mesh was used only when needed. Still this falls far outside the bounds of present computing
power. The asymptotic analysis offers an alternative approach which is not only powerful but is
mathematically elegant. In the scientific literature it also embraced because the resulting equations
sometimes have exact solutions and scientists are well versed in understanding phenomena from
small families of exact solutions.

Short wavelength asymptotics can be used to great advantage in many disparate domains. They
explain and extend the basic rules of linear geometric optics. They explain the dispersion and
diffraction of linear electromagnetic waves. There are nonlinear optical effects, generation of har-
monics, rotation of the axis of elliptical polarization, and self focussing which are also well
described. These topics can be pursued by consulting the references.

Geometric optics has many applications within the subject of partial differential equations. They
play a key role in the problem of solvability of linear equations via results on propagation of
singularities as presented in §5.5. They are used in deriving necessary conditions, for example for
hypoellipticity and hyperbolicity. They are used by Ralston to prove necessity in the conjecture
of Lax and Phillips on local decay via propagation of singularities they play the central role in the
proof of sufficiency. Propagation of singularities plays a central role in problems of observability
and controlability (see §5.6). The microlocal elliptic regularity theorem and the propagation of
singularities for symmetric hyperbolic operators of constant multiplicity is treated in this book.
These are the two basic results of linear microlocal analysis. These notes are not an introduction
to that subject, but present an important piece en passant.

Chapters 9 and 10 are devoted to the phenomenon of resonance whereby waves with distinct
phases can interact nonlinearly. They are preparatory for Chapter 11 That chapter 11 constructs a
family of solutions of the compressible 2d Euler equations exhibiting three incoming wave packets
interacting to generate an infinite number of oscillatory wave packets whose velocities are dense in
the unit circle.

Because of the central role played by rays and characteristic hypersurfaces, the analysis of conormal
waves is a closely related to geometric optics. The reader is referred to Lax’s treatment of
progressing waves and the book of M. Beals for this material.

Acknowledgement. My research in geometric optics is mostly joint work with Jean-Luc Joly
and Guy Métivier. It has been a wonderful collaboration and I gratefully acknowledge all that
they have taught me and the good times spent together.

Acknowledgements. My research was partially supported by a sequence of National Science
Foundation grants; NSF-DMS-9203413, 9803296, 0104096, and 0405899. The early stages of the
research on geometric optics was supported by the Office of Naval Research under grant OD-G-
N0014-92-J-1245.
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Chapter 1. Simple Examples of Propagation.

This chapter presents examples of wave propagation governed by hyperbolic equations. The ideas
of propagation of singularities, group velocity, and short wavelength asymptotics are introduced
in simple situations. The method of characteristics for problems in dimension d = 1 is presented
as well as the method of nonstationary phase. The latter is a fundamental tool for estimating
oscillatory integrals. The examples are elementary. They could each be part of an introductory
course in partial differential equations, but often are not. This material can be skipped. If later
needed the reader may return to this chapter.∗ In sections 1.3, 1.5, 1.6 we derive in simple situations
the three basic laws of .

Wave like solutions of partial differential equations have spatially localized structures whose evo-
lution in time can be followed. The most common are solutions with propagating singularities and
solutions which are modulated wave trains also called wave packets. The latter have the form

a(t, x) eiφ(t,x)/ǫ

with smooth profile a, real valued smooth phase, φ, with dφ 6= 0 on the support of a. The
parameter ǫ is small compared to the scale on which a and φ vary. They are radically different
spatial scales, the scale on which the profile varies and the much smaller wavelength. The classic
example is light with a wavelength on the order of 5 × 10−5 centimeter. Singularities are often
restricted to varieties of lower codimension, hence of width equal to zero which is infinitely small
compared to the scales of their other variations. Real world waves modeled by such solutions have
the singular behavior spread over very small lengths, not exactly zero.

The path of a localized structure in space time is curvelike, and such curves are often called rays.
When phenomena are described by partial differential equations, linking the above ideas with

the equation means finding solutions whose salient features are localized and in simple cases are
described by transport equations along rays. In the case of, such results appear in an asymptotic
analysis as ǫ→ 0.

In this chapter some introductory examples are presented that illustrate propagation of singular-
ities, propagation of energy, group velocity and short wavelength asymptotics. That energy and
singularities may behave very differently is a consequence of the dichotomy that up to an error as
small as one likes in energy, the data can be replaced by data with compactly supported Fourier
transform. In contrast, up to an error as smooth as one likes the data can be replaced by data with
Fourier transform vanishing on |ξ| ≤ R with R as large as one likes. Propagation of singularities
is about short wavelengths while propagation of energy is about wavelengths bounded away from
0. When most of the energy is carried in short wavelengths, for example the wave packets above,
the two tend to propagate in the same way.

§1.1. The method of characteristics.

The method of characteristics reduces many questions concerning solutions of hyperbolic partial
differential equations when the space dimension is equal to one to the integration of ordinary
differential equations. The central idea is the following. Suppose that c(t, x) is a smooth real
valued function and introduce the ordinary differential equation

dx

dt
= c(t, x) . (1.1.1)

∗ Some ideas are used which are not formally presented till later, for example the Soboev spaces
Hs(Rd) and Gronwall’s lemma.
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Solutions x(t) satsify
dx(t)

dt
= c(t, x(t)).

For a smooth function u,
d

dt
u(t, x(t)) = ∂tu+ c(t, x) ∂xu .

Therefore, solutions of the homogeneous linear equation

∂tu+ c(t, x) ∂xu = 0,

are exactly the functions u which are constant on the integral curves (t, x(t)) which are called
characteristic curves or simply characteristics.

Example. If c ∈ R is constant then u ∈ C∞([0, T ] × R) satisfies

∂tu+ c ∂xu = 0, (1.1.2)

if and only if there is an f ∈ C∞(R) so that u = f(x−ct). The function f is uniquely determined.

Proof. For constant c the characteristics along which u is constant are the lines (t, x + ct).
Therefore, u(t, x) = u(0, x− ct) proving the result with f(x) := u(0, x).

This shows that the Cauchy problem consisting of (1.1.2) together with the initial condition u|t=0 =
f is uniquely solvable with solution f(x − ct). The solutions are waves translating rigidly with
velocity equal to c.

Exercise 1.1.1. Find an explicit solution formula for the solution of the Cauchy problem

∂tu+ c ∂xu+ z(t, x)u = 0, u|t=0 = g,

where z ∈ C∞.

Example. D’Alembert’s formula. If c ∈ R then u ∈ C∞([0, T ] × R) satisfies

utt − c2 uxx = 0 (1.1.3)

if and only if there are smooth f, g ∈ C∞(R) so that

u = f(x− ct) + g(x+ ct) . (1.1.4)

The set of all pairs f̃ , g̃ so that this is so is of the form f̃ = f + b , g̃ = g − b with b ∈ C.

Proof. Factor

∂2
t − c2∂2

x = (∂t − c∂x) (∂t + c∂x) = (∂t + c∂x) (∂t − c∂x) .

Conclude that
u+ := ∂tu− c ∂xu , and, u− := ∂tu+ c ∂xu

satisfy (
∂t ± c ∂x

)
u± = 0 . (1.1.5)
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Therefore there are smooth F± so that

u± = F±(x∓ ct) . (1.1.6)

In order for (1.1.4) and (1.1.6) to hold, one must have

F+ = (∂t − c∂x)u = (1 + c2)f ′, F− = (∂t + c∂x)u = (1 + c2)g′ (1.1.7)

Thus if G± are primitives of F± which vanish at the origin, then one must have

f =
G+

(1 + c2)
+ C+, g =

G+

(1 + c2)
+ C− , C+ + C− = u(0, 0) .

Reversing the process shows for such f, g, defining ũ := f(x− ct) + g(x+ ct) yields a solution of
D’Alembert’s equation with

(∂t ∓ c ∂x)ũ = F±, so, (∂t ∓ c ∂x)(u− ũ) = 0 .

Adding and subtracting this pair of equations shows that

∇t,x(u − ũ) = 0.

Since u(0, 0) = ũ(0, 0), it follows by connectedness of [0, T ] × R that u = ũ and the proof is
complete.

For speeds c(t, x) which are not bounded, it is possible that characteristics escape to infinity with
interesting consequences.

Example of nonuniqueness in the Cauchy problem. Consider c(t, x) := x2. The character-
istic through (0, x0) is the solution of

x′ = x2, x(0) = x0,

Then,

1 =
x′

x2
=

d

dt

(−1

x

)
.

Integrating from t = 0 yields

−1

x(t)
− −1

x0
= t , and therefore, x(t) =

x0

1 − x0 t
.

Through each point t, x with t ≥ 0 there is a unique charateristic tracing backward to t = 0.
Therefore, given initial data u(0, x) = g(x), the solution u(t, x) is uniquely deterimined in t ≥ 0
by requiring u to be constant on characteristics.
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1

1
x

Characteristics diverge in finite time

The characteristics through (0,±1) diverge to ±∞ at time t = 1. Thus all the backward character-
istics starting in t ≥ 1 meet {t = 0} in the interval ]− 1, 1[. The data for |x| ≥ 1 does not influence
the solution in t ≥ 1. There has been a loss of information. Another manifestation of this is that
the initial values do not uniquely determine a solution in t < 0.

The characteristics starting at t = 0 meet {t = −1} in the interval ] − 1, 1[. Outside that interval,
the values of a solution are not determined, not even influenced by the initial data. There are
many solutions in t < 0 which have the given Cauchy data. They are constant on characteristics
which diverge to infinity but their values on these characteristics is otherwise arbitrary.

To avoid this phenomenon we make the following strong assumption.

Hypothesis 1.1.1. Suppose that for all T > 0

∂αt,xc ∈ L∞([0, T ] × R) .

The coefficient d(t, x) satisfies analogous bounds.

For arbitrary f ∈ C∞(R2) and g ∈ C∞(R) there is a unque solution of the Cauchy problem

(
∂t + c(t, x) ∂x + d(t, x)

)
u = f, u(0, x) = g.

Its values along the characteristic (t, x(t)) is determined by integrating the nonhomogeneous linear
ordinary differential equation

d

dt
u(t, x(t)) + d(t, x(t))u(t, x(t)) = f(t, x(t)) . (1.1.8)

There are finite regularity results too. If f, g are k times differentiable with k ≥ 1 then so is u.
Though the equation is first order, u is in general not smoother than f . This is in contrast to the
elliptic case.

The method of characteristics also applies to systems of hyperbolic equations. Consider vector
valued unknowns u(t, x) ∈ CN . The simplest generalization is diagonal real systems

ut + diag(c1(t, x), . . . , cN (t, x))u = 0.
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Here uj is constant on characteristics with speed cj(t, x). This idea extends naturally to systems

L := ∂t + A(t, x) ∂x + B(t, x),

where A,B are smooth matrix valued functions so that

∀T, ∀α, ∂αt,x{A,B} ∈ L∞([−T, T ] × R) .

The method of characteristics applies when the following hypothesis is satisfied. It says that the
matrix A has real eigenvalues and is smoothly diagonalisable. The real spectrum as well as the
diagonalisability are understood as part of the general theory of constant coefficient hyperbolic
systems sketched in the appendix to chapter 2.

Hypothesis 1.1.2. There is a smooth matrix valued function, M(t, x), so that

∀T, ∀α, ∂αt,xM and ∂αt,x(M
−1) belong to L∞([0, T ] × R) ,

and,
M−1AM = diagonal and real. (1.1.9)

Examples. 1. The hypothesis is satisfied if for each t, x the matrix A has N distinct real
eigenvalues c1(t, x) < c2(t, x) < . . . < cN (t, x). Such sytems are called strictly hyperbolic. To
guarantee that the estimates on M,M−1 are uniform as |x| → ∞ it suffices to assume that,

inf
(t,x)∈[0,T ]×R

min
2≤j≤N

cj(t, x) − cj−1(t, x) > 0 .

2. More generally the hypothesis is satisfied if for each (t, x), A has uniformly distinct real eigen-
values and is is diagonalisable. It follows that the multiplicity of the eigenvalues is independent of
t, x. 4. If A1 and A2 satisfy Hypothesis 1.1.2. then so does

(
A1 0
0 A2

)
, with M :=

(
M1 0
0 M2

)
.

In this way one constructs examples with variable multiplicity.

Since A = MDM−1 with D = diag (c1, . . . , cN )

L = ∂t +MDM−1∂x +B .

Define v by u = Mv so

M−1Lu = M−1
(
∂t + MDM−1∂x + B

)
M v .

When the derivatives on the right fall on v the product M−1M = I simplifies. This shows that,

M−1Lu =
(
∂t +D∂x + B̃

)
u := L̃ v

where
B̃ := M−1BM + M−1Mt + M−1A Mx .
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This change of variable converts the equation Lu = f to L̃v = M−1f where L̃ has the same form
as L but with leading part which is a set of directional derivatives.

Theorem 1.1.1. If f ∈ Ck([0, T ] × R) and g ∈ Ck(R) with k ≥ 1 and for all α, β with |α| ≤ k
and |β| ≤ k,

∂αt.xf ∈ L∞([0, T ] × R), and ∂βx g ∈ L∞([0, T ] × R),

then there is a unique solution u ∈ Ck([0, T ] × R) to the initial value problem Lu = f , u|t=0 = g
so that all partial derivatives of u of order ≤ k are in L∞([0, T ] × R).

The crux is the following estimate called Haar’s inequality. For a vector valued function w(x) =
(w1(x), . . . , wN (x)) on R the L∞ norm is taken to be

‖w‖L∞(R) := max
1≤j≤N

‖wj(x)‖L∞(R) .

Haar’s Lemma 1.1.2. i. There is a constant C = C(T,L) so that if u and Lu are bounded
continuous functions on [0, T ] × R then for t ∈ [0, T ],

‖u(t)‖L∞(R) ≤ C
(
‖u(0)‖L∞(R) +

∫ t

0

‖Lu(σ)‖L∞(R) dσ
)
.

ii. More generally, there is a constant C(k, T, L) so that if for all |α| ≤ k, ∂αt,xu and ∂αt,xLu are
bounded continuous funtions on [0, T ] × R then

mk(u, t) :=
∑

|α|≤k

‖∂αt,xu(t)‖L∞(R)

satisfies for t ∈ [0, T ],

mk(u, t) ≤ C
(
mk(u, 0) +

∫ t

0

mk(Lu, σ) dσ
)
.

Proof of Lemma. The change of variable shows that it suffices to consider the case of a real
diagonal matrix A = diag (c1(t, x), . . . , cN (t, x)).

i. For t ∈ [0, T ] and ǫ > 0 choose j and x so that

‖u(t)‖L∞(R) ≤ ‖uj(t, x)‖L∞(R) + ǫ .

Choose (t, x(t)) the integral curve of x′ = cj(t, x) passing through t, x. Then

uj(t, x) = uj(0, x(0)) +

∫ t

0

(∂t + cj(t, x)∂x)uj(σ, x(σ)) dσ .

Therefore

‖u(t)‖L∞(R) ≤ ‖u(0)‖L∞(R) +

∫ t

0

‖(Lu + B u)(σ)‖L∞(R) dσ + ǫ ,
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Since this is true for all ǫ one has,

‖u(t)‖L∞(R) ≤ ‖u(0)‖L∞(R) +

∫ t

0

‖(Lu)(σ)‖L∞(R) + C ‖u(σ)‖L∞(R) dσ ,

and i follows using Gronwall’s Lemma 2.1.3.

ii. Apply the inequality of i to ∂αt,xu with |α| ≤ k.

‖∂αu(t)‖L∞(R) ≤ C
(
‖∂αu(0)‖L∞(R) +

∫ t

0

‖L∂αu(σ)‖L∞(R)

)
dσ.

Compute
L∂αu = ∂αLu + [L, ∂α]u .

The commutator is a differential operator of order k with bounded coefficients so

‖[L, ∂α]u(σ)‖L∞(R) ≤ Cmk(u, σ) .

Therefore,

‖∂αu(t)‖L∞(R) ≤ C
(
‖∂αu(0)‖L∞(R) +

∫ t

0

‖∂αLu(σ)‖L∞(R) + mk(u, σ)
)
.

Sum over |α| ≤ k to find

mk(u, t) ≤ C
(
mk(u, 0) +

∫ t

0

mk(u, σ) + mk(Lu, σ) dσ
)
.

Gronwall’s Lemma implies ii.

Proof of Theorem. The change of variable shows that it suffices to consider the case of A =
diag(c1, . . . , cN )

The solution u is constructed as a limit of approximate solutions un. The solution u0 is defined as
the solution of the initial value problem

∂tu
0 + A∂xu

0 = f, u0|t=0 = g .

The solution is explicit by the method of characteristics and Haar’s inequality yields

∃C1, ∀t ∈ [0, T ], mk(u
0, t) ≤ C1 . (1.1.10)

For n > 0 the solution un is again explicit by the method of characteristics in terms of un−1,

∂tu
n + A∂xu

n + B un−1 = f un−1|t=0 = g . (1.1.11)

Usiing (1.1.10) and Haar’s inequality yields,

∃C2, ∀t ∈ [0, T ], mk(u
1, t) ≤ C2 . (1.1.12)
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For n ≥ 2 estimate un − un−1 by applying Haar’s inequality to

L̃ (un − un−1) + B (un−1 − un−2) = 0, (un − un−1)
∣∣
t=0

= 0 ,

to find

mk(u
n − un−1, t) ≤ C

∫ t

0

mk(u
n−1 − un−2, σ) dσ . (1.1.13)

For n = 2 this together with (1.1.10) and (1.1.12) yields,

mk(u
2 − u1, t) ≤ (C1 + C2)Ct .

Injecting this in (1.1.13) yields

mk(u
3 − u2, t) ≤ (C1 + C2)C

2t2/2 .

Continuing yields,
mk(u

n − un−1, t) ≤ (C1 + C2)C
n−1tn−1/(n− 1)! . (1.1.14)

The summability of right hand side implies that un and all of its partials of order ≤ k converge
uniformly on [0, T ] × R. The limit u is Ck with bounded partials and passiing to the limit in
(1.1.11) shows that u solves the initial value problem.

To prove uniqueness, suppose that u and v are solutions. Haar’s inequality applied to u−v implies
that u− v = 0.

The proof yields also the fact that there is finite speed of propagation of signals. Define λmin(t, x)
and λmax(t, x) to the the smallest and largest eigenvalues of A(t, x). Then the functions λ are
uniformly Lipschitzean on [0, T ]× R. The characteristics have speeds bounded below by λmin and
above by λmax. The next result shows that these are respectively lower and upper bounds for the
speeds of propagation of signals.

Corollary 1.1.3. Suppose that −∞ < xl < xr <∞ and γl (respectively γr) is the integral curve
of ∂t + λmin∂x (resp. ∂t + λmax∂x) passing through xl (resp. xr). Denote by Q the four sided
region in 0 ≤ t ≤ T bounded on the left by γl and the right by γr. If g is supported in [xl, xr] and
for 0 ≤ t ≤ T , f is supported in Q, then the solution u is also supported in Q.

Proof. The explicit formulas of the method of characteristics show that the approximate solutions
un are supported in Q. Passing to the limit proves the result.

Consider next the case of f = 0 and g ∈ C1(R) whose restrictions to ] −∞, x[ and ]x,∞[ is each
smooth with uniformly bounded derivatives of every order. Such a function is called piecewise
smooth.

The simplest case is that of an operator ∂t + c(t, x)∂x. Denote by γ the characteristic through x.
The values of u to the left of γ is determined by g to the left of x. Choose a g̃ ∈ C∞(R) which
agrees with g to the left. The solution ũ then agrees with u to the left of γ and ũ has bounded
partials of all orders for 0 ≤ t ≤ T . An analogous argument works for the right hand side and one
sees that u is piecewise C∞ in the decompostion of [0, T ] × R into two pieces by γ.

Suppose now that A satisfies Hypothesis 1.1.2 and for all (t, x) ∈ [0, T ]×R hasN distinct real eigen-
values ordered so that cj < cj+1. If one repeats the above for the system ∂t + diag(c1, . . . , cN ) ∂x
one finds a solution u which is piecewise C∞ on the pie shaped decomposition of [0, T ] × R into
N + 1 wedges by the N characteristics through (0, x).
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Denote by γj the corresponding characteristics through x. Define open wedges,

W1 :=
{
(t, x) : 0 < t < T, −∞ < x < γ1(t)

}
,

WN+1 :=
{
(t, x) : 0 < t < T, γN (t) < x <∞

}
,

and for 2 < j < N ,

Wj :=
{
(t, x) : 0 < t < T, γj−1(t) < x < γj(t)

}
.

They decompose [0, T ] × R with the wedges numbered from left to right.

Definition. For k ≥ 1, the set PCk consists of functions which are piecewise Ck as the set of
bounded continuous functions u on [0, T ] × R so that for α ≤ k and 1 ≤ j ≤ N + 1,

∂αt,x
(
u
∣∣
Wj

)
∈ L∞(Wj) .

It is a Banach space with norm

∥∥u
∥∥
L∞([0,T ]×R)

+
∑

|α|≤k

∑

1≤j≤N+1

∥∥∂αt,x
(
u
∣∣
Wj

)∥∥
L∞(Wj)

.

The next result asserts that for piecewise smooth data with singularity at x the solution is piecewise
smooth with its singularities restricted to the characteristics through x.

Theorem 1.1.4. Suppose in addition to Hypothesis 1.1.2, that A has N distinct real eigenvalues
for all (t, x) If f ∈ PCk and g ∈ C(R) has bounded continuous derivatives up to order k on each
side of x then the solution u belongs to PCk.

Sketch of Proof. Repeat the construction of u. In addition to the L∞([0, T ] × R) estimates one
needs to estimate the derivatives of order k on the wedges Wj . Introduce

µk(u, σ) := ‖u(σ)‖L∞(R) +
∑

2≤|α|≤k

∑

1≤j≤N+1

∥∥∂αt,x
(
u
∣∣
Wj

)
(σ)
∥∥
L∞(Wj∩{t=σ})

.

To estimate un − un−1 use the following Lemma.

Lemma 1.1.5. Assume the hypotheses of the Theorem and that cj(t, x) is one of the eigenvalues
of A(t, x). Then, there is a constant C(j, T, L) so that if f ∈ PCk and

(
∂t + cj(t, x) ∂x

)
w = f, w

∣∣
t=0

= 0,

then w ∈ PCk and,

µk(w, t) ≤ C
(
µk(w, 0) +

∫ t

0

µk(f, σ) dσ
)
.

Exercise 1.1.2 Prove the Lemma. Then finish the proof of the Theorem.

Exercise 1.1.3. Suppose that u is as in the Theorem, f = 0, and that for some ǫ > 0 and j,
the derivatives of u of order ≤ k are continuous across γj ∩ {0 ≤ t < ǫ}. Prove that they are
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continuous across γj ∩ {0 ≤ t ≤ T}. Hint. Show that the set of times t for which the solution is
Ck on γj ∩ {0 ≤ t ≤ t} is both open and closed. Use finite speed.

Denote by Φj(t, x) the flow of the ordinary differential equation x′ = cj(t, x). That is x(t) = Φj(t, x)
is the solution with x(0) = x. The solution operator for the pure transport equation (∂t+cj∂x)u = 0
with initial value g is then

u(t) = g(Φj(−t, x)) .

The values at time t are the rearrangements by the diffeomorphism Φ(−t, ·) of the initial function.
Because of the uniform boundedness of the derivatives of cj on slabs [0, T ] × R one has

∂αt,xΦ ∈ L∞([0, T ] × R) .

The derivative ∂xΦ measures the expansion or contraction by the flow. It is the the length of
the image of an infinitesimal interval divided by the original length. In particular Φ can at most
expand lengths by bounded quantity. The inverse of Φ(t, .) is the flow by the ordinary differential
equation from time t to time 0 the inverse also cannot expand by much. This is equivalent to a
lower bound, (

∂xΦ
)−1 ∈ L∞([0, T ] × R) .

The diffeomorphism Φ(t, .) can neither increase nor decrease length by much and the maps u(0) 7→
u(t) are uniformly bounded maps from Lp(R) to itself for all p ∈ [1,∞]. The case p = ∞ leads to
the Haar inequalities but there are analogous estimates

‖u(t)‖Lp(R) ≤ C
(
‖u(t)‖Lp(R) +

∫ t

0

‖Lu(σ)‖Lp(R) dσ
)
,

with constant independent of p. This in turn leads to an existence theory like that just recounted
but with mk(u, t) is replaced by

∑
|α|≤k ‖∂αt,xu(t)‖Lp(R). For the one dimensional case there is

a wide class of spaces for which the evolution is well posed. The case of p = 1 is particularly
important for the theory of shock waves while it is only the case p = 2 which remains valid for
typical hyperbolic equations in dimension d > 1.

§1.2. Examples of propagation of singularities using progressing waves.

D’Alembert’s general solution of the one dimensional wave equation,

utt − uxx = 0 , (1.2.1)

is the sum of progressing waves
f(x− t) + g(x+ t) . (1.2.2)

The rays are the integral curves of
∂t ± ∂x . (1.2.3)

Structures are rigidly transported at speeds ±1.

There is an energy law. If u is a smooth solutions whose support intersects each time slab a ≤ t ≤ b
in a compact set, one has

d

dt

∫

R

u2
t + u2

x dx =

∫
∂t(u

2
t + u2

x) dx =

∫
2ut(utt − uxx) + ∂x(2ut ux) dx = 0 ,
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since the first summand vanishes and the second is the x derivative of a function vanishing outside
a compact set.

The fundamental solution which solves (1.2.3) together with the initial values

u(0, x) = 0 , ut(0, x) = δ(x) , (1.2.4)

is given by the explicit formula

u(t, x) =
sgn t

2
χ[−t,t] =

1

2

(
h(x− t) − h(x+ t)

)
, (1.2.5)

where h denotes Heaviside’s function, the characteristic function of ]0,∞[.

Exercise 1.2.1. i. Derive (1.2.5) by solving the initial value problem using the Fourier transform
in x. Hint. You will likely decompose an expression regular at ξ = 0 into two which are not. Use
a principal value to justify this step.

ii. The proof of D’Alembert’s formula (1.2.2) shows that every distribution solution of (1.2.1)
is given by (1.2.2) for f, g distributions on R. Derive (1.2.5) by finding the f, g which yield the
solution of (1.2.4). Hint. You will need to find the solutions of du/dx = δ(x).

The singularities of the solution (1.2.5) lie on the characteristic curves through (0, 0). This is a
consequence of Theorem 1.1.4. In fact, define v as the solution of

vtt − vxx = 0, v(0, x) = 0, vt(0, x) = x2
+/2, x+ := max{x, 0} .

Introduce
V := (v1, v2, v), v1 := ∂tv − ∂xv, v2 := ∂tv + ∂xv .

to find

∂tV +




1 0 0
0 1 0
0 0 −1


 ∂xV +




0 0 1
0 0 0
0 0 0


V = 0 .

The Cauchy data, V (0, x) are continuous, piecewise smooth, and singular only at x = 0. Theorem
1.1.4 shows that V is piecewise smooth with singularities only on the characteristics through (0, 0).
In addition u = ∂3

xv (in the sense of distributions) since they both satisfy the same initial value
problem. Thus v and u = ∂3

xv have singular support only on the characteristics through (0, 0).

Interesting things happen if one adds a lower order term. For example, consider the Klein-Gordon
equation

utt − uxx + u = 0 . (1.2.6)

In sharp contrast with (1.2.2), there are hardly any undistorted progressing wave solutions.

Exercise 1.2.3. Find all solution of (1.2.6) of the form f(x − ct) and all solutions of the form
ei(τt−xξ). Discussion. The solutions ei(τt−xξ) with ξ ∈ R are particularly important since the
general solution is a Fourier superposition of these special plane waves. The equation τ = τ(ξ)
defining such solutions is called the dispersion relation of (3.1.6).

There is an energy conservation law. Denote by S(Rd) the Schwartz space of rapidly decreasing
smooth functions. That is, functions such that for all α, β

sup
x∈Rd

∣∣xβ∂αxψ(x)
∣∣ < ∞ .
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Exercise 1.2.4. Prove that if u ∈ C∞(R : S(R)) is a real valued solution of the Klein-Gordon
equation, then ∫

u2
t + u2

x + u2 dx

is independent of t. This quantity is called the energy. Hint. Justify carefully differentiation
under the integral sign and integration by parts. If you find weaker hypotheses which suffice that
would be good.

The solution of the Klein-Gordon equation with initial data (1.2.4), is not as simple as in the case
of the wave equation. As for the wave equation, Theorem 1. A.4 implies that the singular support
lies on {x = ±t}. This proof is as for the wave equation except that the zeroth order term in the
equation for V is replaced by 


1 0 −1
0 1 −1
0 0 −1


V .

The singularities are computed by the method of progressing waves. Introduce

hn(x) :=

{
xn/n! for x ≥ 0
0 for x ≤ 0

. (1.2.7)

Then
d

dx
hn+1 = hn , for n ≥ 0 . (1.2.8)

Exercise 1.2.5. Show that there are uniquely determined functions an(t) satisfying

a0(0) = 1/2, and an(0) = 0 for n ≥ 1 ,

and so that for all N ≥ 2,

(
∂2
t − ∂2

x + 1
) N∑

n=0

an(t)hn(x− t) ∈ CN−2(R2) . (1.2.9)

In this case, we say that the series
∞∑

n=0

an(t)hn(t− x)

is a formal solution of (∂2
t − ∂2

x + 1)u ∈ C∞. Hint. Pay special attention to the most singular
term(s). In particular show that, ∂ta0 = 0.

Exercise 1.2.6. Suppose that u is the fundamental solution of the Klein-Gordon equation and
M ≥ 0. Find a distribution wM such that u−wM ∈ CM (R2). Show that the fundamental solution
of the wave equation and that of the Klein-Gordon equation differ by a Lipschitz continuous
function. Show that the singular supports of the two fundamental solutions are equal. Hint Add
(1.2.9) to its spatial reflection and choose initial values for the two solutions to match the initial
data.

Exercise 1.2.7. Study the fundamental solution for the dissipative wave equation

utt − uxx + 2ut = 0 . (1.2.10)
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Use Theorem 1.1.4 to show that the singular support is contained in the characteristics through
(0, 0. Show that it is not a continuous perturbation of the fundamental solution of the wave
equation. Hint. Find solutions of (∂2

t − ∂2
x + 2∂t)u ∈ C∞ of the form

∑
n bn(t)hn(t − x) as in

Exercises 1.2.3 and 1.2.4 Use two such solutions as in Exercise 1.2.6.

The method progressing wave expansions from these examples is discussed in more generality
in chapter 6 of Courant-Hilbert Vol. 2, and in Lax’s Lectures on Hyperbolic Partial Differential
Equations. The higher dimensional analogue of these solutions are singular along codimension
one characteristic hypersurfaces in space time. The singularities propagate satisfying transport
equations along rays generating the hypersurface. The general class goes under the name conormal
solutions. They are discussed, for example, in M. Beals’ book. They describe propagating wave-
fronts. Luneberg [Lun] recognized that the propagation laws for fronts of singularities coincide
with the classical laws of geometric optics.

§1.3. Group velocity and the method of nonstationary phase.

The Klein-Gordon equation has constant coefficients so can be solved explicitly using the Fourier
transform. The computation of the singularities of the fundamental solution of the Klein-Gordon
equation suggests that the main part of solutions travel with speed equal to 1. One might expect
that the energy in a disk growing linearly in time at a speed slower than one would be small. For
compactly supported data, such a disk would contain no singularities for large time. Thus it is not
unreasonable to guess that for each σ < 1 and R > 0,

lim sup
t→∞

∫

|x|<R+σt

u2
t + u2

x + u2 dx = 0. (1.3.1)

The energy method shows that speeds are no larger than one. The idea about the main part of
the solution expressed in (1.3.1) is dead wrong for the Klein-Gordon equation. The main part of
the energy travels strictly slower than speed 1, even though singularities travel with speed exactly
equal to 1.

The solution of the Cauchy problem for the Klein-Gordon equation in dimension d

utt − ∆u + u = 0 , (t, x) ∈ R1+d ,

is given by,

u =
∑

±

(2π)−d/2
∫
a±(ξ) ei(±〈ξ〉t+x.ξ) dξ , 〈ξ〉 :=

(
1 + |ξ|2

)1/2
,

û(0, ξ) = a+(ξ) + a−(ξ) , ût(0, ξ) = i 〈ξ〉
(
a+(ξ) − a−(ξ)

)
.

The energy is equal to

1

2

∫
u2
t + |∇xu|2 + u2 dx =

∫
〈ξ〉2

(
|a+(ξ)|2 + |a−(ξ)|2

)
dξ .

Exercise 1.3.1. Verify these formulas. Verify conservation of energy by an integration by parts
argument as in Exercise 1.2.4. Hint. Follow the computation that starts §1.4.

Consider the behavior for large times. The phases φ±(t, x, ξ) = ±〈ξ〉t+ x.ξ have gradients

∇ξφ±(t, x, ξ) := ∇ξ

(
± 〈ξ〉t+ x.ξ

)
=

±tξ
〈ξ〉 + x = t

(±ξ
〈ξ〉 +

x

t

)
.
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At space time points (t, x) so that t >> 1 and

±ξ
〈ξ〉 +

x

t
6= 0 ,

the phase oscillates rapidly and the contribution to the integral is expected to be small. The
contribution to the a± integral from ξ ∼ ξ is felt predominantly at points where x/t ∼ ∓ξ/〈ξ〉.
Setting τ±(ξ) := ±〈ξ〉 one has

∓ξ
〈ξ〉 = −∇ξτ±(ξ) .

This agrees with the formula for the group velocity (re)introduced on purely geometric grounds in
§2.4.

For t → ∞ the contributions of the plane waves a±(ξ)ei(τ±(ξ)t+x,ξ) with ξ ∼ ξ are expected to be
felt at points with x/t ∼ −∇ξτ±(ξ). A precise version is proved using the method of nonstationary
phase.

Proposition 1.3.1. Suppose that a±(ξ) ∈ S(Rd) and define

V :=
{
v : v = −∇ξτ±(ξ) for some ξ ∈ supp a±

}

as the closed set of group velocities that appear in the plane wave decomposition of u. For µ > 0
let Kµ ⊂ Rd denote the set of points at distance ≥ µ from V. Denote by Γµ the cone

Γµ :=
{

(t, x) : t > 0, and x/t ∈ Kµ

}
.

Then for all N > 0 and α,

(1 + t+ |x|)N ∂αt,xu(t, x) ∈ L∞(Γµ) .

Proof. The solution u is smooth with values in S so one need only consider {t ≥ 1}. We estimate
the + summand. The − summand can be treated similarly.

Introduce the first order differential operator

ℓ(t, x, ∂) :=
1

i|∇ξφ|2
∑

j

∂φ

∂ξj

∂

∂ξj
, so, ℓ(t, x, ∂ξ) e

iφ = eiφ .

The coefficients are smooth functions on a neighborhood of Γµ, and are homogeneous of degree
minus one in (t, x) and satisfy

1

|∇ξφ|2
∣∣∣ ∂φ
∂ξj

∣∣∣ ≤ C(t+ |x|)−1 for (t, x, ξ) ∈ Γµ × supp a+ .

The identity ℓ eiφ = eiφ implies,

∫
a+(ξ) eiφ dξ =

∫
a+(ξ) ℓNeiφ dξ .
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Denote by ℓ† the transpose of ℓ and integrate by parts to find

∫
a+(ξ) eiφ dξ =

∫
[(ℓ†)Na+(ξ)] eiφ dξ .

The operator

(ℓ†)N =
∑

|α|≤N

cα(t, x, ξ) ∂αξ

with coefficients cα smooth on a neighborhood of Γµ, homogeneous of degree −N in t, x, with

|cα(t, x)| ≤ C(α)(t+ |x|)−N for (t, x, ξ) ∈ Γµ × supp a+ .

It follows that ∣∣∣
∫
a+(ξ) eiφ dξ

∣∣∣ ≤ C (t+ |x|)−N .

Since the t, x derivatives of this integral are again integrals of the same form, this suffices to prove
the proposition.

Introduce for µ << 1, Ṽµ := Rd \ Kµ an open set slightly larger than V. For t→ ∞ virtually all

the energy of a solution is contained in the cone
{
(t, x) : x/t ∈ Ṽ

}
. This is particularly interesting

when a± are supported in a small neighborhood of a fixed ξ. For large times virtually all the
energy is localized in a small conic neighborhood of the pair of lines x = −t∇ξτ±(ξ) that travel
with the group velocities associated to ξ.

The integration by parts method introduced in this proof is very important. The next estimate for
nonstationary oscillatory integrals is a straight forward application. The fact that the estimate is
uniform in the phases is useful.

Lemma of Nonstationary Phase 1.3.2. Suppose that Ω is a bounded open subset of Rd and
that C1 > 1. Then there is a constant C2 > 0 so that for all ∀f ∈ Cm0 (Ω), and φ ∈ Cm(Ω ; R)
satisfying

∀|α| ≤ m, ‖∂αφ‖L∞ ≤ C1 , and, ∀x ∈ Ω , C−1
1 ≤ |∇xφ| ≤ C1 ,

one has the estimate, ∣∣∣
∫

eiφ/ǫ f(x) dx
∣∣∣ ≤ C2 ǫ

m
∑

|α|≤m

‖∂αf‖L1 .

Exercise 1.3.2. Prove the Lemma. Hint. Use

ℓ(x, ∂x) :=
∇xφ

i |∇xφ|2
. ∂x .

Example. A special case are the phases φ = x.ξ with ξ belonging to a compact subset of Rd \ 0.
The Lemma is then equivalent to the rapid decay of the Fourier transform of smooth compactly
supported functions. That decay is proved by integration by parts. The general result can be
reduced to the special case of the Fourier transform. Since the gradient of φ does not vanish, for
each x ∈ supp f there is a neighborhood and a nonlinear change of coordinates so that in the new
coordinates φ is equal to x1. Using a partition of unity, one can suppose that f is the sum of a
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finite number of functions each supported in one of the neighborhoods. For each such function, a
change of coordinates yields an integral of the form

∫
eix1/ǫ g(x) dx = c ĝ(1/ǫ, 0, . . . , 0) ,

which is rapidly decaying since it is the transform of an element of C∞
0 (Rd).

Exercise 1.3.3. Suppose that f ∈ H1(R) and g ∈ L2(R) and that u is the unique solution of the
Klein-Gordon equation with initial data

u(0, x) = f(x) , ut(0, x) = g(x) . (1.3.2)

Prove that for any ǫ > 0 and R ≥ 0, there is a δ > 0 so that

lim sup
t→∞

∫

|x|>(1−δ)t−R

u2
t + u2

x + u2 dx < ǫ . (1.3.3)

Hint. Replace f̂ , ĝ by compactly support smooth functions making an error at most ǫ/2 in energy.
Then use the above proposition noting that the group velocities are uniformly smaller than one on
the supports of a±.

Discussion. Note that as ξ → ∞ the group velocities approach ±1. High frequencies will prop-
agate at speeds nearly equal to one. In particular they travel at the same speed. High frequency
signals stay together better than low frequency signals. Since singularities of solutions are made of
only the high frequencies (modifying the data by an element of S modifies the solution by such an
element and therefore by a smooth term) one expects singularities to propagate at speeds ±1 which
is exactly what is true for the fundamental solution. Once known for the fundamental solution it
follows for all. The simple proof is an exercise in my book [Rauch 1992, pg. 164-165].

The analysis of Exercise 1.3.3 does not apply to the fundamental solution since the latter does not
have finite energy. However it belongs to Cj(R : Hs−j(R)) for all j ∈ N and s < 1/2. Thus the
next result provides a good replacement of (1.3.3).

Exercise 1.3.4. Suppose that u is the fundamental solution of the Klein-Gordon equation (1.1.6)
and that s < 1/2. If 0 ≤ χ ∈ C∞(R) is a plateau cutoff supported on the positive half line, that is

χ(x) = 0 for x ≤ 0 and χ(x) = 1 for x ≥ 1 ,

then for all R ≥ 0,
lim
t→∞

‖χ(R+ |x| − t)u(t, x) ‖Hs(Rx) = 0 . (1.3.4)

Hint. Prove that
‖χu(t) ‖Hs(R) ≤ C

(
‖u(0)‖Hs(R) + ‖ut(0)‖Hs−1(R)

)

with C independent of t and the initial data. Conclude that it suffices to prove (3.2.4) with initial
data u(0), ut(0) dense in Hs × Hs−1. Take the dense set to be data with Fourier Transform in
C∞

0 (R).

These examples illustrate the important observation that the propagation of singularities in solu-
tions and the propagation of the majority of the energy may be governed by different rules. For
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the Klein Gordon equation at least, both answers can be determined from considerations of group
velocities.

§1.4. Fourier synthesis and rectilinear propagation.

For equations with constant coefficients, solutions of the initial value problem are expressed as
Fourier integrals. Injecting short wavelength initial data and performing an asymptotic analysis
yields the approximations of geometric optics. This is how such approximations were first justified
in the nineteenth century. It is also the motivating example for the more general theory. The short
wavelength approximations explain the rectilinear propagation of waves in homogeneous media.
This is the first of the three basic physical laws of geometric optics. It explains, among other
things, the formation of shadows. The short wavelength solutions are also the building blocks in
the analysis of the laws of reflection and refraction.

Consider the initial value problem

u := utt − ∆u :=
∂2u

∂t2
−

d∑

j=1

∂2u

∂x2
j

= 0 , u(0, x) = f , ut(0, x) = g . (1.4.1)

Fourier transformation with respect to the x variables yields

∂2
t û(t, ξ) + |ξ|2 û(t, ξ) = 0 , û(0, ξ) = f̂ , ∂tû(0, ξ) = ĝ .

Solve the ordinary differential equations in t to find

û(t, ξ) = f̂(ξ) cos t|ξ| + ĝ(ξ)
sin t|ξ|
|ξ| .

Write

cos t|ξ| =
eit|ξ| + e−t|ξ|

2
, sin t|ξ| =

eit|ξ| − e−t|ξ|

2i
,

to find
û(t, ξ) = a+(ξ) ei(xξ−t|ξ|) − a−(ξ) ei(xξ+t|ξ|) , (1.4.2)

with,

2 a+ := f̂ +
ĝ

i|ξ| , 2 a− := f̂ − ĝ

i|ξ| . (1.4.3)

The right hand side of (1.4.2) is an expression in terms of the plane waves ei(xξ∓t|ξ|) with amplitudes
a±(ξ) and dispersion relations τ = ∓|ξ|. The group velocities associated to a± are

v = −∇ξτ = −∇ξ(∓|ξ|) = ± ξ

|ξ| .

The solution is the sum of two terms,

u±(t, x) :=
1

(2π)d/2

∫
a±(ξ) ei(xξ∓t|ξ|) dξ .

Using F
(
∂u/∂xj

)
= iξj û, and Parseval’s Theorem shows that the conserved energy for the wave

equation is equal to

1

2

∫
|ut(t, x)|2 + |∇xu(t, x)|2 dx =

∫
|ξ|2
(
|a+(ξ)|2 + |a−(ξ)|2

)
dξ .
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There are conservations of all orders. Each of the following quantities is independent of time,

1

2
‖∇t,xu(t)‖2

Hs(Rd) =

∫
〈ξ〉2s |ξ|2

(
|a+(ξ)|2 + |a−(ξ)|2

)
dξ .

Consider initial data a wave packet with wavelength of order ǫ and phase equal to x1/ǫ,

uǫ(0, x) = γ(x) eix1/ǫ , uǫt(0, x) = 0 , γ ∈ ∩sHs(Rd) . (1.4.4)

The choice ut = 0 postpones dealing with the factor 1/|ξ| in (1.4.3). The initial value is an envelope
or profile γ multiplied by a rapidly oscillating exponential.

Applying (1.4.3) with g = 0 and with

f̂(ξ) = û(0, ξ) = F
(
γ(x) eix1/ǫ

)
= γ̂(ξ − e1/ǫ) ,

yields u = u+ + u− with,

uǫ±(t, x) :=
1

2

1

(2π)d/2

∫
γ̂(ξ − e1/ǫ) e

i(xξ∓t|ξ|) dξ .

Analyse uǫ+. The other term is analogous. For ease of reading, the subscript plus is omitted.
Introduce

ζ := ξ − e1/ǫ, ξ =
e1 + ǫζ

ǫ
,

to find,

uǫ(t, x) =
1

2

1

(2π)d/2

∫
γ̂(ζ) eix(e1+ǫζ)/ǫ e−it|e1+ǫζ|/ǫ dζ . (1.4.5)

The approximation of geometric optics comes from injecting the first order Taylor approximation,

∣∣e1 + ǫζ
∣∣ ≈ 1 + ǫζ1 ,

yielding,

uǫapprox :=
1

2

1

(2π)d/2

∫
γ̂(ζ) eix(e1+ǫζ)/ǫ e−it(1+ǫζ1)/ǫ dζ .

Collecting the rapidly oscillating terms ei(x1−t)/ǫ which do not depend on ζ gives,

uapprox = ei(x1−t)/ǫ a(t, x), a(t, x) :=
1

2

1

(2π)d/2

∫
γ̂(ζ) ei(xζ−tζ1) dζ . (1.4.6)

Write x− tζ1 = (x− te1).ζ to find,

a(t, x) =
1

2

1

(2π)d/2

∫
γ̂(ζ) ei(x−te1)ζ dζ =

1

2
γ(x− te1) .

The approximation is a wave translating rigidly with velocity equal to e1. The waveform γ is
arbitrary. The approximate solution resembles the collumnated light from a flashlight. If the
support of γ is small the approximate solution resembles a light ray.
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The amplitude a satisfies the transport equation

∂a

∂t
+

∂a

∂x1
= 0

so is constant on the rays x = x + te1. The construction of a family of short wavelength
approximate solutions of D’Alembert’s wave equations requires only the solutions of a simple
transport equation.

The dispersion relation of the family of plane waves,

ei(x.ξ+τt) = ei(x.ξ−|ξ|t),

is τ = −|ξ|. The velocity of transport, v = (1, 0, . . . , 0), is the group velocity v = −∇ξτ(ξ) = ξ/|ξ|
at ξ = (1, 0, . . . , 0). For the opposite choice of sign the dispersion relation is τ = |ξ|, the group
velocity is −e1, and the rays are the lines x = x− te1.

Had we taken data with oscillatory factor eix.ξ/ǫ then the propagation would be at the group
velocity ±ξ/|ξ|. The approximate solution would be

1

2

(
ei(x.ξ−t|ξ|)/ǫ γ

(
x− t

ξ

|ξ|
)

+ ei(x.ξ+t|ξ|)/ǫ γ
(
x+ t

ξ

|ξ|
))

.

The approximate solution (1.4.6) is a function H(x − te1) with H(x) = eix1/ǫ h(x). When h has
compact support or more generally tends to zero as |x| → ∞ the approximate solution is localized
and has velocity equal to e1. The next result shows that when d > 1, no exact solution can have
this form. In particular the distribution δ(x− e1t) which is the most intuitive notion of a light ray
is not a solution of the wave equation or Maxwell’s equation.

Proposition 1.4.1. If d > 1, s ∈ R, K ∈ Hs(Rd) and u = K(x − e1t) satisfies u = 0, then
K = 0.

Exercise 1.4.1. Prove Proposition 1.4.1. Hint. Prove and use a Lemma. Lemma. If k ≤ d,
s ∈ R, and, w ∈ Hs(Rd) satisfies 0 =

∑d
k ∂

2w/∂2xj , then w = 0.

Next, analyse the error in (1.4.6). The first step is to extract the rapidly oscillating factor in (1.4.5)
to define an exact amplitude aǫexact,

uǫ(t, x) = ei(x1−t)/ǫ aexact(ǫ, t, x) ,

aexact(ǫ, t, x) :=
1

(2π)d/22

∫
γ̂(ζ) eix.ζ e−it(|e1+ǫζ|−1)/ǫ dζ . (1.4.7)

Proposition 1.4.2. The exact and approximate solutions of uǫ = 0 with Cauchy data (1.4.4)
are given by

uǫ =
∑

±

ei(x1∓t)/ǫ a±exact(ǫ, t, x) , uǫapprox =
∑

±

ei(x1∓t)/ǫ
γ(x∓ e1t)

2
,

as in (1.4.7) and (1.4.6). The error is O(ǫ) on bounded time intervals. Precisely, there is a constant
C > 0 so that for all s, ǫ, t,

∥∥∥a±exact(ǫ, t, x) − γ(x∓ e1t)

2

∥∥∥
Hs(RN )

≤ C ǫ |t|
∥∥γ
∥∥
Hs+2(Rd)

.
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Proof. It suffices to estimate the error with the plus sign. The definitions yield

a+
exact(ǫ, t, x) − γ(x− e1t)/2 = C

∫
γ̂(ζ) eix.ζ

(
e−it(|e1+ǫζ|−1)/ǫ) − e−itζ1

)
dζ .

The definition of the Hs(Rd) norm yields

∥∥∥a+
exact(ǫ, t, x) − γ(x− e1t)/2

∥∥∥
Hs(RN )

=
∥∥∥〈ζ〉s γ̂(ζ)

(
e−it(|e1+ǫζ|−1)/ǫ − e−itζ1

)∥∥∥
L2(RN )

.

Taylor expansion yields for |β| ≤ 1/2,

| e1 + β | = 1 + β1 + r(β) , |r(β)| ≤ C |β|2 .

Increasing C if needed, the same inequality is true for |β| ≥ 1/2 as well.

Applied to β = ǫζ this yields,

∣∣∣ t
(∣∣e1 + ǫζ

∣∣− 1
)
/ǫ− ζ1x1

∣∣∣ ≤ C ǫ |t| |ζ|2 ,

so ∣∣∣e−it(|e1+ǫζ|−1)/ǫ − e−itζ1
∣∣∣ ≤ C ǫ |t| |ζ|2 .

Therefore
∥∥∥〈ζ〉s γ̂(ζ)

(
e−it(|e1+ǫζ|−1)/ǫ − e−itζ1

)∥∥∥
L2(Rd)

≤ C ǫ |t|
∥∥∥〈ζ〉s|ζ|2 γ̂(ζ)

∥∥∥
L2
. (1.4.8)

Combining (1.4.7-1.4.8) yields the estimate of the Proposition.

The approximation retains some accuracy so long as t = o(1/ǫ).

The approximation has the following geometric interpretation. One has a superposition of plane
waves ei(xξ+t|ξ|) with ξ = (1/ǫ, 0, . . . , 0) +O(1). Replacing ξ by (1/ǫ, 0, . . . , 0) and |ξ| by 1/ǫ in the
plane waves yields the approximation (1.4.6).

The wave vectors, ξ, make an angle O(ǫ) with e1. The corresponding rays have velocities which
differ by O(ǫ) so the rays remain close for times small compared with 1/ǫ. For longer times the fact
that the group velocities are not parallel is important. The wave begins to spread out. Parallel
group velocities is a reasonable approximation for times t = o(1/ǫ).

The example reveals several scales of time. For times t << ǫ, u and its gradient are well approxi-
mated by their initial values. For times ǫ << t << 1 u ≈ ei(x−t)/ǫa(0, x). The solution begins to
oscillate in time. For t = O(1) the approximation u ≈ a(t, x) ei(x−t)/ǫ is appropriate. For times
t = O(1/ǫ) the approximation ceases to be accurate. The more refined approximations valid on
this longer time scale are called diffractive geometric optics. The reader is referred to [Donnat,
Joly Métiver, and Rauch] for an introduction in the spirit of Chapters 7-8.

It is typical of the approximations of geometric optics, that

(
uapprox − uexact

)
= uapprox = O(1) ,

is not small. The error uapprox − uexact = O(ǫ) is smaller by a factor of ǫ. The residual uapprox is
rapidly oscillatory, so applying −1 gains the factor ǫ.
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The analysis just performed can be carried out without fundamental change for initial oscillations
with nonlinear phase. A nice description including the phase shift on crossing a focal point can be
found in [Hörmander 1983, §12.2].

Next the approximation is pushed to higher accuracy with the result that the residuals can be
reduced to O(ǫN) for any N . Taylor expansion to higher order yields,

|e1 + η| = 1 + η1 +
∑

|α|≥2

cαη
α , |η| < 1, (1.4.9)

so (
|e1 + ǫζ| − 1

)
/ǫ ∼ ζ1 +

∑

|α|≥2

ǫ|α|−1 cα ζ
α,

eit(|e1+ǫζ|−1)/ǫ ∼ eitζ1 e

∑
|α|≥2

itǫ|α|−1 cαζ
α

∼ eitζ1
(
1 +

∑

j≥1

ǫj hj(t, ζ)
)
.

Here, hj(t, ζ) is a polynomial in t, ζ. Injecting in the formula for aexact(ǫ, t, x) yields an expansion

aexact(ǫ, t, x) ∼ a0(t, x) + ǫ a1(t, x) + ǫ2a2(t, x) + · · · , a0(t, x) = γ(x− e1t)/2, (1.4.10)

aj =
1

(2π)−d/2 2

∫
γ̂(ζ) ei(xζ−tζ1) hj(t, ζ) dζ =

1

2

(
hj(t, ∂/i)γ

)
(x− e1t) . (1.4.11)

The series is asymptotic as ǫ → 0 in the sense of Taylor series. For any s,N , truncating the
series after N terms yields an approximate amplitude which differs from aexact by O(ǫN+1) in L2

uniformly on compact time intervals. The Hs error for s ≥ 0 is O(ǫN+1−s).

Exercise 1.4.2. Compute the precise form of the first corrector a1.

Formula (1.4.11) implies that if the Cauchy data are supported in a set O, then the amplitudes aj
are all supported in the tube of rays

T :=
{

(t, x) : x = x+ te1, x ∈ O
}
. (1.4.12)

Warning. Though the aj are supported in this tube, it is not true that aǫexact is supported in the
tube. The map ǫ 7→ aexact(ǫ, t, x) is not analytic. If it were, the Taylor series would converge to
the exact solution which would then have support in the tube. When d ≥ 2, the function u = 0
is the only solution of D’Alembert’s equation with support in a tube of rays with cross section of
finite d dimensional Lebesgue measure. This follows from the fact that for finite energy solutions,
the energy in the tube tends to zero. †

To analyse the oscillatory initial value problem with u(0) = 0, ut(0) = β(x) eix1/ǫ requires one
more idea to handle the contributions from ξ ≈ 0 in the expression

u(t, x) = (2π)−d/2
∫

sin t|ξ|
|ξ| β̂

(
ξ − e1

ǫ

)
eixξ dξ .

† This is proved by approximation by regular solutions. For Cauchy data in C∞
0 (Rd), the energy

in the tube is O(t(1−d)). This can be proved using the fundamental solution. Alternatively, if the
Fourier transform of the Cauchy data belongs to C∞

0 (Rdξ \ 0) one has the same estimate using the

inequality of stationary phase from Appendix 3.II (see Lemma 3.4.2).
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Choose χ ∈ C∞
0 (Rdξ) with χ = 1 on a neighborhood of ξ = 0. The cutoff integrand is equal to

χ(ξ)
sin t|ξ|
|ξ|

1

〈ξ − e1/ǫ〉s
ks(ξ − e1/ǫ) e

ixξ , ks(ξ) := 〈ξ〉s β̂(ξ) ∈ L2(Rdξ) .

A simple upper bound is,

∥∥∥χ(ξ)
sin t|ξ|
|ξ|

1

〈ξ − e1/ǫ〉s
∥∥∥
L∞(Rd)

≤ Cs |t| ǫs , 0 < ǫ ≤ 1 .

It follows that

∥∥∥χ(ξ)
sin t|ξ|
|ξ|

1

〈ξ − e1/ǫ〉s
ks(ξ − e1/ǫ)

∥∥∥
L2(Rd)

≤ Cs |t| ǫs
∥∥β
∥∥
Hs(Rd)

.

The small frequency contribution is negligable in the limit ǫ → 0. It is removed with a cutoff as
above and then the analysis away from ξ = 0 proceeds by decomposition into plane wave as in the
case with ut(0) = 0. It yields left and right moving waves with the same phases as before.

Exercise 1.4.3. Solve the Cauchy problem for the anisotropic wave equation, utt = uxx + 4uyy
with initial data given by

uǫ(0, x) = γ(x) eix.ξ/ǫ , uǫt(0, x) = 0 , γ ∈ ∩sHs(Rd) .

Find the leading term in the approximate solution to u+. In particular, find the velocity of
propagation as a function of ξ. Discussion. The velocity is equal to the group velocity from §1.3.

§1.5. A cautionary example in geometric optics.

A typical science text discussion of a mathematics problem involves simplifying the underlying
equations. The usual criterion applied is to ignore terms which are small compared to other terms
in the equation. It is striking that in many of the problems treated under the rubric of geometric
optics, such an approach can lead to completely inaccurate results. It is an example of an area
where more careful mathematical consideration is not only useful but necessary.

Consider the initial value problems

∂tu
ǫ + ∂xu

ǫ + uǫ = 0 , uǫ
∣∣
t=0

= a(x) cos(x/ǫ) ,

in the limit ǫ → 0. The function a is assumed to be smooth and to vanish rapidly as |x| → ∞ so
the initial value has the form of wave packet. The initial value problem is uniquely solvable and
the solution depends continuously on the data. The exact solution of the general problem

∂tu+ ∂xu+ u = 0 , u
∣∣
t=0

= f(x) ,

is u(t, x) = e−t f(x− t) so the exact solution uǫ is

uǫ(t, x) = e−t a(x− t) cos((x− t)/ǫ) .

In the limit as ǫ → 0 one finds that both ∂tu
ǫ and ∂xu

ǫ are O(1/ǫ) while uǫ = O(1) is negligibly
small in comparison. Dropping this small term leads to the simplified equation for an approximation
vǫ,

∂tv
ǫ + ∂xv

ǫ = 0 , vǫ
∣∣
t=0

= a(x) cos(x/ǫ) .
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The exact solution is
vǫ(t, x) = a(x− t) cos

(
(x− t)/ǫ

)
,

which misses the exponential decay. It is not a good approximation. The two large terms com-
pensate so that the small term is not negligible compared to their sum.

§1.6. The law of reflection.

Consider the wave equation u = 0 in the half space Rd− := {x1 ≤ 0}. At {x1 = 0} a boundary
condition is required. The condition encodes the physics of the interaction with the boundary.

Since the differential equation is of second order one might guess that two boundary conditions
are needed as for the Cauchy problem. An analogy with the Dirichlet problem for the Laplace
equation suggests that one condition is required.

A more revealing analysis concerns the case of dimension d = 1. D’Alembert’s formula shows that
at all points of space time the solution consists of the sum of two waves one moving toward the
boundary and the other toward the interior. The waves approaching the boundary will propagate
to the edge of the domain. At the boundary one does not know what values to give to the waves
which move into the domain. The boundary condition must give the value of the incoming wave
in terms of the outgoing wave. That is one boundary condition.

Factoring
∂2
t − ∂2

x = (∂t − ∂x)(∂t + ∂x) = (∂t + ∂x)(∂t − ∂x),

shows that (∂t − ∂x)(ut + ux) = 0 so ut + ux is transported to the left. Similarly, ut− ux moves to
the right. Thus from the initial conditions, ut − ux is determined everywhere in x ≤ 0 including
the boundary x = 0. The boundary condition at {x = 0} must determine ut + ux. The conclusion
is that half of the information needed to find all the first derivatives is already available and one
needs only one boundary condition.

For the Dirichlet condition,
u(t, x)

∣∣
x1=0

= 0 . (1.6.1)

Differentiating (1.6.1) with respect to t shows that ut(t, 0) = 0, so at t = 0 (ut + ux) = −(ut − ux)
showing that at the boundary, the incoming wave is equal to -1 times the outgoing wave.

In the case d ≥ 1 consider the Cauchy data,

u(0, x) = f , ut(0, x) = g , for x1 ≤ 0 . (1.6.2)

If the data are supported in a compact subset of Rd− then, for small time the support of the solution
does not meet the boundary. When waves hit the boundary they are reflected. The goal of this
section is to describe this reflection process.

Uniqueness of solutions and finite speed of propagation for (1.6.1)-(1.6.2) are both consequences
of a local energy identity. A function is a solution if and only if the real and imaginary parts are
solutions. Thus it suffices to treat the real case for which

ut u = ∂te−
∑

j≥1

∂j(ut∂ju) , e :=
u2
t + |∇xu|2

2
.

Denote by Γ a backward light cone

Γ :=
{

(t, x) : |x− x|2 < t− t
}
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and by Γ̃ the part in {x1 < 0},
Γ̃ := Γ ∩

{
x1 < 0

}
.

For any 0 ≤ s < t the section at time s is denoted

Γ̃(s) := Γ̃ ∩
{
t = s

}
.

Both uniqueness and finite speed are consequences of the following estimate.

Proposition 1.6.1. If u is a smooth solution of (1.6.1)-(1.6.2), then for 0 < t < t,

φ(t) :=

∫

Γ̃(t)

e(t, x) dx

is a nonincreasing function of t.

Proof. Translating the time if necessary it suffices to show that for s > 0, φ(s) ≤ φ(0).

In the identity

0 =

∫

Γ̃∩{0≤t≤s}

ut u dt dx .

Integrate by parts to find integrals over four distinct parts of the boundary. The tops and bottoms
contribute φ(t) and −φ(0) respectively. The intersection of Γ̃(s) with x1 = 0 yields

∫

Γ̃(s)∩{x1=0}

ut ∂1u dt dx2 . . . dxd .

The Dirichlet condition implies that ut = 0 on this boundary so the integral vanishes.

The contribution of the sides |x− x| = t− t yield an integral of

n0 e +

d∑

j=1

nj ut ∂ju ,

where (n0, n1, n2, . . . , nd) is the outward unit normal. Then

n0 =
( d∑

j=1

n2
j

)1/2
=

1√
2
,

∣∣
d∑

j=1

nj ut ∂ju
∣∣ ≤ 1√

2
|ut||∇xu| ≤ 1√

2
e .

Thus the integrand from the contributions of sides is nonnegative, so the integral over the sides is
nonnegative.

Combining yields

0 =

∫

Γ̃∩{0≤t≤s}

ut u dt dx ≥ φ(t) − φ(0) ,

and the estimate follows.

§1.6.1. The method of images.

Introduce the notations,

x = (x1, x
′), x′ := (x2, . . . , xd), ξ = (ξ1, ξ

′), ξ′ := (ξ2, . . . , ξd).
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Definitions. A function f on R1+d is even (resp. odd) in x1 when

f(t, x1, x
′) = f(t,−x1, x

′) resp. f(t,−x1, x
′) = −f(t, x1, x

′).

Define the reflection operator R by

(Rf)(t, x1, x
′) := f(t,−x1, x

′) .

The even (resp. odd) parts of a function f are defined by

f + Rf

2
, resp.

f − Rf

2
.

Proposition 1.6.2. i. If u ∈ C∞(R1+d) is a solution of u = 0 that is odd in x1, then its restiction
to {x1 ≤ 0} is a smooth solution of u = 0 satisfying the Dirichlet boundary condition (1.6.1) .

ii. Conversely, if u ∈ C∞({x1 ≤ 0}) is a smooth solution of u = 0 satisfying (1.6.1) then the
odd extension of u to R1+d is a smooth odd solution of u = 0.

Proof. i. Setting x1 = 0 in the identity u(t, x1, x
′) = −u(t,−x1, x

′) shows that (1.6.1) is satisfies.

ii. First prove by induction on n that

∀n ≥ 0,
∂2nu

∂2nx1

∣∣∣∣
x1=0

= 0 . (1.6.3)

The case n = 0 is (1.6.1).

Since the derivatives ∂t and ∂j for j > 1 are parallel to the boundary along which u = 0, it follows
that utt and ∂2

j u with j > 1 vanish at x1 = 0. The equation u = 0 implies

∂2u

∂x2
1

=
∂2u

∂t2
−

d∑

j=2

∂2u

∂x2
j

.

The right hand side vanishes on {x1 = 0} proving the case n = 1.

If the case k ≥ 1 is known, apply the case k to the odd solution ∂2
1u to prove the case k + 1. This

completes the proof of (1.6.3).

Denote by ũ, the odd extension of u. It is not hard to prove using Taylor’s theorem that (1.6.3)
is a necessary and sufficient condition for ũ ∈ C∞(R1+d). The equation ũ = 0 for x1 ≥ 0 follows
from the equation in x1 ≤ 0 since ũ is odd.

Example. Suppose that d = 1 and that f ∈ C∞
0 (] − ∞, 0[) so that u = f(x − t) is a solution

of (1.6.1), (1.6.2) representing a wave which approaches the boundary {x = 0} from the left. To
describe the reflection use images as follows. The solution in {x < 0} is the restriction to x < 0
of an odd solution of the wave equation. For x < 0 that solution is equal to the given function in
x < 0 and to minus its reflection in {x > 0},

u = f(x− t) − f(−x− t) .

The formula on the right is an odd solution of the wave equation which is equal to u in t < 0 so is
therefore the solution for all time. The solution u is the restriction to x < 0.
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An example is sketched in the figure. In R1+1 one has an odd solution of the wave equation.

T

x

t

Reflection in dimension d = 1

There is a righward moving wave with postitve profile and a leftward moving wave with negative
profile equal to -1 times the reflection of the first.

Viewed from x < 0, there is a wave with positive profile which arrives at the boundary at time T .
At that time a leftward moving wave seems to emerge from the boundary. It is the reflection of
the wave arriving at the boundary. If the wave arrives at the boundary with amplitude a on an
incoming ray, the reflected wave on the reflected ray has amplitude −a. The coefficient of reflection
is equal to -1. This is the same result found in the first paragraphs of §1.6.

Example. Suppose that d = 3 and in t < 0 one has a spherically symmetric wave approaching the
boundary. Until it reaches the boundary the boundary condition does not play a role. The reflection
is computed by extending the incoming wave to an odd solution consisting of the given solution
and its negative in mirror image. The moment when the original wave reaches the boundary from
the left, its image arrives from the right.

Spherical wave arrives at the boundary

In the figure the wave on the left has positive profile and that on the right a negative profile.
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Spherical wave with reflection

In the figure above the middle line represents the boundary. Viewed from x < 0, the wave on the
left disappears into the boundary and a reflected spherical wave emerges with profile flipped. The
profiles of spherical waves in three space preserve their shape but decrease in amplitude as they
spread.

§1.6.2. The plane wave derivation.

In many texts you will find a derivation which goes as follows. Begin with the plane wave solutions

ei(x.ξ+tτ) , ξ ∈ Rd, τ = ∓|ξ| .

Since u is everywhere of modulus one, no solution of this sort can satisfy the Dirichlet boundary
condition.

Seek a solution of the initial boundary value problem which is a sum of two plane waves,

ei(x.ξ−t|ξ|) + Aei(x.η+tσ) , A ∈ C .

In order that the solutions satisfy the wave equation one must have σ2 = |η|2. In order that the
plane waves sum to zero at x1 = 0 it is necessary and sufficient that η′ = ξ′, σ = −|ξ|, and A = −1.
Since σ2 = |η|2 it follows that |η| = |ξ| so

η = (±ξ1, ξ2, . . . , ξd) .

The sign + yields the solution u = 0. Denote

x̃ := (−x1, x2, . . . , xd), ξ̃ := (−ξ1, ξ2, . . . , ξd).

The sign minus yields the interesting solution.

ei(x.ξ−t|ξ|) − ei(x.ξ̃−t|ξ̃|)

which is twice the odd part of ei(x.ξ−t|ξ|).

The textbook interpretation of the solution with τ = −|ξ| and ξ1 > 0 is that ei(x.ξ−t|ξ|) is a plane

wave approaching the boundary x1 = 0, and ei(x.ξ̃−t|ξ̃|) moves away from the boundary. The first is
an incident wave and the second is a reflected wave. The factor A = −1 is the reflection coefficient.
The direction of motions are given group velocity computed from the dispersion relation.

Both waves are of infinite extent and of modulus one everywhere in space time. They have finite
energy density but infinite energy. They both meet the boundary at all times. It is questionable
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to think of either one as incoming or reflected. The next subsection shows that there are localized
waves which are clearly incoming and reflected waves with the property that when they interact
with the boundary the local behavior resembles the plane waves.

For more general mixed initial boundary value problems, there are other wave forms which need
to be included. The key is that solutions of the form ei(x.ξ+tτ) are acceptable in x1 < 0 for ξ′, τ
real and Im ξ1 ≤ 0. When Im ξ1 < 0 the associated waves are localized near the boundary. The
Rayleigh waves in elasticity are a classic example. They carry the devastating energy of earth
quakes. Waves of this sort which do not propagate are needed to analyse total reflection which is
described at the end of §1.7. The reader is referred to [Benzoni-Gavage - Serre], [Chazarain-Piriou],
[Taylor 1981], [Hormander 1982 v.II], [Sakamoto], for more information.

§1.6.3. Reflected high frequency wave packets.

Consider solutions which for small time are equal to high frequency solutions from §1.3,

uǫ = ei(x.ξ−t|ξ|)/ǫ a(ǫ, t, x) , a(ǫ, t, x) ∼ a0(t, x) + ǫ a1(t, x) + · · · , (1.6.5)

with
ξ = (ξ1, ξ2, . . . , ξd) , ξ1 > 0 .

Then a0(t, x) = h(x− tξ/|ξ|) is constant on the rays x+ tξ/|ξ|. If the Cauchy data are supported
in a set O ⊂⊂ {x1 < 0} then the amplitudes aj are supported in the tube of rays

T :=
{

(t, x) : x = x+ tξ/|ξ|, x ∈ O
}
, (1.6.6)

Finite speed shows that the wave as well as the geometric optics approximation stays strictly to
the left of the boundary for small t > 0.

The method of images computes the reflection. Define vǫ to be the reversed mirror image solution,

vǫ(t, x1, x2, . . . , xd) := −uǫ(t,−x1, x2, . . . , xd) .

The solution of the Dirichlet problem is then equal to the restriction of uǫ + vǫ to {x1 ≤ 0}.
Then

ṽǫ = − ei(x̃.ξ−t)/ǫ h(x̃− tξ) + h.o.t = − ei(x̃.ξ−t)/ǫ h̃(x− tξ̃) + h.o.t .

To leading order, uǫ + vǫ is equal to

ei(x.ξ−t)/ǫ h(x− tξ) − ei(x̃.ξ−t)/ǫ h̃(x− tξ̃) . (1.6.7)

The wave represented by uǫ has leading term which moves with velocity ξ/|ξ|. The wave corre-
sponding to vǫ has leading term with velocity ξ̃/|ξ̃|. which comes from ξ/|ξ| by reversing the first
component. At the boundary x1 = 0, the tangential components of ξ/|ξ| and ξ̃/|ξ̃| are equal and
their normal components are opposite. The directions are related by the standard law that the
angle of incidence equals the angle of reflection. The amplitude of the reflected wave vǫ on the
reflected ray is equal to −1 time the amplitude of the incoming wave uǫ on the incoming wave.
This is summarized by the statement that the reflection coefficient is equal to −1.

Suppose that t, x is a point on the boundary and O in a neighborhood of size large compared to
the wavelength ǫ and small compared to the scale on which h varies. Then, on O, the solution is
approximately equal to

ei(x.ξ−t)/ǫ h(x− tξ/|ξ|) − ei(x̃.ξ−t)/ǫ h̃(x− tξ̃/|ξ̃|) .
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This recovers the reflected plane waves of §1.6.2. An observer on such an intermediate scale sees
the structure of the plane waves. Thus, even though the plane waves are completely nonlocal, the
asymptotic solutions of geometric optics shows that they predict the local behavior at points of
reflection.

The method of images also solves the Neumann boundary value problem in a half space using even
mirror reflection in x1 = 0. It shows that for the Neumann condition, the reflection coefficient is
equal to 1.

Proposition 1.6.2. i. If u ∈ C∞(R1+d) is an even solution of u = 0, then its restiction to
{x1 ≤ 0} is a smooth solution of u = 0 satisfying the Neumann boundary condition

∂1u|x1=0 = 0 , (1.6.8)

ii. Conversely, if u ∈ C∞({x1 ≤ 0}) is a smooth solution of u = 0 satisfying (1.6.8) then the
even extension of u to R1+d is a smooth odd solution of u = 0.

The analogue of (1.6.3) in this case is

∀n ≥ 0,
∂2n+1u

∂x2n+1
1

∣∣∣∣
x1=0

= 0 . (1.6.9)

Exercise 1.6.1. Prove the Proposition.

Exercise 1.6.2. Prove uniqueness of solutions by the energy method. Hint. Use the local energy
identity.

Exercise 1.6.3 Verify the assertion concerning the reflection coefficient by following the examples
above. That is, consider the case of dimension d = 1, the case of spherical waves with d = 3 and
the behavior in the future of a solution which near t = 0 is a high frequency asymptotic solution
approaching the boundary.

§1.7. Snell’s law of refraction.

Refraction is the bending of waves as they pass through media whose propagation speeds vary from
point to point. The simplest situation is when media with different speeds occupy half spaces, for
example x1 < 0 and x1 > 0. The classical physical situations are when light passes from air to
water or from air to glass. It is observed that the angles of incidence and refraction are so that for
fixed materials the ratio sin θi/ sin θr is independent of the incidence angle. Fermat observed that
this would hold if the speed of light were different in the two media and light light path was a path
of least time. In that case, the quotient of sines equal to the ratio of the speeds, ci/cr. In this
section we derive this behavior for a model problem quite close to the natural Maxwell equations.

The simplified model with the same geometry is,

utt − ∆u = 0 in x1 < 0 , utt − c2 ∆u = 0 in x1 > 0 , 0 < c < 1 . (1.7.1)

In x1 < 0 the speed is equal to 1 which is greater than the speed c in x > 0. To see that c is the speed
of the latter equation one can factor the one dimensional operator ∂2

t − c2∂2
x = (∂t = c∂x)(∂t− c∂x)

or use the formula for group velocity with dispersion relation τ2 = |ξ|2.
A transmission condition is required at x1 = 0 to encode the interaction of waves with the interface.
In the one dimesional case, there are waves which approach the boundary from both sides. The
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waves which move from the boundary into the interior must be determined from the waves which
arrive from the interior. There are two arriving waves and two departing waves. One needs two
boundary conditions.

We analyse the transmission condition that imposes continuity of u and ∂1u across {x1 = 0}. Seek
solutions of (1.7.1) satsifying the transmission condition,

u(t, 0−, x′) = u(t, 0+, x′) , ∂1u(t, 0
−, x′) = ∂1u(t, 0

+, x′) . (1.7.2)

Denote by square brackets the jump

[
u
]
(t, x′) := u(t, 0+, x′) − u(t, 0−, x′) .

The transmission condition is then

[
u
]

= 0 ,
[
∂1u
]

= 0 .

For solutions which are smooth on both sides of the boundary {x1 = 0}, the transmission condition
(1.7.2) and be differentiated in t or x2, . . . , xd to find

[
∂βt,x′u

]
= 0 ,

[
∂βt,x′∂1u

]
= 0 . (1.7.3)

The partial differential equations then imply that in x1 < 0 and x1 > 0 respectively one has

∂2u

∂x2
1

=
∂2u

∂t2
−

d∑

j=2

∂2u

∂x2
j

,
∂2u

∂x2
1

=
1

c2
∂2u

∂t2
−

d∑

j=2

∂2u

∂x2
j

,

Therefore at the boundary [
∂2u

∂x2
1

]
=

(
1 − 1

c2

)
∂2u

∂t2
.

The second derivative ∂2
1u is expected to be discontinuous at {x1 = 0}.

The physical conditions for Maxwell’s Equations at an air-water or air-glass interface can be anal-
ysed in the same way. In that case, the dielectric constant is discontinuous at the interface.

Define

γ(x) :=





1 when x1 > 0

c−2 when x1 < 0 ,
e(t, x) :=

γ u2
t + |∇xu|2

2
,

From (1.7.1) it follows that solutions suitably small at infinity satisfy

∂t

∫

x1<0

e dx =

∫
ut(t, 0

−, x′) ∂1u(t, 0
+, x′) dx′ ,

∂t

∫

x1>0

e dx = −
∫
ut(t, 0

+, x′) ∂1u(t, 0
+, x′) dx′ .

The transmission condition guarantees that the terms on the right compensate exactly so

∂t

∫

R3

e dx = 0 .
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This suffices to prove uniqueness of solutions. A localized argument as in §1.6.1, shows that signals
travel at most at speed one.

Exercise 1.7.1. Prove this finite speed result.

A function u(t, x) is called piecewise smooth if its restriction to x1 < 0 (resp. x1 > 0) has a
C∞ extension to x1 ≤ 0 (resp. x1 ≥ 0). The Cauchy data of piecewise smooth solutions must be
piecewise smooth (with the analogous definition for functions of x only). They must, in addition,
satisfy conditions analogous to (1.6.3).

Propostion 1.7.1. If u is a piecewise smooth solutions u of the transmission problem, then the
partial derivatives satisfy the sequence of compatibility conditions, for all j ≥ 0,

∆j{u, ut}(t, 0−, x2, x3) = (c2∆)j{u, ut}(t, 0+, x2, x3) ,

∆j∂1{u, , ut}(t, 0−, x2, x3) = (c2∆)j∂1{u, ut}(t, 0+, x2, x3) .

ii. Conversely, if the piecewise smooth f, g satisfy for all j ≥ 0,

∆j{f, g}(0−, x2, x3) = (c2∆)j{f, g}(0+, x2, x3) , (1.7.4)

∆j∂1{f, g}(0−, x2, x3) = (c2∆)j∂1{f, g}(0+, x2, x3) , (1.7.5)

then there is a piecewise smooth solution with these Cauchy data.

Proof. i. If u is a piecewise smooth solution then so is ∂jt u for any j. Use (1.7.2) for pure time
derivatives, [

∂jt u
]

= 0 ,
[
∂jt ∂1u

]
= 0 . (1.7.6)

The case j = 1 yields the necessary condition

[
g
]

= 0 ,
[
∂1g
]

= 0 .

For the higher orders, compute with k ≥ 1,

∂2k
t u
∣∣
t=0

=





∆ku when x1 < 0

(c2∆)ku when x1 > 0,

∂2k−1
t u

∣∣
t=0

=





∆ku when x1 < 0

(c2∆)ku when x1 > 0.

Thus, the transmission conditions (1.7.6) proves i.

The proof of ii. is technical, interesting, and omitted. One can construct solutions using finite
differences almost as in §2.2. The shortest existence proof to state uses the spectral theorem for self
adjoint operators.∗ The general regularity theory for such transmission problems can be obtained

∗ For those with sufficient background, the Hilbert space is H := L2(Rd ; γ dx).

D(A) :=
{
w ∈ H2(Rd+) ∩H2(Rd−) : [w] = [∂1w] = 0

}
,
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by folding them to a boundary value problem and using the results of [Rauch-Massey, Sakamoto].

Next consider the mathematical problem whose solution explains Snell’s law. The idea is to send
a wave in x1 < 0 toward the boundary and ask how it behaves in the future. Suppose

ξ ∈ Rd, |ξ| = 1 , ξ1 > 0 ,

and consider a short wavelength asymptotic solution in {x1 < 0} as in §1.6.3,

Iǫ ∼ ei(x.ξ−t)/ǫ a(ǫ, t, x) , a(ǫ, t, x) ∼ a0(t, x) + ǫ a1(t, x) + · · · , (1.7.5)

where for t < 0 the support of the aj is contained in a tube of rays with compact cross section
and moving with speed ξ. One can take a to vanish outside the tube. Since the incoming waves
are smooth and initially vanish identically on a neighborhood of the interface {x1 = 0}, the
compatibilities are satisfied and there is a family of piecewise smooth solutions uǫ defined on R1+d.
The tools prepared yield an infinitely accurate description of the family of solutions uǫ.

To solve the problem, seek an asymptotic solution which at {t = 0} is equal to this incoming wave.
A first idea is to find a transmitted wave which continues the incoming wave into {x1} > 0.

Seek the transmitted wave in x1 > 0 in the form

T ǫ ∼ ei(x.η+tτ)/ǫ d(ǫ, t, x) , d(ǫ, t, x) ∼ d0(t, x) + ǫ d1(t, x) + · · · ,

In order that this be an approximate solution moving away from the interface one must have

τ2 = c2|η|2, |η| = 1/c .

The incoming wave, when restricted to the interface x1 = 0 oscillates with phase (x′.ξ′ − t)/ǫ. At
the interface, the proposed transmitted wave oscillates with phase (x′.η′ − tτ)/ǫ. In order that
there be any chance at all of satisfying the transmission condtions one must take

η′ = ξ′, τ = −1,

so that the two expressions oscillate together.

Aw := ∆w in x1 < 0, Aw := c2∆ in x1 > 0 .

Then,

(Au, v)H = (u,Av)H = −
∫

∇u.∇v dx ,

so −A ≥ 0. The elliptic regularity theorem implies that A is self adjoint. The regularity theorem
is proved, for example, by the methods in [Rauch 1992, Chapter 10]. The solution of the initial
value problem is

u = cos t
√
−A f +

sin t
√
−A√

−A
g .

For piecwise H∞ data, the sequence of compatibilities is equivalent to the data belonging to
∩jD(Aj).
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The equation τ2 = c2|η|2 implies

η2
1 =

τ2

c2
− |η′|2 =

1

c2
− |ξ′|2 .

Impose η1 > 0 so the transmitted wave moves into the region x1 > 0 to find

η1 =

(
1

c2
− |ξ′|2

)1/2

> ξ1.

Thus,

T ǫ ∼ ei(x.η−t)/ǫ d(ǫ, t, x) , η =

((
1

c2
− |ξ′|2

)1/2

, ξ′
)
. (1.7.6)

From section 1.6.3 we know that the leading amplitude d0 must be constant on the rays t 7→
(t, x + c t η/|η|). To determine d0 it suffices to know the values d0(t, 0

+, x′) at the interface. One
could choose d0 to guarantee the continuity of u or of ∂1u, but not both. One cannot construct an
good approximated solution consisting of just an incident and transmitted wave.

Add to the recipe a reflected wave. Seek a reflected wave in x1 ≥ 0 in the form

Rǫ ∼ ei(x.ζ+tσ)/ǫ b(ǫ, t, x) , b(ǫ, t, x) ∼ b0(t, x) + ǫ b1(t, x) + · · · .

In order that the reflected wave oscillate with the same phase as the incident wave in the boundary
x1 = 0, one must have ζ ′ = ξ′ and σ = −1. To satisfy the wave equation in x1 < 0 requires
σ2 = |ζ|2. Together these imply ζ2

1 = ξ21 . To have propagation away from the boundary requires
ζ1 = −ξ1 so ζ = ξ̃. Therefore,

Rǫ ∼ ei(x.ξ̃−t)/ǫ b(ǫ, t, x) , b(ǫ, t, x) ∼ b0(t, x) + ǫ b1(t, x) + · · · . (1.7.7)

Summarizing seek

vǫ =

{
Iǫ +Rǫ in x1 < 0
T ǫ in x1 > 0

.

The continuity required at x1 = 0 forces

ei(x
′.ξ′−t)/ǫ (a(ǫ, t, 0, x′) + b(ǫ, t, 0, x′)) = ei(x

′.ξ′−t)/ǫ d(ǫ, t, 0, x′) . (1.7.8)

The continuity of u and ∂1u hold if and only if at x1 = 0 one has

a + b = d , and,
iξ1
ǫ
a+ ∂1a − iξ1

ǫ
b+ ∂1b =

iη1
ǫ
d+ ∂1d . (1.7.9)

The first of these relations yields

(
aj + bj − dj

)
x1=0

= 0, j = 0, 1, 2, . . . , (1.7.10)

The second relation in (1.7.9) is expanded in powers of ǫ. The coefficients of ǫj must match for all
all j ≥ −1. The leading order is ǫ−1 and yields

(
a0 − b0 − (η1/ξ1)d0

)
x1=0

= 0 . (1.7.11)
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Since a0 is known, the j = 0 equation from (1.7.10) together with (1.7.11) yield a system of two
linear equations for the two unknown b0, d0

(
−1 1
1 η1/ξ1

)(
b0
d0

)
=

(
a0

a0

)
.

Since the matrix is invertible, this determines the values of b0 and d0 at x1 = 0.

The amplitude b0 (resp. d0) is constant on rays with velocity ξ̃ (resp. cη/|η|). Thus the leading
amplitudes are determined throughout the half spaces on which they are defined.

Once these leading terms are known the ǫ0 term from the second equation in (1.7.9) shows that on
x1 = 0,

a1 − b1 − d1 = known .

Note that a1 is also known so that together with the case j = 2 from (1.7.10) this suffices to
determine b1, d1 on x1 = 0. Each satisfies a transport equation along rays which is the analogue of
(1.4.12). Thus from the initial values just computed on x1 = 0 they are determined everywhere.
The higher order correctors are detemined analogously.

Once the bj , dj are determined, one can choose b, c as functions of ǫ with the known Taylor ex-
pansions at x = 0. They can be chosen to have supports in the appropriate tubes of rays and to
satisfy the transmission conditions (1.7.9) exactly.

The function uǫ is then an infinitely accurate approximate solution in the sense that it satisfies the
transmission and initial conditions exactly while the residuals

vǫtt − ∆ vǫ := rǫ in x1 < 0 , vǫtt − c2 ∆ vǫ := ρǫ,

satisfy for all N, s, T there is a C so that

∥∥rǫ
∥∥
Hs([−T,T ]×{x1<0})

+
∥∥ρǫ
∥∥
Hs([−T,T ]×{x1>0})

≤ C ǫN .

From the analysis of the transmission problem it follows that with new constants,

∥∥uǫ − vǫ
∥∥
Hs([−T,T ]×{x1>0})

≤ C ǫN .

The proposed problem of describing the family of solutions uǫ is solved.

The angles of incidence and refraction, θi and θr, given by the directions of propagation of the
incident and transmitted waves. From the figure

’

ξ ’

ξ

η

η

one finds,

sin θi =
|ξ′|
|ξ| , and, sin θr =

|η′|
|η| =

|ξ′|
|ξ|/c .
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Therefore
sin θi
sin θr

=
1

c
,

is independent of θi. The high frequency asymptotic solutions explain Snell’s law. This is the last
of the three basic laws of geometric optics. The law depends only on the phases. The phases are
determined by the requirement that the restriction of the phases to x1 = 0 equal the restriction
of the incoming phase. They do not depend on the transmission condition that we chose. It is
for this reason that the conclusion is the same for the correct transmission problem for Maxwell’s
equations.

On a neighborhood (t, x) ∈ {x1 = 0} which is small compared to the scale on which a, b, c vary
and large compared to ǫ, the solution resembles three interacting plane waves. In science texts
one usually computes for which such triples the transmission condition is satisfied in order to find
Snell’s law. The asymmptotic solutions of geometric optics show how to overcome the criticism
that the plane waves have modulus independent of (t, x) so cannot reasonably be viewed as either
incoming or outgoing.

For a more complete discussion of reflection and refraction see [Taylor 1981, Benzoni-Gavage and
Serre]. In particular these treat the phenomenon of total reflection which can anticipated as
follows. From Snell’s law one sees that sin θr < 1/c and approaches that value as θi approaches
π/2. The refracted rays lie in the cone θr < arcsin(1/c). Reversing time shows that light rays
from below approaching the surface at angles smaller than this critical angle traverse the surface
tracing backward the old incident rays. For angles larger than arcsin(1/c) there is no continuation
as a ray above the surface possible. One can show by constructing infinitely accurate approximate
solutions that there is total reflection. Below the surface there is a reflected ray with the usual law
of reflection. The role of a third wave is played by a boundary layer of thickness ∼ ǫ above which
the solution is O(ǫ∞).
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Chapter 2. The linear Cauchy problem

Hyperbolic initial value problems with constant coefficients are efficiently analysed using the Fourier
transform. Such equations describe problems where the medium is identical at all points. When
the physical properties of the medium vary from point to point, the corresponding models have
variable coefficients. The initial value problem in such situations is usually not explicitly solvable by
Fourier transform. Constant coefficient systems also arise as the linearization at constant solutions
of translation invariant nonlinear operators.

The key idea of stability or well posedness, emphasized by Hadamard, is that for a model to be
reasonable, one must know that small changes in the data, for example the initial data, can only
result in small changes in predictions. For a linear equation, this is equivalent to showing that
small data yields small solutions. In the linear case, normed vector spaces are often appropriate
settings to describe this continuity. In this case, continuity is equivalent to showing that the norm
of solutions is bounded by at most a constant times a norm of the data.

For hyperbolic problems, for example Maxwell’s equations or D’Alembert’s wave equation, L2

norms and associated L2 Sobolev spaces yield better estimates (for example without loss of deriva-
tives) than Lp or Hölder spaces. Initial data in Sobolev spaces Hs yield solutions with values in
Hs, while the analogous statement for Cα or W s,p, p 6= 2 is false in space dimension greater than
one.

The analysis of constant coefficient hyperbolic systems is summarized in Appendix 2A.

§2.1. Energy estimates for symmetric hyperbolic systems.

§2.1.2. The constant coefficient case.

Three classic examples of hyperbolic equations are D’Alembert’s equation of vibrating strings,
Maxwell’s equations of electrodynamics and Euler’s equations of inviscid compressible fluid flow.
The first two have constant coefficients. Linearizing the the third at a constant state also yields a
constant coefficient system.

Maxwell’s equations describe electric and magnetic field strengths E(t, x), B(t, x) which are vector
fields defined on R1+3. There are two dynamic equations

Et = c curlB − 4πj , Bt = −c curlE , c = 3 × 1010 cm./sec. (2.1.1)

The vector field j(t, x) is the current density measuring the flow of charge. It is a source term
which is assumed to be given. These equations determine E,B from their initial data once j is
known. Not all initial data and sources are physically relevant. The physical solutions are a subset
of the dynamics defined by the additional Maxwell equations

divE = 4πρ, and divB = 0 , (2.1.2)

where ρ(t, x) is the charge density.

Taking the divergence of the first equation in (2.1.1) and the time derivative of the first equation
in (2.1.2) shows that the continuity equation,

∂tρ = −div j , (2.1.3)

follows from the Maxwell system. This equation expresses the conservation of charge and must be
satisfied by the given source terms ρ and j.
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Taking the divergence of (2.1.1) and using (2.1.3) yields

∂t divB = ∂t div (E − 4πρ) = 0 .

Thus, when the continuity equation is satisfied, the constraint equations (2.1.2) hold for all time
as soon as they are satisfied at time t = 0. In summary the sources must satisfy (2.1.3) and the
solutions of interest are those which satisfy (2.1.2). †

The system (2.1.1) is a symmetric hyperbolic system in the following sense. Introduce the R6

valued unknown u :=
(
E , B

)
. Then equation (2.1.1) has the form

∂u

∂t
+

3∑

j=1

Aj
∂u

∂xj
= f , f :=

(
j , 0

)
, (2.1.4)

with constant 6 × 6 real matrices Aj .

Exercise 2.1.1. Compute the matrices Aj . In particular, verify that they are symmetric.

Definition. A constant coefficient operator

∂u

∂t
+

d∑

j=1

Aj
∂

∂xj

on Rd is symmetric hyperbolic when the coefficient matrices are hermitian symmetric matrices.

The importance of symmetry is that it leads to simple L2 and more generally Hs estimates.

Symmetric systems with constant coefficients are efficiently analyzed using the Fourier transform.
The transform and its inverse are given by,

u(x) = (2π)−d/2
∫

Rd

eix.ξ û(ξ) dξ ,

where

û(ξ) := (2π)−d/2
∫

Rd

e−ix.ξ u(ξ) dξ .

The Fourier transform is also denoted by F .

Consider the case f = 0 and take the Fourier transform in x to find

∂tû(t, ξ) +
∑

iAj ξj û(t, ξ) = 0 .

† This argument is historically very important. Experiments with charges and currents yielded the
equations,

0 = c curlB − 4πj , Bt = −c curlE ,

together with (2.1.1) and (2.1.2). Taking the divergence of the first and using (2.1.2) yields ρt = 0
showing that the equations are incomplete in the case of nonstatic ρ. Modifying the first by
inserting an unknown term F on the left of the first equation one finds that the equations are
coherent exactly when divF = divEt. This together with the symmetry of the equations in the
pair E,B lead Maxwell to propose the equations with Et on the left of the first equation.
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For ξ fixed, integrate the ordinary differential equation in time to find,

û(t, ξ) = e−it
∑

Ajξj û(0, ξ) .

The symmetry implies that exp(−it∑Ajξj) is a unitary matrix-valued function of t, ξ. Thus for
all t, ξ

‖û(t, ξ)‖2 = ‖û(0, ξ)‖2 .

For Maxwell’s equations this asserts that for all ξ,

|Ê(t, ξ)|2 + |B̂(t, ξ)|2 = independent of time

which expresses the conservation of energy at every frequency. Integrating dξ and using the
Plancherel theorem implies that the L2 norm is conserved, that is for all t

‖u(t)‖L2(Rd) = ‖u(0)‖L2(Rd) .

For the fields this asserts that

∫

Rd

|E|2 + |B|2 dx = independent of time

which is the physical law of conservation of energy. More generally, the Sobolev Hs norms defined
for s ∈ R by

‖v‖2
Hs(Rd) :=

∫

Rd

(1 + |ξ|2)s |v̂(ξ)|2 dξ

are conserved. When s 6= 0, these norms have no natural physical interpretation. They are
important in the mathematical analysis. The next result summarizes the conclusions.

Proposition 1.2.1. Suppose that L = ∂t+
∑
Aj∂j is a constant coefficient symmetric hyperbolic

operator. For g ∈ ∩sHs(Rd) := H∞(Rd) there is one and only one solution

u ∈ ∩k Ck((R ; Hk(Rd)) := C∞(R ; H∞(Rd))

of the initial value problem,
Lu = 0, u

∣∣
t=0

= g .

The solution is given by û(t) = e−it
∑

Ajξj g. For all t, s, ‖u(t)‖Hs(Rd) = ‖u(0)‖Hs(Rd).

A proof of the last identities of the Propostion without using the Fourier Transform is based on
local conservation laws. Denote with brackets, 〈 , 〉 the scalar product in CN , and by ∂ either ∂t
or ∂j for some j. When A is hermitian symmetric,

∂
〈
Au , u

〉
=
〈
A∂u , u

〉
+
〈
Au , ∂u

〉
=
〈
A∂u , u

〉
+
〈
u , A∂u

〉
= 2Re 〈A∂u , u〉,

where the symmetry is used at the second step. Summing shows that if L is the differential operator
on the left in (2.1.4), then for u ∈ C1,

∂t
〈
u , u

〉
+
∑

j

∂j
〈
Aju , u

〉
= 2Re

〈
Lu , u

〉
.
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The same argument proves the equality in L1
loc(R

1+d) for functions u so that

u ∈ L∞
loc(R ; H1

loc(R
d)), ut ∈ L1

loc(R ; L2
loc(R))

in which case 〈Lu, u〉 ∈ L1
loc(R

1+d). When Lu = 0, integrating this identity over [0, t] × Rd proves
the conservation of the L2 norm. To prove this one must justify the identities

∂t‖u(t)‖2 = 2 Re

∫
ut ut dx, and,

∫
∂j〈Aju , u〉 dx = 0 .

The sides of each equality are continuous on the space of u considered and vanish on the dense
subset of u ∈ C∞

0 (R1+d.

Similarly if Lu = 0 then also Lw = 0 where w := ∂αx u. The L2 conservation for these solutions
with |α| ≤ s yields an Hs conservation law when s is an integer. For the noninteger case the L2

conservation for w := (1 − ∆x)
s/2u gives the desired identity.

§2.1.3. The variable coefficient case.

Analogous results are valid for variable coefficient operators (for example, Maxwell’s equations in
a nonhomogeneous dielectric) satisfying a symmetry hypothesis. The introduction of this class
of operators and the observation that it is ubiquitous in mathematical physics is due to K.O.
Friedrichs.

Definition. In R1+d introduce coordinates y = y0, y1, · · · , yd := t, x1, · · · , xd . A partial differen-
tial operator

L(y, ∂) =
d∑

µ=0

Aµ(y)
∂

∂yµ
+B(y) (2.1.5)

is called symmetric hyperbolic if and only if

i. the coefficient matrices Aµ, and B have uniformly bounded derivatives,

sup
y∈R1+d

∥∥∥∂αy
(
Aµ(y), B(y)

)∥∥∥ <∞ , (2.1.6)

ii. the Aµ are hermitian symmetric valued, and

iii. A0 is strictly positive in the sense that there is a c > 0 so that for all y,

A0(y) ≥ c I . (2.1.7)

The L2 estimate has a generalization to such problems. For a first version suppose that A0 = I,
and denote by

G(t) :=
∑

j

Aj(t, x) ∂j + B(t, x) .

Denote the L2(Rd) scalar product by

(f, h) :=

∫

Rd

f(x)h(x) dx .
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The adjoint differential operator

G∗(t) := −
∑

j

A∗
j (t, x) ∂j + B(t, x)∗ −

∑

j

(∂j A
∗
j )

is defined so that for φ and ψ belonging to C∞
0 (Rd),

(G(t)φ,ψ) = (φ,G∗(t)ψ) .

Then,

G(t) +G(t)∗ = B(y) +B∗(y) −
3∑

j=1

(∂jAj(y))

is multiplication by a uniformly bounded matrix. Thus there is a C so that

‖G(t) +G(t)∗‖ ≤ 2C . (2.1.8)

The operator G is nearly antiselfadjoint. If

u ∈ C(R ; H1(Rd)), ut ∈ C1(R ; L2(Rd)), and f := Lu ,

then,
u′(t) +G(t)u(t) = f(t). (2.1.9)

By hypothesis ‖u(t)‖2 ∈ C1(R) and,

d

dt
‖u(t)‖2 = (u, u′) + (u′, u) .

Using (2.1.9) yields,

d

dt
‖u(t)‖2 = (u,−Gu) + (−Gu, u) + 2Re (u, f) . (2.1.10)

The Cauchy-Schwartz inequality shows that

2Re (u, f) ≤ 2 ‖u(t)‖ ‖f(t)‖ , (2.1.11)

and the near antisymmetry implies that

(u,−Gu) + (−Gu, u) = −
(
u, (G+G∗)u

)
≤ 2C‖u‖2 . (2.1.12)

The left hand side of (2.1.10) is d
dt ‖u(t)‖2 = 2 ‖u(t)‖ d

dt ‖u(t)‖ , so,

2 ‖u(t)‖ d

dt
‖u(t)‖ ≤ 2C ‖u(t)‖2 + 2 ‖u(t)‖ d

dt
‖f(t)‖ .

Where u(t) 6= 0, dividing (2.1.10) by ‖u(t)‖ yields,

d‖u(t)‖
dt

≤ C‖u(t)‖ + ‖f(t)‖ , equivalently
d
(
e−Ct ‖u(t)‖

)

dt
≤ e−Ct ‖f(t)‖ . (2.1.13)
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Since ‖u(t)‖ is C1 in t, (2.1.13) extends by continuity to the closure of {t : u(t) 6= 0}. The
complement of that closure is an open set on which u(t) = 0 so (2.1.13) is valid there too.

Integrating (2.1.13) yields the fundamental estimate,

‖u(t)‖ ≤ eCt ‖u(0)‖ +

∫ t

0

eC(t−σ) ‖f(σ)‖ dσ . (2.1.14)

We next describe three methods for extending this argument to the case A0 6= I. The first is by

reduction to that case Let v = A
1/2
0 u. The equation

L̃ v := A
−1/2
0 LuA

−1/2
0 v = A

−1/2
0 f := f̃ .

is equivalent to the original equation Lu = f . The operator L̃ is symmetric hyperbolic since its

coeffient matrices are A
−1/2
0 Aµ A

−1/2
0 . The coefficient of ∂t comes from µ = 0 so is I. In this way

the general case can be reduced to the case A0 = I.

Next revisit the proof using integration by parts. Equation (2.1.10) shows that the estimate (2.1.14)
is proved by taking the real part of the scalar product (u(t) , (Lu)(t)). This argument generalizes
to the case of an equation of the form

A0(t)
du

dt
+ Gu = f , (2.1.15)

where A0 is strictly positive with ‖dA0/dt‖ ≤ C ′. The starting point is either

d

dt

(
u(t), A0(t)u(t)

)
, (2.1.16)

or equivalently

0 = Re
(
u , A0(t)

du

dt
+Gu− f

)
.

One finds that

‖u(t)‖ ≤ C eCt
(
‖u(0)‖+

∫ t

0

e−C(t−σ) ‖f(σ)‖ dσ
)
. (2.1.17)

Exercise 2.1.2. Carry out the last two derivations of the estimate (2.1.17).

Proposition 2.1.1 For every s ∈ R there is a constant C(s, L) so that for all t ≥ 0, for all
u ∈ C1(R ; Hs(Rd)) ∩ C(R ; Hs+1(Rd)),

‖u(t)‖Hs(Rd) ≤ C eCt‖u(0)‖Hs(Rd) +

∫ t

0

C eC(t−σ)‖(Lu)(σ)‖Hs(Rd) dσ . (2.1.18)

Proof. The procedure of the paragraph after (2.1.14), reduces to the case A0 = I. The main step
is to prove (2.1.18) for integer s ≥ 0 when A0 = I. The case s = 0 is (2.1.17).

For any α ∈ Nd with |α| ≤ s, the basic L2 estimate (2.1.14) implies that

‖∂αx u(t)‖ ≤ C eCt ‖∂αx u(0)‖ +

∫ t

0

C eC(t−σ) ‖L∂αx u (σ)‖ dσ . (2.1.19)

50



Using the product rule for differentiation and the fact that A0 = I one finds that,

L∂αx u = ∂αx Lu+
∑

|β|≤s

Cα,β(y) ∂
β
x u

with smooth bounded matrix valued functions Cα,β . Equivalently

Definition. For integer σ ≥ 0, Op(σ, ∂x) denotes the family of partial differential operators in x
of degree σ whose coefficients have derivatives bounded on R1+d. Op(σ, ∂t,x) is defined similarly.

Then,

[L, ∂α] = [G, ∂αx ] ∈ Op(|α|, ∂x) , more generally,
[
Op(m,∂x) , ∂

α
x ] ∈ Op(m+ |α| − 1, ∂x).

Define
ψ(t) :=

∑

|α|≤s

∥∥∂αx u(t)
∥∥
L2(Rd)

.

Summing (2.1.19) over all |α| ≤ s yields,

ψ(t) ≤ C eCt ψ(0) +

∫ t

0

C eC(t−σ) ψ(σ) dσ +

∫ t

0

C eC(t−σ) ‖f(σ)‖Hs(Rd) dσ .

If follows from Gronwall’s Lemma below that one has the same estimate with a larger constant C ′

and without the middle term on the right hand side.

Gronwall’s Lemma 2.1.3. If 0 ≤ g, ψ ∈ L∞
loc(R+), 0 ≤ h ∈ L1

loc(R+) and

ψ(t) ≤ g(t) +

∫ t

0

h(σ)ψ(σ) dσ , a.e. t > 0 , (2.1.20)

then, with H(t) :=
∫ t
0
h(σ) dσ,

ψ(t) ≤ g(t) + eH(t)

∫ t

0

e−H(σ) h(σ) g(σ) dσ , a.e. t > 0 . .

Proof of Gronwall’s Lemma. Denote by γ the absolutely continuous function

γ(t) :=

∫ t

0

h(σ)ψ(σ) dσ .

Then
γ′(t) = h(t)ψ(t) ≤ h(t)g(t) + h(t)γ(t) ,

where the integral inequality is used in the last step.

Therefore (
e−H(t)γ(t)

)′
= e−H(t)

(
γ′ − h γ

)
≤ e−H(t) h(t) g(t) .

Since γ(0) = 0, integrating this inequality from t = 0 to t yields

e−H(t) γ(t) ≤
∫ t

0

e−H(σ) h(σ) g(σ) dσ .
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This together with (2.1.21) which asserts that ψ ≤ g + γ completes the proof.

Exercise 2.1.3. Show how Gronwall’s Lemma suffices to erase the middle term in the estimate
at the cost of increasing the constant C. Hint. The source term involving f is part of g.

Following [Lax, 1955], we prove (2.1.9) for 0 > s ∈ Z. With integer s < 0, introduce σ := |s| > 0
and u := (1 − ∆)σv, so

v = (1 − ∆)−σu, ‖u(t)‖s = ‖u(t)‖−σ = ‖(1 − ∆)−σu‖σ = ‖v(t)‖σ .

Use the estimate for the positive integer value σ on v. Toward that end, we need to estimate
‖Lv(t)‖σ.
Since (1 − ∆)σ is a scalar differential operator of degree 2σ,

[
L , (1 − ∆)σ

]
∈ Op(2σ, ∂x) .

In particular,
[
L , (1 − ∆)σ

]
is for each t a contintuous map Hσ → H−σ with bound independent

of t.

Compute

Lu = L
(
(1 − ∆)σv

)
= (1 − ∆)σLv + [L, (1 − ∆)σ]v = (1 − ∆)σLv + Op(2σ, ∂x)v .

Therefore
Lv = (1 − ∆)−σ

(
Lu + Op(2σ, ∂x)v

)
,

so with ‖ ‖s denoting the Hs(Rd) norm,

‖Lv(t)‖σ ≤ ‖Lu(t)‖−σ + C‖v(t)‖σ .

Insert this in the inequality

‖v(t)‖σ ≤ C
(
‖v(0)‖σ +

∫ t

0

‖Lv(r)‖σ dr
)

to find

‖u(t)‖−σ ≤ C

(
‖u(0)‖−σ +

∫ t

0

‖u(r)‖−σ + ‖Lu(r)‖−σ dr
)
.

Gronwall’s lemma yields the desired estimate (2.1.19) for the case s = −σ.

This completes the proof of (2.1.9) for integer values of s. The estimate for s not equal to an
integer follows by interpolation.

The a priori estimates show that solutions of Lu = 0 grow at most exponentially in time. The
simple example ut = u shows that such growth occurs. The derivation of estimates for the deriva-
tives shows that derivatives grow at most exponentially but perhaps with at a faster rate. The
next example shows that derivatives may grow more rapidly.

Examples. 1. Let a(x) := − arctan(x), and L := ∂t + a(x)∂x. Solutions of Lu = 0 are constant
on the characteristic curves which converge exponentially rapidly to x = 0 as t → +∞. The
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L∞(R) norm of solutions is independent of time and the Lp(R) norm of solutions tends to zero for
all 1 ≤ p <∞. For compactly supported initial data and such p,

∫
|u(t, x)|p dx ∼ e−t, as t→ +∞ .

For u(0, ·) ∈ C∞
0 (R) \ 0 and t large, the solution is compressed into an interval of width ∼ e−t so

the derivatives are ∼ et and one finds

∫
|∂xu(t, x))|p dx ∼ e−t ept, as t→ +∞ .

For 1 ≤ p <∞ the rate of growth of the derivatives is different than that of the solutions.

2. For L := ∂t + a(x)∂x + a′(x)/2, G(x, ∂x) = a∂x + a′/2 is antiselfadjoint and the time evolution
conserves the L2(R) norm. The compression occurs as in the preceding example but the amplitudes
grow so that the L2 norm of the solution between any pair of characteristic curves is conserved.
The amplitudes of the derivatives grow even faster by a factor et. For this modification, the L2

norm is constant and the L2 norm of first derivatives grow as et The L2 norm of derivatives of
order s grow as est.

§2.2. Existence theorems for symmetric hyperbolic systems.

As is the case with many good estimates, the corresponding existence theorem lingers not far
behind.

Friedrichs’ Theorem 2.2.1. If g ∈ Hs(Rd) and f ∈ L1
loc(R;Hs(Rd)) for some s ∈ R, then there

is one and only one solution u ∈ C(R ; Hs(Rd)) to the initial value problem

Lu = f , u|t=0 = g . (2.2.1)

In addition, there is a constant C = C(L, s) independent of f, g so that for all t > 0,

‖u(t)‖Hs(Rd) ≤ C eCt‖u(0)‖Hs(Rd) +

∫ t

0

C eC(t−σ)‖f(σ)‖Hs(Rd) dσ , (2.2.2)

with a similar estimate for t < 0.

Theorem 2.2.2 gives additional regularity in time assuming that f is smoother in t.

The solution u is constructed as the limit of approximate solutions uh. The uh are solutions of a
differential-difference equation obtained by replacing x derivatives by centered difference quotients.
This replaces the generator of the dynamics by a bounded linear operator so the existence of the
approximate solution follows from existence for ordinary differential equations. The important step
is to prove uniform bounds for the uh as h→ 0.

As a warm up consider the simple initial value problem

∂tu+ ∂xu = 0 , u(0, x) = g(x) ,

with x ∈ R1. Define the centered difference operator by

δhφ(x) =
φ(x+ h) − φ(x− h)

2h
.
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Approximate solutions are defined as solutions of

∂tu
h + δhuh = 0 , uh(0, x) = g(x) .

Note that as operators on Hs, the norms of the generators diverge to infinity as h → 0. This
corresponds to the fact that the difference operators δh converge to the unbounded operator ∂x.

Exercise 2.2.1. Show that for any s ∈ R and g ∈ Hs(R) this recipe determines a sequence of
approximate solutions which as h → 0, converge in C(] − ∞,∞[ ; Hs(R)) to the exact solution.
Hint (Von Neumann). Use the Fourier Transform in x.

One does not have similar good behavior for the finite difference approximations

∂tu
h + i δhuh = 0 , uh(0, x) = g(x) ,

to the nonhyperbolic initial value problem

∂tu+ i ∂xu = 0 , u(0, x) = g(x) .

For this initial value problem and generic g there is nonexistence (see chapter 3 of my book).

Exercise 2.2.2. For the approximations to the nonhyperbolic initial value problem prove that
there is a c > 0 so that

lim inf
h→0

‖uh(t)‖2
L2(R) ≥ c

∫

R

e2tξ |ĝ(ξ)|2 dξ .

In particular, if the right hand side is infinite, uh(t) does not converge in L2(R) as h tends to zero.
The right hand side is infinite for generic g ∈ C∞

0 (R). In the same way, prove that for generic
smooth g, uh(t) is unbounded in Hs(R) for all t 6= 0 and s < 0.

Proof of Friedrich’s Theorem. It suffices to consider the case A0 = I.

Step 1. Existence for g ∈ ∩sHs(Rn) and f ∈ ∩sCs(R ; Hs(Rd)).

For such f, g, define approximate solutions uh as solutions of

Lhuh = f , uh(0) = g ,

where for h > 0, Lh comes from L upon replacing the unbounded antiselfadjoint operators ∂j with
j ≥ 1 by the bounded antiselfadjoint finite difference operators δhj defined by

δhj φ :=
φ(x1, · · · , xj + h, · · · , xd) − φ(x1, · · · , xj − h, · · · xd)

2h
.

Then Lh = ∂t +Gh(t) and for every s, t 7→ Gh(t) is a smooth function with values in L(Hs(Rd)).
The norm of Gh is O(1/h). It follows that the uh are uniquely determined as solutions of ordinary
differential equations in time and satisfy the crude estimate ‖uh(t)‖Hs ≤ C(s) eC(s)/h‖u(0)‖Hs(Rd).

This would be true for any system of partial differential operators L even those with ill posed
Cauchy problems. For the symmetric hyperbolic systems, the operators Lh satisfy estimates like
(2.1.19) with constants independent of h. That is, for each s ∈ R there is a constant C(s, L), so
that for all 0 < h < 1 and all u ∈ C1(R ; Hs(Rd)), and all t > 0

‖u(t)‖Hs(Rd) ≤ eCt‖u(0)‖Hs(Rd) +

∫ t

0

eC(t−σ)‖(Lhu)(σ)‖Hs(Rd) dσ . (2.2.3)

54



Note that for u ∈ C1(R ; Hs) it follows that Lhu ∈ C(R ; Hs).

The proof of (2.2.3) for s = 0 mimics the proof for L. The key ingredient is almost antiselfadjoint-
ness expressed by the bound,

‖(Ajδhj + (Ajδ
h
j )∗)w‖L2(Rd) ≤

(
sup
R1+d

|∇xAj |
)
‖w‖L2(Rd).

The right is independent of h. To prove this bound, use the fact that δjj is antiselfadjoint to find

(
Ajδ

h
j

)∗
= (δhj )

∗A∗
j = −δhj Aj = −Ajδhj − [Aj , δ

h
j ] .

Denoting by ej the unit vector in the j direction, and suppressing the j’s for ease of reading,
[Aj , δ

h
j ]w is equal to,

A(y)
w(y + he) − w(y − he)

2h
− A(y + he)w(y + he) −A(y − he)w(y − he)

2h
.

Regrouping yields

[Aj , δ
h
j ]w =

[
A(y) − A(y + he)

2h

]
w(y + he) +

[
A(y − he) −A(y)

2h

]
w(y − he) .

The bound follows. Writing Lh = ∂t +Gh, (2.2.3) for s = 0 follows from ‖Gh + (Gh)∗‖ ≤ 2C with
C independent of h.

The proof of (2.2.3) for s ≥ 0 integer, uses the s = 0 result to estimate ∂αx u
h for |α| ≤ s. Use the

equation,
Lh∂αx u

h = ∂αxL
huh + [Lh, ∂αx ]uh .

For |α| = 1, direct computation of the commutator yields

[Ajδ
h
j , ∂x] = (∂xAj)δ

h
j , [B, ∂x] = (∂xB) .

Therefore
[Lh, ∂x] = Op(0) + Op(0)δhx .

where this means a finite sum of terms of the type described. The general case is

[Lh, ∂αx ] = Op(|α| − 1, ∂x) + Op(|α| − 1, ∂x)δ
h
x . (2.2.4)

Exercises 2.2.3. i. Prove (2.2.4) by induction on s.

ii. Prove (2.2.3) for integer s ≥ 0 using (2.2.4).

iii. Prove for negative integer s by Lax’s method as in the proof of the estimate for L. The general
case follows by interpolation.

Apply (2.2.3) to uh to find that for all n,α, s ≥ 1, the family

{
∂αxu

h
}

is bounded in C([−T, T ] ; Hs(Rd)
)
⊂ L∞([−T, T ] : Hs(Rd)) .

Since Hs is Hilbert so a dual space, latter space is a dual. We use the weak star compactness of
bounded sets in duals.
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The differential equations together with the regularity of f then shows that

{
∂βt,xu

h
}

is bounded in L∞([−T, T ] : Hs(Rd)) .

The Cantor diagonal process allows one to extract a subsequence uh(k) with h(k) → 0 as k → ∞
so that for all T and all α, as k → ∞,

∂βt,xu
h(k) → ∂βt,xu in L∞([−T, T ] : Hs(Rd)) .

in the weak star topology. In particular, uh(k) converges in Hs([−T, T ]×Rd) so uk(h)|t=0 converges
to u|t=0 in all Hs−1/2(Rd). So u(0) = g.

Passing to the limit in the equation satisfied by uh(k) shows that u satisfies Lu = f . This completes
the proof of Step 1.

Step 2. Existence in the general case.

Choose
gn ∈ C∞

0 (Rd) , gn → g in Hs(Rd) ,

fn ∈ C∞
0 (R1+d) , fn → f in L1

loc(R ; Hs(Rd) .

Let un be the solution from the first step with data fn, gn.

Estimate (2.2.3) implies that for all T and as n,m→ ∞,

un − um → 0 in C
(
[−T, T ] ; Hs(Rd)

)
(2.2.5)

By completeness there is a u ∈ C(R ; Hs(Rd)) which is the limit uniformly on compact time
intervals of the un. It follows that Lu = f and u|t=0 = g.

Step 3. Uniqueness.

Suppose that u ∈ C(R ; Hs(Rd)) satisfies Lu = 0 and u|t=0 = 0. The differential equation implies
that ut ∈ C(R ; Hs−1(Rd)). so u ∈ C1(R ; Hs−1(Rd)). This is sufficient to apply the case s− 1 of
Proposition 2.1.1 for s− 1.

Using difference approximations to prove existence goes back at least to the work of Cauchy (1840)
and most notably Peano on ordinary differential equations. In the context of partial differential
equations, note the seminal paper of Courant, Friedrichs and Lewy (1928). The method has the
advantages of being constructive and wide applicability. In Appendix 2B, we present an alternate
functional analytic method for passing from the apriori estimates to existence. It is elegant and
strictly limited to linear problems.

The next result shows that when the source term f is differentiable in time, then so is u.

Corollary 2.2.2. If m ≥ 1 and ∂kt f ∈ C(R ; Hs−k(Rd)) for k = 0, 1, · · · ,m− 1, then

u ∈ Ck
(
R ; Hs−k(Rd)

)
for k = 0, 1, · · · ,m .

Proof. It suffices to consider A0 = I. For m = 1 write,

ut = −
∑

Aj ∂ju−Bu+ f.
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The hypothesis together with Theorem 2.2.1 shows that the right hand side is continuous with
values in Hs−1. For m = 2,

utt = ∂t

(
−
∑

Aj ∂ju− Bu+ f
)
.

From the case m = 1, the first terms are continuous with values in Hs−2. The hypothesis on f
treats the last term. An induction completes the proof.

We next prove a formula which expresses solutions of the inhomogeneous equation Lu = f in
terms of solutions of the Cauchy problem for Lu = 0. The formula is motivated as follows. Let
h(t) denote heaviside’s function. For f supported in t ≥ 0 seek u also supported in the future with
Lu = f . The source term f is the sum on σ of the singular sources fδ(t − σ) with σ ≥ 0. The
solution of Lv = fδ(t− σ) with a response supported in t ≥ σ is equal to v = h(t− σ)w where w
is the solution ot the Cauchy problem,

Lw = 0, w(σ) = A−1
0 f(σ) .

Summing the solutions v yields the formula of the next Proposition.

Define the operator S(t, σ) from H−∞(Rd) := ∪sHs(Rd) to itself by S(t, σ)g := u(t) where u is
the solution of

Lu = 0 , u(σ) = g .

The operator S(t, σ) is the operator that marches from time σ to time t. Corollary 2.2.2 implies
that for g ∈ Hs(Rd), S(t, σ)g ∈ Ck

(
R ; Hs−k(Rd)

)
and, and by definition, L(t, x, ∂t,x)S = 0. For

any R, {S(t, σ) : |t, σ| ≤ R} is bounded Hom(Hs,Hs−k).

Duhamel’s Proposition 2.2.3. If f ∈ L1
loc([0,∞[ ; Hs(Rd)) then the solution of the initial

value problem,
Lu = f on [0,∞[×Rd, u(0) = 0, (2.2.6)

is given by

u(t) =

∫ t

0

S(t, σ) A−1
0 f(σ) dσ . (2.2.7)

Proof. It suffices to prove (2.2.7) for f ∈ C([0,∞[ ; Hs(Rd)) since the general result then follows
by approximation. For such f define u by (2.2.7). On compact sets of t, σ one has

‖S(t, σ)‖Hs→Hs + ‖St(t, σ)‖Hs→Hs−1 ≤ C . (2.2.8)

It follows that u ∈ C([0,∞[ ; Hs(Rd)) and differentiating under the integral sign,

ut = S(t, t)(A−1
0 f(t)) +

∫ t

0

St(t, σ) f(σ) dσ = A−1
0 f(t) +

∫ t

0

St(t, σ) f(σ) dσ ,

and,

∂ju =

∫ t

0

∂jS(t, σ) f(σ) dσ .

It follows from LS = 0, that Lu = f . Since u(0) = 0 the result follows from uniqueness of solutions
to (2.2.6)
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§2.3. Finite speed of propagation.

The proof of Theorem 2.2.1 works as well for the operator L + i∆x as for L since the additional
operator is exactly antisymmetric and commutes with ∂y. However the resulting evolution equa-
tions do not the finite speed of propagation. An important aspect of the L2 estimates which form
the basis of the results in §2.2 is that the local form of the energy law implies finite speed. That
is not the case for the energy law for L+ i∆.

One of the goals of the theory of partial differential equations is to be able to derive precise
qualitative properties of solutions from properties of the symbol. The precise speed estimates
proved in §2.5 is a striking success.

§2.3.1. The method of characteristics.

Corolary 2.1.3 already addressed finite speed using the method of characteristics. Here we use this
method in the simplest case of one dimensional homogeneous constant coefficient systems,

∂tu+ A∂xu = 0 , A = A∗ .

The change of variable w = Wv with unitary W yields ∂tWv + ∂xAWv = 0. Multiplying by W ∗

yields
∂tw + W ∗AW ∂xw = 0 .

Choose W which diagonalises A to find,

∂tw + D∂xw = 0 , D = diag
(
λ1, λ2 · · · λd

)
, λ1 ≤ λ2 ≤ . . . ≤ λN .

The exact solution is given by undistorted traveling waves,

wj(t, x) = gj(x− λj t) .

If g = 0 on an interval I :=]a, b[ then for t ≥ 0, u vanishes on the triangle

{
(t, x) : t ≥ 0 , and a+ λN t < x < b− λ1 t

}
.

A degenerate case is when λ1 = λN in which case the triangle becomes a strip bounded by parallel
lines. The triangle is called a domain of determination of the interval because the initial values of
u on I determine the values of u on the triangle. Considering traveling waves with speeds λN and
λ1 shows that this result is sharp. The next figure sketches the case λ1 < 0 < λN .

a b

fastest characteristic slowest characteristic

Domain of determination of I

The left hand boundary moves at largest velocity and the right hand boundary at the smallest.

Viewed another way, the values of f on an interval J = [A,B] influence the future values of the
solution u only on the set

{
(t, x) : t ≥ 0 , and A+ λ1t ≤ x ≤ B + λN t

}
.
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It is called a domain of influence of J and is sketched below in the case λ1 < 0 < λN .

speed lambda_Nspeed lambda_1

A B

Domain of influence of J

§2.3.2. Speed estimates uniform in space

The estimates in this section concern propagation estimates which are uniform in space time.
In subsequent sections precise bounds taking into account the variation of speed with y will be
given. The uniform results take into account the variation of speed with direction. The results in
this section are as sharp for operators with constant coefficient principal part. That case is the
backbone of the precise results of §2.5.

Usually one thinks of speed in terms of distance traveled divided by time. However, for a general
symmetric hyperbolic operator, there is no natural metric to measure distance. Introducing an
artificial metric, for example the Euclidean metric, often leads to imprecision in the results. The
problem we analyse in this section depends only on affine geometry. It is to find the smallest space
time half space which contains the support of solutions whose Cauchy data have support in a half
space in {t = 0}.
Define

Λ := inf
{
ℓ : ∀y , A0(y)

−1/2A1(y)A0(y)
−1/2 ≤ ℓ I

}
. (2.3.1)

Λ is the smallest upper bound for the eigenvalues of A0(y)
−1/2A1(y)A0(y)

−1/2.

Lemma 2.3.1. Suppose that L is a symmetric hyperbolic operator, s ∈ R, Λ is defined by (2.3.1),

u ∈ C([0,∞[ ; Hs(Rd)) satisfies Lu = 0 ,

and
suppu(0, x) ⊂

{
x1 ≤ 0

}
.

Then, for 0 ≤ t,
suppu(t, x) ⊂

{
x1 ≤ Λ t

}
.

Example. If A
−1/2
0 A1A

−1/2
0 is independent of y, one obtains the same estimate for propagation

in the x1 direction that was obtained in the preceding section.

Proof. Choose fn ∈ C∞
0 (Rd) supported in {x1 ≤ 0} with fn → f in Hs(Rd). Denote by un

the solution of Lun = 0 with un(0, x) = fn(x). For all T > 0, un → u in C
(
[0, T ] : Hs(Rd)

)
.

Therefore, it suffices to show that un is supported in {x1 ≤ Λ t}. Thus, it suffices to consider the
case when the initial data of u belongs to C∞

0 (Rd).

Use a local version of the basic energy law. When Aµ = A∗
µ, and 〈 , 〉 is the scalar product in CN ,

〈
Aµ∂µu , u

〉
+
〈
u , Aµ∂µu

〉
= ∂µ

〈
Aµu , u

〉
−
〈
(∂µAµ)u , u

〉
.

59



Denote L1(y, ∂) :=
∑
µAµ∂µ. Summing on µ yields

2Re
〈
L1(y, ∂)u , u

〉
=
∑

µ

∂µ
〈
Aµu , u

〉
+
〈(∑

µ

∂µAµ
)
u , u

〉
.

Adding the lower order terms yields the energy balance law

∂t
〈
A0(t, x)u(t, x), u(t, x)

〉
+

d∑

j=1

∂j
〈
Aj(t, x)u(t, x), u(t, x)

〉
=

〈
Z(t, x)u(t, x), u(t, x)

〉
+ 2 Re

〈
(Lu)(t, x), u(t, x)

〉
,

(2.3.2)

where Z is the smooth matrix valued function

Z(y) := −B(y) −B∗(y) +
d∑

µ=0

∂Aµ(y)

∂yµ
. (2.3.3)

Integrate this identity over the region where we want to prove that u = 0,

Ω(t) :=
{
(t, x1, x2, . . . , xd) : 0 ≤ t ≤ t and x1 ≥ tΛ

}
. (2.3.4)

The case Λ > 0 (resp. Λ < 0) are sketched on the left (resp. right) in the figure below.

x x

region of integration region of integration

Define

Φ(t) :=
(∫

x1≥Λt

〈
A0(t, x)u(t, x) , u(t, x)

〉
dx
)1/2

,

so Φ(t) is equivalent to the L2 norm of u(t) on {x1 ≥ Λ t}. Integrate (2.3.2) over Ω(t). Denote the
lateral boundary of Ω(t) by

B(t) :=
{

(t, x) : 0 ≤ t ≤ t , and x1 = Λ t
}
.
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Integrate by parts† to find

Φ(t)2 = Φ(0)2 −
∫

Ω(t)

〈Z u , u
〉
dx dt −

∫

B(t)

〈
L1(y, ν)u , u

〉
dσ ,

where ν is a the unit outward normal and dσ is the surface area element.

The function φ(t, x) := Λ t−x1 is negative in the interior of the region and positive in the interior of
the complement. The outward pointing normals, ν, to the lateral boundary are positive multiples
of

dφ =
(∂φ
∂t

,
∂φ

∂x1
, 0, . . . , 0

)
=
(
Λ , −1 , 0 , . . . , 0

)
.

The boundary matrix L1(y, ν) =
∑

µAµ(y)νµ is a positive multiple of

ΛA0 −A1 = A
1/2
0

(
ΛI −A

−1/2
0 A1 A

−1/2
0

)
A

1/2
0 ≥ 0

from the definition of Λ. Therefore integral over B(t) is nonnegative.

By hypothesis, Φ(0) = 0. The volume integral satisfies,

∣∣∣
∫

Ω(t)

〈Z u , u
〉
dx dt

∣∣∣ ≤ C

∫ t

0

Φ(t)2 dt .

Combining yields

Φ(t)2 ≤ C

∫ t

0

Φ(σ)2 dσ .

Gronwall’s lemma implies that Φ ≡ 0 and the proof is complete.

Remark. The same proof fails for the operator L + i∆x because there is no choice of Λ which
guarantees that the boundary terms from the i∆ will be nonnegative.

† This integration by parts involves smooth functions u all of whose derivatives are square integrable.
This is sufficient. For example we show that

∫ ∫

Ω(t)

∂1 g dx dt = −
∫

B(t)

g dσ , with g = 〈A1u , u〉,

Denote by B the Banach space of functions g so that {g, ∂1g} ⊂ L1(Ω(t)). C∞
(0)(Ω(t) ⊂ B is dense.

For the trace at B for elements of the dense set,

∫

B

|g| dt dx2 . . . dxd =

∫ t

0

∫

Rd−1

∣∣∣
∫ ∞

Λt

∂g

∂x1
dx1

∣∣∣dx′ dt ≤ ‖∂1g‖L1(Ω(t)) .

Therefore the trace g 7→ g|B extends as a continuous map B → L1(B). And the linear map

g 7→
∫ ∫

Ω

∂1g dx dt+

∫

B

g dσ

is a continuous and vanishes on a dense subset.
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Theorem 2.3.2. Suppose that L is a symmetric hyperbolic operator, ξ ∈ Rd \ 0, and

Λ(ξ) := inf
{
ℓ : ∀y , A0(y)

−1/2
(∑

j

Aj(y)ξj

)
A0(y)

−1/2 ≤ ℓ I
}
. (2.3.5)

If s ∈ R and u ∈ C([0,∞[ ; Hs(Rd)) satisfies Lu = 0 and

suppu(0, x) ⊂
{
x.ξ ≤ 0

}
,

then for 0 ≤ t,
suppu(t, x) ⊂

{
x.ξ ≤ Λ(ξ) t

}
.

Proof. Choose linear spatial coordinates

x̃ := M x , x̃k =
∑

Mkjxj ,

so that
∑
ξjdxj = dx̃1. Since

dx̃1 =
∑ ∂x̃1

∂xk
dxk =

∑
M1k dxk

this is equivalent to M1k = ξk.

Since
∂

∂xj
=
∑

k

∂x̃k
∂xj

∂

∂x̃k
=
∑

k

Mkj
∂

∂x̃k
,

in the new coordinates ∑
Aj

∂

∂xj
=
∑

j,k

AjMkj
∂

∂x̃k
,

so one still has a symmetric hyperbolic system. The coefficient of ∂/∂x̃1 is equal to

∑

j

AjM1j =
∑

j

Aj ξj .

The result follows upon applying Lemma 2.3.1 in the x̃ coordinates.

Sketch of alternate proof. Modify the proof of Lemma 2.3.1 as follows. Use the energy method
in the region {

0 ≤ t ≤ t and x.ξ ≥ tΛ(ξ)
}
.

The lateral boundary has equation

φ(t, x) = 0 , φ(t, x) := tΛ(ξ) − x.ξ .

The lateral boundary matrix L1(y, ν) is a nonegative multiple of

L1(y, dφ) = L1(y,Λ,−ξ) = ΛA0 −
∑

j

Ajξj = A
1/2
0

(
ΛI −A

−1/2
0 (

∑

j

Ajξj)A
−1/2
0

)
A

1/2
0 .
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This is nonnegative by definition of Λ.

Example. The fundamental solution u is the solution of Lu = 0 with u|t=0 = δ(x). Then for
t ≥ 0,

suppu ⊂
{

(t, x) : ∀ ξ , x.ξ ≤ tΛ(ξ)
}
. (2.3.6)

The set on the right is a convex cone in t ≥ 0 whose section at t = 1 is compact. In the d = 1 case,
suppu ⊂

{
(t, x) : tλ1 ≤ x ≤ tλN

}
.

Exercise 2.3.1. Prove the estimate measuring speed using euclidean distance. Define

cmax := max
|ξ|=1

Λ(ξ) . (n.b. the euclidean |ξ|.)

i. If Lu = 0 and u(0) is supported in {|x| ≤ r} then u(t) is supported in {|x| ≤ r + cmax|t|}.
ii. For the solution u in Theorem 2.2.1, let

K := suppu(0) ∪
(
supp f ∩ {t ≥ 0}

)
.

Prove that in {t ≥ 0},

suppu ⊂
{

(t, x) : ∃(t, x) ∈ K, |x− x| ≤ t− t
}
.

Hint. Use Duhamel’s formula.

There are distributional right hand sides which are not covered by the sources f ∈ L1
loc(R ; Hs(Rd)).

An interesting example is f = δ(t, x). The next Theorem covers general distribution sources. It
includes sources with no decay as x→ ∞. For those, finite speed is used.

Theorem 2.3.3. For any distribution f ∈ D′(R1+d) supported in {t ≥ 0} there is one and only
one distribution u ∈ D′(R1+d) supported in {t ≥ 0} so that Lu = f .

Proof. Since f has support in {t ≥ 0}, the linear functional

C∞
0 (R1+d) ∋ v 7→

〈
f, v
〉

extends uniquely to a sequentially continuous functional on

{
v ∈ C∞(R1+d) : supp v ∩ {t ≥ −1} is compact

}
. (2.3.7)

Here sequential convergence vj → v means that there is compact set K independent of j with
supp vj ∩ {t ≥ −1} ⊂ K, and, vj and each of its partial derivatives converge uniformly on
compacts. Since C∞

0 (R1+d) is sequentially dense in (2.3.7) there can be at most one extension.

An extension is constructed by choosing χ ∈ C∞(R) with χ = 1 for t ≥ −1/3 and χ = 0 for
t ≤ −2/3. Since f is supported in {t ≥ 0}, 〈f, v〉 = 〈f, χv〉 for all v ∈ C∞

0 . The right hand side
defines the desired extension. Similary the the formula 〈u, χ v〉 extends the functional 〈u, v〉 to
(2.3.7).

It follows that if u is a solution, then the identity

〈
u,L†v

〉
=
〈
f, v
〉
, (2.3.8)
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extends to v belonging to (2.3.7).

For a test function ψ ∈ C∞
0 (R1+d), let v be the solution of,

L†v = ψ , v = 0 for t >> 1 .

Exercise 2.3.1ii. shows that v belongs to (2.3.7), so formula (2.3.8) implies that

〈
u,ψ

〉
=
〈
f, v
〉
. (2.3.9)

This determines the value of any solution u on ψ proving uniqueness of solutions.

Exercise 2.3.2. Show that the recipe given by formula (2.3.9) defines a solution u, proving
existence.

§2.3.3. Time like and propagation cones.

The results of the preceding section have a geometric interpretation in terms of the affine geometry
of the characteristic variety of L.

Definition. The principal symbol L1(y, η) of L(y, ∂) is the function defined by

L1(y, η) :=
∑

µ

Aµ(y) ηµ = A0(y) τ +
∑

j

Aj(y) ξj .

The prinicipal symbol arises by dropping the zero order term and replacing ∂µ by ηµ. It is an
N ×N matrix valued function of (y, η). An alternative definition replaces ∂µ by i ηµ so differs by a
factor i from the above. The choice we take is natural if one expresses differential operators using
the partial derivatives ∂µ rather than 1

i ∂µ. The advantage of the latter is that it is the Fourier
multiplier by ηµ.

The principal symbol is invariantly defined on the cotangent bundle of R1+d. In fact, if φ is a
smooth real valued function with dφ(y) = η and v ∈ RN , then as σ → ∞,

∂µe
iσφ = iσ

∂φ

∂yµ
eiσφ + O(1), so, L1(y, η) v = lim

σ→∞

1

iσ
e−iσφ L(y, ∂)

(
eiσφ v

)
.

The right hand side is independent of coordinates and (y, dφ(y)) is a well defined element of the
cotangent bundle.

Definitions. The characteristic polynomial of L(y, ∂) is the polynomial p(y, η) defined by

p(y, η) := detL1(y, η) .

The characteristic variety of L, denoted CharL, is the set of pairs (y, η) ∈ R1+d×R1+d \0 such
that p(y, η) = 0. Points in the complement of CharL are called noncharacteristic.

The characteristic variety is a well defined subset of the cotangent bundle. It is conic in the sense
that

r ∈]0,∞[ and (y, η) ∈ CharL =⇒ (y, r η) ∈ CharL .
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Definition. For a symmetric hyperbolic L(y, ∂), the cone of forward time like codirections
at y is,

T (y) :=
{

(τ, ξ) : L1(y, τ, ξ) > 0
}
.

The next result is an immediate consequence of the definition and the fact that L1(y, η) is linear
in η.

Proposition 2.3.4. T (y) is an open convex cone that contains (1, 0, . . . , 0). It is equal to the
connected component of (1, 0, . . . , 0) in the noncharacteristic points over y.

Exercise 2.3.3. Prove the proposition.

The linear form τt+ξ.x is called time like because if one changes to new coordinates with t′ = τt+
ξ.x then in the new coordinates the cooefficient of ∂/∂t′ is equal to L1(y, τ, ξ). It is positive precisely
when τ, ξ is time like. In that case, the system in the new coordinates will be symmetric hyperbolic.
The new time variable is OK. More generally a proposed nonlinear change with t′ = t′(t, x) leads
to a system with coefficient L1(y, dt

′(t, x)) in front of ∂/∂t′. Reasonable time functions are those
whose differential, dt′ belongs to the forward time like cone.

Examples 1. L = ∂t + ∂1 with T = {τ + ξ1 > 0} shows that T need not be a subset of {τ > 0}.
2. In the one dimensional constant coefficient case of §2.3.1, the characteristic variety is a finite
union of lines given by

CharL = ∪j
{
(τ, ξ) : τ + λjξ = 0

}
,

where the λj are the eigenvalues of A
−1/2
0 A1A

−1/2
0 in nondecreasing order.

For the second example, the rays x = λjt+const. describe the propagation of traveling waves. The
velocity vectors (1, λj) are orthogonal to the lines

{
(τ, ξ) : ψj(τ, ξ) := τ + λjξ = 0

}
,

which belong to the characteristic variety. The conormal directions are scalar multiples of the
differential

dψj =

(
∂ψj
∂τ

,
∂ψj
∂ξ

)
=
(
1, λj

)
.

The lines of the characteristic variety are in the dual space R2
τ,ξ. The normals to such lines define

directions in the space time R2
t,x.

These relations are illustrated in the figure below where there are two distinct positive eigenvalues,
λ1 < 0 < λ2 < λ3 = −λ1.
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The rays of propagation in the figure on the right are orthogonal
to the lines in the characteristic variety on the left.

The timelike cone T is the wedge between the lines labeled 1 and 3. These bounding lines are the
steepest lines in the variety on either side of the time like codirection (1, 0). Any line traveling to
the right faster than line 3 on the right, has conormal which is time like.

Exercise 2.3.4. For a three speed system with only positive speeds 0 < λ1 < λ2 < λ3, sketch the
graphs of the characteristic variety, the rays x = tλj , and the forward time like cone.

Example. For Maxwell’s equations, (2.1.1), L = L1 and

detL1(τ, ξ) = τ2
(
τ2 − c2|ξ|2

)2
.

The characteristic variety is the union of the horizontal hyperplane {τ = 0} and the light cone
τ2 = c2|ξ|2. The forward time like cone is {τ > c |ξ|}.

Figure 2.2. Maxwell equation characteristic variety

Return to the general development and in the characteristic polynomial p(y, τ, ξ).

Definition. For ξ ∈ Rd \ 0,

τmax(y, ξ) := max
{
τ ∈ R : p(y, τ, ξ) = 0

}
. (2.3.10)
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τmax(y, ξ) is the largest eigenvalue of the symmetric matrix −A−1/2
0 (

∑
Aj ξj)A

−1/2
0 . Therefore it

is uniformly lipschitzean in y, ξ. As a function of ξ it is positively homogeneous of degree one and
convex. The time like cone and its closure have equations,

T (y) =
{
(τ, ξ) : τ > τmax(y, ξ)

}
, T (y) =

{
(τ, ξ) : τ ≥ τmax(y, ξ)

}
.

Definitions. The closed forward propagation cone is the dual of T (y) defined by

Γ+(y) :=
{
(T,X) ∈ R1+d : ∀(τ, ξ) ∈ T (y), T τ +X.ξ ≥ 0

}
. (2.3.11)

The section at T = 1 is denoted,

Γ+
1 (y) := Γ+ ∩ {T = 1} .

The definition states that Γ+(y) is the set of all points which lie in the future of the origin (0, 0) ∈
R1+d with respect to each time like τt + ξ.x, (τ, ξ) ∈ T (y). For points which are not in Γ+(y)
there is a time function so that the point is in the past. This suggests that if (T,X) /∈ Γ+(y) and
0 < ǫ << 1 then the point y + ǫ(T,X) should not be influenced by waves at y. This is verified in
the following examples.

Examples. 1. For ∂t + c∂x, Γ+ = {X = cT}, Γ+
1 = {c}, τmax(ξ) = −cξ.

2. For ∂2
t − c2∆, Γ+ = {|x| ≤ ct}, Γ+

1 = {|x| ≤ c}, τmax(ξ) = c|ξ|.
3. For Maxwell’s equations, τmax is the same as for the second example, so Γ+ is also the same.

Example. If L1(y, ∂) = L(∂) has constant coefficients, then the bound (2.3.6) on the support of
the fundamental solution is equivalent to the inclusion for t ≥ 0, suppu(t) ⊂ Γ+.

Proof. The bound (2.3.6) is in terms of Λ(ξ) which for constant coefficients is given by,

Λ(ξ) = largest eigenvalue of
d∑

j=0

A
−1/2
0 Ajξj A

−1/2
0

= max
{
− τ(ξ) : det

(
τI +A

−1/2
0 Ajξj A

−1/2
0

)
= 0
}

= max
{
τ(ξ) : det

(
τI −A

−1/2
0 Ajξj A

−1/2
0

)
= 0
}

= τmax(−ξ) .

The bound (2.3.6) yields the set of (T,X) such that the following conditions, each equivalent to
the one that precedes, are satisfied,

∀ξ, x.ξ ≤ τmax(−ξ)t
∀ξ, 0 ≤ τmax(−ξ)t− x.ξ

∀ξ, 0 ≤ τmax(ξ)t+ x.ξ

∀τ, ξ ∈ T , 0 ≤ τt+ x.ξ.
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Since T (y) is convex and contains an open cone about R+(1, 0, . . . , 0) it follows that Γ+
1 (y) is a

compact convex set. The next Proposition gives three more relations between Γ+ and T .

Proposition 2.3.5. i. The propagation cone Γ+ has equation

Γ+(y) =
{
(T,X) : T ≥ 0 and, ∀ξ, T τmax(y, ξ) +X.ξ ≥ 0

}
. (2.3.12)

ii. The forward time like cone is given by the duality

T (y) =
{

(τ, ξ) : ∀(T,X) ∈ Γ+(y) \ 0 , τT + ξ.X ≥ 0
}
. (2.3.13)

T is given by the same formula with ≥ replaced by >.

iii.
τmax(ξ) = max

X∈Γ+
1

−X.ξ , (2.3.14)

Proof. i. Suppress the y dependence. Take (τ, ξ) = (1, 0) in (2.3.11) to show that T ≥ 0 in Γ+.
Γ+ is defined by Tτ + x.ξ ≥ 0 when τ ≥ τmax. Since T ≥ 0 this holds if and only if it holds when
τ = τmax, proving (2.3.12)

ii. From the definition of Γ+ it follows that

∀ (T,X) ∈ Γ+, ∀ (τ, ξ) ∈ T , T τ +Xξ ≥ 0.

Therefore,

T ⊂
{

(τ, ξ) : ∀(τ, ξ) ∈ T , T τ +Xξ ≥ 0
}
. (2.3.15)

In fact there is equality. If (τ , ξ) /∈ T , then τ < τmax(ξ) for some ξ. The point (τmax(ξ), ξ) is a

boundary point of the closed convex set T , so there is a (T,X) 6= 0 so that

Tτmax(ξ) +Xξ = 0, and ∀τ, ξ ∈ T , T τ +Xξ ≥ 0.

For τ = 1 and ξ in a small neighborhood of the origin, τ, ξ ∈ T . It follows that T 6= 0. Therefore,
Tτ +X.ξ < 0 showing that (τ , ξ) is not in the set on the right of (2.3.15).

iii. In (2.3.12) it suffices to consider (T,X) with T = 1 and X ∈ Γ+
1 , so

T =
{

(τ, ξ) ∈ R1+d : ∀X ∈ Γ+
1 , τ +X.ξ > 0

}
.

Thus T has equation τ + min{X.ξ : X ∈ Γ+
1 } > 0. Comparing with τ > τmax(ξ) yields,

τmax(ξ) = − min
X∈Γ+

1

X.ξ = max
X∈Γ+

1

−X.ξ .

The cones T (y) and Γ+(y) concern the differential operator at the point y. The results of the
preceding section give estimates on propagation which are independent of y. They involve the
uniform objects of the next definition.

Definitions.
τunif
max(ξ) := sup

y∈R1+d

τmax(y, ξ) ,
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Tunif :=
{

(τ, ξ) : τ > τunif
max(ξ)

}
, T unif :=

{
(τ, ξ) : τ ≥ τunif

max(ξ)
}
,

Γ+
unif :=

{
(T,X) : ∀(τ, ξ) ∈ T unif , T τ +X.ξ ≥ 0

}
.

Since τmax(y, ξ) is the largest eigenvalue of −A0(y)
−1/2

(∑
Aj(y)ξj

)
A0(y)

−1/2 it follows that τunif
max

is uniformly lispschitzean, positive homogeneous of degree one, and convex.

Exercise 2.3.5. Show that if the coefficients are constant outside a compact set, then Tunif =
∩y T (y). Show that this need not be the case in general.

Corollary 2.3.6. Denote by u the solution of Lu = 0, u
∣∣
t=0

= δ(x− x). Then for t ≥ 0,

suppu ⊂ (0, x) + Γ+
unif . (2.3.16)

For general initial data one has

suppu ⊂ ∪x∈supp u(0)

(
x + Γ+

unif

)
. (2.3.17)

We will show in the next section that this estimate is quite sharp in case L1 has constant coefficients.
A comparably sharp result for variable coefficients is proved in §2.5.

Proof. The second assertion follows from the first. Translating coordinates, it suffices treat the
first with x = 0.

The definition (2.3.5) is equivalent to Λ(ξ) being the supremum over y of the eigenvalues of
−A0(y)

−1/2
(∑

Aj(y)ξj
)
A0(y)

−1/2. This in turn is equal to τunif
max(−ξ). Corollary 2.3.3 implies

that for t > 0
suppu ⊂

{
(t, x) : ∀ξ x.ξ ≤ t τunif

max(−ξ)
}
.

Therefore, for all ξ, t τunif
max(−ξ)−x.ξ ≥ 0. Thus, replacing ξ by −ξ shows that for all ξ, t τunif

max(ξ) +
x.ξ ≥ 0. Equation (2.3.12) shows that this is equal to the set Γ+

unif .

Definition. If Ω0 is an open subset of {t = 0} and Ω is a relatively open subset of {t ≥ 0}, Ω is a
domain of determinacy of Ω0 when every smooth solution, u, of Lu = 0 whose Cauchy data vanish
in Ω0 must vanish in Ω.

The idea is that the Cauchy data in Ω0 determine the solution on Ω. Any subset of a domain of
determination of Ω0 is also such a domain. The union of a family of domains is one, so there is a
largest. The larger is Ω the more information one has, so the goal is to find large ones.

Definition. If S0 is a closed subset of {t = 0} and S is a closed subset of {t ≥ 0} then S is
a domain of influence of S0 when every smooth solution, u, of Lu = 0 whose Cauchy data is
supported in S0 must be supported in S.

The idea is that the Cauchy data in S0 can influence the solution only in S. It does not assert
that the data actually does influence in S. In that sense, the name is confusing.

Any closed set containing a domain of influence is also such a domain. The intersection of a family
of domains of influence of S0 is such a domain, so there is a smallest one. The smaller is the domain
the more information one has.
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S is a domain of influence of S0 if and only if Ω := {t ≥ 0} \ S is a domain of determination of
Ω0 := {t = 0} \ S0.

The next result rephrases the preceding Corollary.

Corollary 2.3.7. i. For any S0, the set

S := ∪x∈S0
(x+ Γ+

unif)

is a domain of influence. ii. For any Ω0,

{
y : (y − Γ+

unif) ∩ {t = 0} ⊂ Ω0

}

is a domain of determination.

§2.4 Plane waves, group velocity, and phase velocities.

Plane wave solutions are the multidimensional analogues of traveling waves f(x− λt) in the d = 1
case. They are the backbone of our short wavelength asymptotic expansions. It is not unusual
for the analysis of a partial differential equation in science texts to consist only of a calculation of
plane wave solutions. Gleaning information this way is part of the tool kit of both scientists and
mathematicians. In particular, plane waves will be used to show that Corollary 2.3.6 is precise in
the case of operators with constant coefficient principal part.

Functions f(x−λt) generate the general solution of constant coefficient systems without lower order
terms when d = 1. They are compositions with a linear functions of (t, x). The multidimensional
analogue is to seek solutions as compositions with linear functions tτ + x.ξ = y.η.

Definiton. Plane waves are functions which depend only on y.η for some η ∈ R1+d. That is,
functions of the form

u(y) := a(y.η) , a : R → CN . (2.4.1)

When L = L1(∂) is homogeneous and has constant coefficients and u is a plane wave,

∂µa(y.η) = a′(y.η) ηµ, so, L(∂y)u = L1(∂y) a(y.η) = L1(η) a
′(y.η) . (2.4.2)

In this case, u is a solution of Lu = 0 precisely when a′ takes values in the kernel of L1(η). In
particular, η must belong to the characteristic variety.

Exercise 2.4.1. Compute all plane wave solutions for the following homogeneous constant coeffi-
cient operators.

1. Πm
j=1

(
∂
∂t + λj

∂
∂x

)
where x is one dimensional and the λj are distinct reals.

2. ∂t + diag (λ1, . . . , λd) ∂x with x and λj as in 1.

3. := ∂2
t − ∆x.

4. For c = 1 and characteristic η = (1, 1, 0, . . . , 0), compute all plane wave solutions of the
homogeneous Maxwell’s equations that is with ρ = j = 0. Partial Answer. There is a two
dimensional space of standing waves, with τ = 0, which do not satisfy the divergence conditions
(2.1.2). There is a four dimensional space of solutions with η belonging to the light cone τ2 = |ξ|2.
For such solutions E,B, ξ form an orthogonal basis for R3.
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For problems with lower order terms, the computations are not as clean and there tend to be few
plane wave solutions.

Exercise 2.4.2. Compute all plane wave solutions for the following non homogeneous constant
coefficient operators.

5. The Klein-Gordon equation u+ u = 0.

6. The dissipative wave equation u+ 2ut = 0.

7. The telegrapher’s equation utt − uxx + 2ut + u = 0.

Discussion. The first equation is conservative and the last two dissipative. You should see some
indication of that in the solutions.

A plane wave u = a(τt + x.ξ) has initial value u0(x) = u|t=0 = a(x.ξ). We suppose that a′ is
not identically zero. The solution is said to have velocity v when it satisfies u(t, x) = u0(x− vt).
Compute

u0(x− vt) = a
(
(x− vt).ξ

)
= a

(
x.ξ − (v.ξ)t

)
.

Therefore, the solution has velocity v if and only if v satisfies

v.ξ = −τ . (2.4.3)

These velocities are called phase velocities. Note that for d > 1 there are many solutions v.
They differ by vectors which are orthogonal to ξ.

A remark on units is in order. If t has units of time and x has units of length, then since (τ, ξ)
belongs to the dual space, τ (resp. ξ) has units 1/time (resp. 1/length). Therefore the solutions v
of (2.3.4) have dimensions length/time of a velocity.

The amplitude of a plane wave solution is constant on hyperplanes {y.η = const.}. The amplitude
seen at t = 0 on the hyperplane x.ξ = 0 appears at t = 1 on the hyperplane τ + x.ξ = 0. For
example when ξ = (1, 0, . . . , 0), plane waves are functions of t + x1. The amplitude achieved at
t = 0 on the hyperplane x1 = 0 are achieved at t = 1 on the hyperplane x1 = −1.

Any constant vector which translates one of these planes to the other is a reasonable velocity. It
is traditional in the applied mathematics literature to call the special choice v = τξ/|ξ|2 the phase
velocity. Note that this choice is always parallel to ξ. This is the unique choice which is orthogonal
to the hyperplanes x.ξ = const. with orthogonality measured by the euclidean metric. The reliance
on the euclidean metric shows that this notion is not intrinsic. For the simple equation

utt = ux1x1
+ 4ux2x2

or its system analogue

∂t +

(
1 0
0 −1

)
∂

∂x1
+

(
0 2
2 0

)
∂

∂x2
,

the velocity computed in this way does not correspond to the correct propagation velocity asso-
ciated to the plane wave solutions. The correct velocity is the group velocity from §1.2 and
below.

The fact that the phase velocity is not uniquely defined is sufficiently not well known that we
pause to discuss it a little more. The givens are the space time of dimension d+ 1 and two linear
functions. The first is t which measures the passage of time. The second is the linear function
y.η whose level surfaces are the surfaces of constant amplitude. From these givens by considering
the propagation from time t = 0 to time t = 1 one constructs the pair of hyperplanes in Rdx with
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equations τ +x.ξ = 0 and x.ξ = 0. From two hyperplanes in Rdx with d > 1, it is impossible to pick
a well defined vector which translates one hyperplane to the other. The striking exception is the
case d = 1 where one has two points and the translation is uniquely determined. The conclusion
is that the traditional phase velocity makes sense only in one dimensional space. It was exactly in
the case d = 1 that the notion of phase velocity was introduced in the late nineteenth century.

Definition. For (y, η) ∈ CharL, let π(y, η) denote the spectral projection of L1(y, η) onto its
kernel. That is

π(y, η) :=
1

2πi

∮

|z|=r

(
zI − L1(y, η)

)−1
dz (2.4.4)

where r is chosen so small that 0 is the only eigenvalue of L1(y, η) in the disk |z| ≤ r.

If L = L1 has constant coefficients and no lower order terms, then a necessary and sufficient
condition for (2.4.1) to define a solution of Lu = 0 is that π(η) a′ = a′. In particular, there are
nontrivial solutions if and only if η ∈ CharL. Except for an additive constant vector, the equation
π a′ = a′ is equivalent to

π(η) a = a . (2.4.5)

This polarization for a recurs in all of our formulas from geometric optics.

The next result shows that for operators with constant coefficient principal part, the bounds on
the support in Corollary 2.3.6 are quite precise.

Proposition 2.4.1. i. If L = L1(∂) has constant coefficients and is homogeneous then the
fundamental solution u, Lu = 0, u|t=0 = δ(x) satisfies for t ≥ 0, for t ≥ 0,

conv
(
suppu

)
= Γ+ , (2.4.6)

where the left hand side denotes the convex hull.

ii. If L = L1(∂) + B(y) has constant coefficient principal part and v is the fundamental solution
then Γ+ is the smallest convex cone containing (supp v) ∩ {t ≥ 0}.

Proof. i. In this case, for each ξ ∈ Char(L) there are plane wave solutions f(x.ξ − tΛ(ξ)).
Choosing f(σ) vanishing for s > 0 and so that 0 ∈ supp f shows that Theorem 2.3.2 is sharp in
the sense that the solution does NOT vanish on any larger set {x.ξ > tκ}, κ < Λ(ξ).

The remainder of the proof consists of 3 exercises.

Excercise 2.4.5. This implies that the fundamental solution cannot be supported in {x.ξ ≤ tκ}
for any κ < Λ(ξ).

Excercise 2.4.6 When L = L1(∂) is homogeneous with constant coefficients, Γ+ is the smallest
convex cone in t ≥ 0 which contains the support of the fundamental solution.

Excercise 2.4.7. Since δ(x) is homogeneous of degree −d, it follows that when L = L1(∂), u is
homogeneous of degree −d. and (2.4.6) follows.

ii. Suppose next that L1(∂) + B(y) had a fundamental solution v which for t ≥ 0 is supported in
convex cone Γ̃ ⊂ {t > 0}. Prove that Γ+ ⊂ Γ̃ as follows. Continue to denote by u the fundamental
solution of L1. Define for ǫ > 0, vǫ(y) := ǫd v(ǫy). Then vǫ is the unique solution of

(
L1(∂) + ǫB(ǫy)

)
vǫ = 0 . vǫ

∣∣
t=0

= δ(x) .

By hypothesis, vǫ is supported in Γ̃.
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Excercise 2.4.8. As ǫ→ 0, vǫ → u in C
(
R ; Hs(Rd)

)
for any s < −d/2.

Therefore suppu ⊂ Γ̃. Since Γ̃ is convex, part i. implies that Γ+ ⊂ Γ̃.

There is a well defined velocity associated to each point (y, η) of the characteristic variety with the
property that the fiber over y is a smooth hypersurface on a neighborhood of η ∈ R1+d \ 0. The
description is made for y fixed.

The variety is defined by the polynomial equation (with y dependence suppressed),

0 = detL1(τ, ξ) := P (τ, ξ)

which is homogeneous of degree N . The coefficient of τN is equal to detA0 which is real. For ξ
real, the remaining coefficients are equal to detA0 times symmetric functions of the real roots τ .
Therefore the polynomial P has real coefficients.

Thus CharL is a real algebraic variety in R1+d. Since for each ξ ∈ Rd the equation has only real
roots, the variety has for each such ξ at least one and no more than N roots τ . These roots are

equal to the eigenvalues of −A−1/2
0

(∑
j ξjAj

)
A

−1/2
0 .

The fundamental stratification theorem of real algebraic varieties implies that the variety has
dimension d and except for a subvariety of dimension at most d− 1, is locally a d dimensional real
analytic subvariety of R1+d

τ,ξ (see [Benedetti-Risler]). Such real analytic points are called smooth
points.

Propostion 2.4.2. At smooth points the characteristic variety has conormal vector that is not
orthogonal to the time like codirection (1, 0, . . . , 0). Therefore, the variety is locally a graph

τ = τ(ξ) , τ(·) ∈ Cω .

Proof. Denote by ν a conormal vector to CharL at a smooth point η. We need to show that

〈ν , (1, 0, . . . , 0)〉 6= 0 . (2.4.7)

The proof is by contradiction. If (2.4.7) were not true, changing linear coordinates ξ yields

ν = (0, 1, 0, . . . , 0) .

Then near τ , η, CharL has an equation

ξ1 = f(τ, ξ′) , ξ′ := (ξ2, . . . , ξn) , (2.4.8)

with
f ∈ Cω , f(τ, ξ′) = ξ

1
, ∂τ,ξ′f(τ , ξ′) = 0 . (2.4.9)

For ξ′ fixed equal to ξ′ expand f about τ = τ ,

f(τ, ξ′) = ξ
1

+ a(τ − τ)r + higher order terms , a ∈ R \ 0 .

The gradient condition in (2.4.9)) implies that the integer r ≥ 2. Solving (2.4.8) for τ as a function

of ξ1 shows that for ξ1 near ξ
1
, there are r distinct complex roots τ ≈

[
(ξ1−ξ1)/a

]1/r
. Since r ≥ 2,

real values of ξ1 near ξ
1

with (ξ1 − ξ
1
)/a < 0 yield nonreal solutions τ .
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The solutions are eigenvalues of a symmetric matrix and therefore real. This contradiction proves
(2.4.7).

At a smooth point (τ, ξ) ∈ CharL, let H denote the hyperplane in (τ, ξ) space which is tangent to
the fiber over y. Proposition 2.4.2 guarantees that H has a normal line R(1,v). The normal line
belongs to the tangent space at y. The vector v is called the group velocity associated to (τ, ξ). If
the characteristic variety is given locally by the equation τ = τ(ξ), then the normal directions are
mulitples of the differential

dτ,ξ(τ − τ(ξ)) =
(
1,−∇ξτ(ξ)

)
therefore, v = −∇ξτ(ξ) , (2.4.10)

This yields the classic formula for the group velocity recalled in §1.3.

Since τ(ξ) is homogeneous of degree one in ξ, the Euler homogeneity relation reads ξ.∇ξτ(ξ) =
τ(ξ). Thus, the group velocity satisifies −ξ.v = τ which is the relation (2.4.3) defining the phase
velocities. For d ≥ 2, at smooth points of the characteristic variety the group velocity is the correct
choice among the infinitely many phase velocities.

Exercise 2.4.9. Compute the group velocities for the equation utt = ux1x1
+4ux2x2

or its system
analogue. Note that for most ξ, the velocity is not parallel to ξ.

The set of all such normal lines is called the ray cone at y. If the characteristic variety at y is
given by the irreducible equation q(τ, ξ) = 0, then the ray cone is the conic real algebraic variety
in (T,X) defined the equations

q(τ, ξ) = 0 , X
∂q(τ, ξ)

∂τ
+ T ∇ξq(τ, ξ) = 0 . (2.4.11)

In formula (2.4.11), (T,X) are coordinates in the tangent space at y.

General solutions of constant coefficient initial value problems can often be expressed as a Fourier
superposition of exponential solutions of the form ei(τt+x.ξ) with ξ real and τ ∈ C. Since τ may not
be real these need not be plane waves. For constant coefficient operators and fixed ξ, the solutions
of this form come from the (possibly complex) roots τ of the equation

detL(iτ, iξ) = 0 .

The roots τj(ξ) where they are nice functions of ξ define the dispersion relations of the equation.
Of particular importance is the case of conservative systems for which the roots are automatically
real.

Exercise 2.4.10. Suppose that the constant coefficient L(∂y) is symmetric hyperbolic and conser-
vative in the sense that B = −B∗. This hold in particular if B = 0. Then for solutions of Lu = 0,
the energy ∫

Rd

〈
A0 u(t, x) , u(t, x)

〉
dx (2.4.11)

is independent of time. Prove that the roots τ must be real in this case.

Exercise 2.4.11. Find the dispersion relations for the wave equation, the Klein-Gordon Equation
u+u = 0, and the Schrödinger equation ut+ i∆xu = 0. You must extend the notion of dispersion

relation beyond the first order case to solve these problems.

74



For dissipative equations the exponential solutions decay in time which corresponds to roots τ with
positive imaginary parts. Hadamard’s analysis of well posedness of initial value problems rests on
the observation that one does not have continuous dependence on initial conditions if there exist
exponential solutions whose imaginary parts tend to −∞. A systematic use of exponential solutions
in the study of initial value problems can be found in Chapter 3 of my book Partial Differential
Equations.

Finally note that the ellipticity of a partial differential operator is defined by the absence of plane
wave solutions.

Definition. A first order system of partial differential operators L(y, ∂y) is elliptic at y if the
constant coefficient homogeneous operator L1(y, ∂y) has no nonconstant plane wave solutions. This
is equivalent to the invertibility of L1(y, η) for all real η. The system is elliptic on an open set if
this property holds for all points y in the set.

Exercise 2.4.12. Verify the ellipticity of your favorite elliptic operators. This should include at
least the Laplacian, and the Cauchy-Riemann system. For the Laplacian L1 must be replaced by
L2 in the definition of ellipticity. In general, ellipticity of an mth order operator is equivalent to
the invertibility of Lm(y, η) for all real η.

§2.5. Precise speed estimate

In the last section we proved that for operators with constant coefficient principal part, the forward
propagation cone Γ+ gives a good bound on the propagation of influence. In the variable coefficient
case it is reasonable to expect that Γ+(y) describes the propagation at y. The central concept is
that of influence curves which are curves whose tangents lie in the local propagation cones.

Definition A lipschitzean curve [a, b] ∋ t 7→ (t, γ(t)) is an influence curve when for almost
all t, (1, γ′(t)) ∈ Γ+(t, γ(t)). The curve (−t, γ(t)) a backward influence curve when (−1, γ′) ∈
−Γ+(−t, γ(t)) for almost all t.

The uniform boundedness of the sets Γ+
1 implies that influence curves are uniformly lipschitzean.

Peano’s existence proof combining Euler’s scheme and Ascoli’s Theorem, implies that influence
curves exist with arbitrary initial values.

The convexity of the sets Γ+
1 implies that uniform limits of influence curves are influence curves.

Indeed, if yn(t) = (t, γn(t)) is such a uniformly convergent sequence, then γ′n ∈ Γ+
1 (t, γn(t)). This

uniform bound allows us to pass to a subsequence for which

γ′n → f(t)

weak star in L∞([a, b]). Since the Γ+
1 are convex one has f(t) ∈ Γ+

1 (t, γ(t)) for almost all t.

On the other hand, g′n converges to g′ in the sense of distributions. Therefore g′ = f and therefore
(t, γ(t)) is an influence curve.

Ascoli’s Theorem implies that from any sequence of influence curves defined on [a, b] whose initial
points lie in a bounded set, one can extract a uniformly convergent subsequence.

Following Leray’s IAS notes, define emissions as follows.

Definition. If K ⊂ [0, T ] × Rd is a closed set, the forward emission of K denoted E+(K) is
the union of forward influence curves beginning in K. The backward emission, defined with
backward influence curves, is denoted E−.

The emissions are closed subsets of [0, T ] × Rd.
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Theorem 2.5.1. If u ∈ C([0, T ] ; Hs(Rd)) satisfies Lu = 0 then the support of u is contained in
E+
(
supp (u|t=0)

)
.

The proof of this theorem, which is taken from [R, 2005], uses fattened propagation cones. The
fattening gives one a little wiggle room, as in [Leray]. It also regularizes the boundary of emissions.
We fatten Γ by shrinking T .

Definitions. For ǫ > 0, define the shrunken time like cone,

T ǫ(y) :=
{

(τ, ξ) ∈ R1+d : τ > τmax(y, ξ) + ǫ|ξ|
}
.

Define the fattened propagation cone, Γ+,ǫ(y), to be the dual cone of T ǫ
(y). Denote by E±

ǫ the
emissions defined with the Γ±,ǫ.

While Γ+(y) can be a lower dimensional cone, Γ+,ǫ(y) has nonempty interior. The fattened cones,
Γ+,ǫ(y) are strictly convex, increasing in ǫ and contain Γ+,ǫ/2(y) \ 0 in their interior. In addition,
∩0<ǫ<1Γ

+,ǫ(y) = Γ+(y).

Lemma 2.5.2. To prove Theorem 2.5.1, it suffices to show that if ǫ > 0, y ∈ [0, T ] × Rd, and,
E−
ǫ (y) does not meet supp(u|t=0), then u vanishes on E−

ǫ (y).

Proof. To prove Theorem 2.5.1, one must show that

[0, T ] × Rd ∋ y /∈ E+(supp(u(0, ·)) =⇒ y /∈ supp(u) .

If y /∈ E+(supp(u(0, ·)), then points y on a neighborhood of y in [0, T ] × Rd are also not in
E+(supp(u(0, ·)). Therefore it suffices to show that

[0, T ] × Rd ∋ y /∈ E+(supp(u(0, ·)) =⇒ u(y) = 0 .

From the definitions,

y /∈ E+(supp(u(0, ·)) ⇐⇒ E−(y) ∩ supp(u(0, ·)) = φ .

The compact sets E−
ǫ (y) decrease as ǫ decreases, and,

∩0<ǫ<1 E−
ǫ (y) = E−(y) .

Therefore, for ǫ small, E−
ǫ (y) does not meet supp (u|t=0).

To prove Theorem 2.5.1, it suffices to show that if E−
ǫ (y) does not meet supp(u|t=0) then u(y) = 0.

This is equivalent to the statement of the lemma.

The next lemma is an accessibility theorem, in the sense of control theory.

Lemma 2.5.3 If y = (t, x) ∈ [0, T [×Rd and ǫ ∈]0, 1[, then there is a 0 < δ ≤ T − t so that

E+
ǫ (y) ⊃

{
y + Γ+,ǫ/2(y)

}
∩
{
t ≤ t ≤ t+ δ

}
.

δ can be chosen uniformly for y ∈ [0, T [×Rd. An analogous result holds for backward emissions.
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Proof. Continuity of Γ+,ǫ(y) with respect to y implies that there is a δ0 so that

|y − y| < δ0 =⇒ Γ+,ǫ(y) ⊃ Γ+,ǫ/2(y) .

Therefore, a curve (t, γ(t)) with (1, γ′) ∈ Γ+,ǫ/2(y) is an influence curve so long as it stays in
{|y − y| < δ0}. Choose 0 < δ ≤ δ0 so that this holds for t ∈ [t, t + δ] on influence curves starting
in {|y − y| < δ}. This completes the proof for y fixed.

That the constants can be chosen uniformly follows from the fact that Γ+(y) is uniformly contin-
uous.

Lemma 2.5.4. For any q and ǫ > 0, the set E−
ǫ (q) has lipschitz boundary. The boundary has a

tangent plane at almost all points. At such points, the conormals belong to T ∪ −T .

Proof. Suppose that y 6= q belongs to the boundary of E−
ǫ (q). Then for t close to and greater

than t, y + Γ+,ǫ/4(y) belongs to the complement of E−
ǫ (q). To prove this note that if there were

points
z = (t, x) ∈ y + Γ+,ǫ/4(y) ∩ E−

ǫ (q) with t < t < t+ δ,

as in the figure below, then E−
ǫ (z) ⊂ E−

ǫ (q). Lemma 2.5.? (access) implies that E−
ǫ (z) contains a

neighborhood of y. contradicting the fact that y is a boundary point.

On the other hand, since y belongs the emission, E−
ǫ (y) belongs the emission. Lemma 2.5.? (access)

implies that for t > t > t − δ, the emission from y contains y − Γ
+,ǫ/2
1 (y). The interior of that

set is thus a subset of the interior of the emission. Thus the boundary of the emmision near y is

sandwiched between y + Γ+,ǫ/4(y) and y − Γ+,ǫ/4(y) as in the figure below.

.

q

y

z

Figure 2.5.1.

At y = q, it is also true that the boundary of Eǫ(q) is sandwiched between y + Γ+,ǫ/4(y) and

y − Γ+,ǫ/4(y).

This shows that at all points, the boundary satisfies a two sided cone condition with cones
±Γ+,ǫ/2(y) which are lipschitzean in their dependence on y. This proves the desired lipschitz
regularity of the boundary. The differentiability then follows from Rademacher’s theorem assert-
ing the almost everywhere differentiability of lipschitz functions.

At points, y, of differentiability, the tangent plane locally separates the cones y ± Γ+,ǫ/4(y). This
implies that the plane separates the smaller cones y ± Γ+(y). In §1.1 it was noted that such
separating planes are exactly those which have conormals in T (y) ∪ −T (y).

Proof of Theorem 2.5.1. We verify the criterion of Lemma 2.5.2. For 0 < t < t define

Ωt := E−
ǫ (y) ∩ [0, t] × Rd, Bt := ∂E−

ǫ (y) ∩ ]0, t[×Rd .

The set Bt is the lateral boundary of Ωt.
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Define

φ(s) :=

∫

E−
ǫ (y)∩{t=s}

|u(s, x)|2 dx .

The energy conservation law (2.3.2) implies that For smooth solutions of Lu = 0 and 0 < t < t,
one has

0 =

∫

Ωt

∂t(u, u) +
∑

j

∂j(Aju, u) + (Zu, u) dx dt ,

Integrating by parts yields

φ(t) − φ(0) +

∫

Bt

(
d∑

µ=0

νµAµu, u) dσ +

∫

Ωt

(Zu, u) dx dt = 0 , (2.5.1)

where ν is the unit outward normal to B and dσ is the element of d dimensional surface area in the
boundary B. The conormal ν is almost everywhere well defined with respect to surface area. From
Lemma 2.5.4, ν belongs to T ∪ −T . Since E−

ǫ (y) is a backward emission, the outward conormals
belong to T . Therefore the matrix

∑
µ νµAµ is strictly positive. Using this in (2.5.1) yields

φ(t) ≤ φ(0) + ‖Z‖L∞([0,T ]×Rd)

∫ t

0

φ(s) ds .

Since E− does not meet the support of u|t=0, φ(0) = 0. Gronwall’s Lemma implies that φ(t) = 0
for 0 ≤ t ≤ t. This shows that u vanishes in E−

ǫ (y) so completes the proof.

§2.6. Local Cauchy problems.

Once finite speed is established it is not hard to show that the Cauchy problem has unique solutions
for data and operators only defined locally. This is needed in Chapter 5 where some operators are
defined only where locally defined phases exist.

Assumption. Suppose that 0 < T <∞ and O is a bounded open subset of R1+d lying on one side
of its compact boundary. Let Ω = O ∩ {0 < t < T}. Assume that Ω is a domain of determinacy
for L(y, ∂) in the sense that,

∀ y ∈ Ω, E−(y) ∩ {0 ≤ t ≤ T} ⊂ Ω (2.6.1)

Denote by Ωσ := {(t, x) ∈ Ω : t = σ} the section at time σ.

Theorem 2.6.1. Suppose that L is a symmetric hyperbolic operator with coefficients defined only
on Ω with partial derivatives of all orders bounded. If g ∈ C∞(Ω0) and f ∈ C∞(Ω), then there is
one and only one solution u ∈ C∞(Ω) of the initial value problem

Lu = f on Ω , u(0) = g on Ω0 . (2.6.2)

If s ∈ N there is a constant C = C(L, s) so that for all f, g and 0 ≤ t ≤ T ,

∑

|α|≤s

‖∂αy u(t)‖L2(Ωt) ≤ C
( ∑

|α|≤s

‖∂αy u(0)‖L2(Ωt) +

∫ t

0

∑

|α|≤s

‖∂αy f(σ, x)‖L2(Ωσ) dσ
)
. (2.6.3)
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Proof. The first step is to construct a symmetric hyperbolic operator L̃ defined everywhere on
R1+d and equal to L on Ω. To do this first extend the coefficients Aµ to smooth hermitian valued
functions on R1+d with uniformly bounded derivatives. Extend B similarly but without symmetry
requirements.

By continuity, the extended coefficient A0 is strictly positive definite on a neighborhood of Ω. This
allows one to construct a possibly different extension with bounded derivatives which is strictly
postive everywhere. That completes the construction of L̃.

Extend f and g to f̃ ∈ C∞
0 (R1+d) and g̃ ∈ C∞

0 (Rd). Solving the tilde initial value problem on
R1+d constructs a solution.

The energy estimate for L̃ implies that

∑

|α|≤s

‖∂αy u(t)‖L2(Ωt) ≤ C(s, L̃)
( ∑

|α|≤s

‖∂αy g̃‖L2(Rd) +

∫ t

0

∑

|α|≤s

‖∂αy f̃(σ, x)‖L2(Rd) dσ
)
.

The standard extension process for Sobolev functions shows that the infinum of the right hand
side over extensions f̃ and g̃ is a norm equivalent to the right hand side of (2.6.3).

To prove uniqueness, reason as follows. If u is a solution, choose an extension ũ ∈ C∞
0 (R1+d).

Then L̃ũ vanishes in Ω and ũ|t=0 vanishes in Ω0.

The domain of determinacy hypothesis implies that for y ∈ Ω and 0 ≤ t ≤ T ,

E−(y, L̃) = E−(y, L) ⊂ Ω .

Exercise 2.6.1. Prove this.

The sharp finite speed result for L̃ implies that ũ|Ω = 0. Since ũ is equal u on Ω, this completes
the proof.

Remark. Solutions with finite regularity can be constructed by an approximation argument using
(2.6.3).

Appendix 2.I. Constant coefficient hyperbolic systems

For constant coefficients one can make a rough classification of hyperbolic systems. This appendix
describes, largely without proof, such results.

Consider the Cauchy problem for the differential operator

L = A0∂t +
d∑

j=1

Aj ∂j + B ,

where Aµ and B are constant N ×N matrices. The hyperbolic systems will be those for which the
initial value problem

Lu = f, u|t=0 = g,

has a unique solution for f, g being arbitrary elements of a suitably large family of functions.

The first observation is that t = 0 must be noncharacteristic, that is A0 must be invertible. In the
opposite case, RgA0 is a proper subspace of CN . The differential equation at t = 0 then implies
that

d∑

j=1

Aj∂jg + Bg − f(0, x) ∈ RgA0 .
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This is a nontrivial linear constraint on the data f, g. So to have solvability for reasonably arbitrary
data it is necessary that A0 is invertible. In that case, multiplying by A−1

0 reduces to the case
A0 = I which we assume in the remainder of this Appendix.

The Fourier transform yields the solution of the Cauchy problem with f = 0,

û(t, ξ) = e
t
(
−i
∑d

j=1
Ajξj−B

)
ĝ(ξ) .

Hyperbolic systems are those for which this product makes sense for a large class of g. At the
very least one would like to solve with g for which the values of g in a neighborhood of a point
of x are independent of the values at x 6= x. This property is not shared by the real analytic
data for which solvability is a consequence of the Cauchy-Kovaleskaya Theorem. The problem of
identifying hyperbolic system at least requires finding solvability in a class of functions without
analyticity properties.

Considering B = 0 one sees that it is bad if
∑
Ajξj has an eigenvalue λ with nonvanishing

imaginary part. Replacing ξ by −ξ one may suppose that Imλ > 0. Then the matrix e−i
∑

Ajξj

grows exponentially on a conic neighborhood aξ with a → ∞.. Thus for e−i
∑

Ajξj ĝ(ξ) to be the
transform of a nice object, the transform ĝ must decay exponentially in such directions. This is a
microlocal real analyticity condition on g which shows that such systems must be rejected. The
argument works as well when a lower order term B 6= 0 is added as the amplification matrix still
grows exponentially. The conclusion is that only systems so that for real ξ,

∑
j Ajξj has only real

eigenvalues should be called hyperbolic.

It is not difficult to show that the condition of real spectrum is equivalent to a bound

∃C, ∀ξ ∈ Rd, 0 ≤ t ≤ 1
∥∥et
(
−i
∑

Ajξj−B
)∥∥ ≤ C e(|ξ|

(N−1)/N ) .

Thus, for such operators the Cauchy problem is solvable for data whose Fourier transform decays
as e−|ξ|ν with 1 > ν > (N − 1)/N . By definition, this is the class of Gevrey data G1/ν . This class
is good in the sense that there are Gevrey partitions of unity, and the values at distinct points are
entirely independent. A profound result of Bronshtein proves that variable coefficient problems
whose coefficients are G1/ν smooth and so that

∑
j Aj(t, x)ξj has only real eigenvalues yield good

Cauchy problems for G1/ν data. The result has the weakness that the value of a solution at t, x
with t > 0 depends on an infinite number of derivatives of the data and coefficients.

The next class of hyperbolic sytems, introduced and analysed by Gårding with earlier contributions
of Petrowsky are defined so that the dependence is reduced to a finite number of derivatives. For
this it is necessary and sufficient that one has a bound

∃C,m ∀ξ ∈ Rd, 0 ≤ t ≤ 1,
∥∥∥et
(
−i
∑

Ajξj−B
)∥∥∥ ≤ C 〈ξ〉m . (2.I.1)

When (2.I.1) is satisfied, the Cauchy problem is solvable with loss of no more than m derivatives
in the sense that if g ∈ Hs(Rd) then there is a solution u ∈ C(R ; Hs−m(Rd)).

The bound (2.I.1) is equivalent to the following eigenvalue condition which depends on the lower
order term B,

∃C, ∀ξ ∈ Rd, the eigenvalues of
(∑

j

Ajξj + iB
)

satisfy |Imλ| ≤ C . (2.I.2)

This is the standard definition of hyperbolicity for constant coefficient systems.
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Example. The system

∂t +

(
0 1
0 0

)
∂x (2.I.3)

satisfies (2.I.1) with m = 1, but

∂t +

(
0 1
0 0

)
∂x +

(
0 0
1 0

)
(2.I.4)

which is obtained by adding a lower order term does not satisfy for any m.

Exercise 2.I.1. Verify.

Denote the variables as (u, v). The system (2.I.4) is equivalent to,

ut + vx = 0, vt + u = 0 . (2.I.5)

Eliminating v yields utt+ux = 0. The Cauchy provlem for this equation (and the original system)
is solvable for data in G1/ν for ν < 1/2, and not for data with only a finite number of derivatives.
This equation is the sideways heat equation discussed in [R 1991, §3.9]. The system (2.I.3) yields
the hyperbolic equation, utt = 0. The solution of the Cauchy problem

utt = 0, u
∣∣
t=0

= g0, ut
∣∣
t=0

= g1,

is u = g0 + tg1. If g ∈ Hs and g1 ∈ Hs−1, the solution is continuous with values in Hs−1. This is
a loss of one derivative compared to what one would have for the wave equation. This loss reflects
the fact that (2.I.1) is satisfied for m = 1 and for no smaller value.

The strongest notion of hyperbolicity corresponds to solvability without loss of derivatives. This
requires the bound,

sup
ξ∈Rd, 0≤t≤1

∥∥∥et
(
−i
∑

Ajξj−B
)∥∥∥ < ∞ , (2.I.6)

Estimate (2.I.6) is the case m = 0 of (2.I.1).

Proposition 2.I.1. Condition (2.I.6) is equivalent to,

sup
ξ∈Rd

∥∥∥e−i
∑

Ajξj

∥∥∥ < ∞ . (2.I.7)

Proof. We prove that (2.I.6) implies (2.I.7). The opposite implication is similar. Condition (2.I.6)
is a uniform estimate

sup
0≤t≤1, ξ∈Rd

∥∥et(A−B)
∥∥ ≤ M, where A =

∑
−iAjξj .

We want an estimate supξ∈Rd ‖u(1)‖ <∞, where u satisfies u′ = Au with unit length initial data.
Write the equation for u as

u′ = (A− B)u + Bu,

so

u(t) = et(A−B)u(0) +

∫ t

0

e(t−s)(A−B)B u(s) ds .
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For t ≤ 1 one has

‖u(t)‖ ≤ M +

∫ t

0

M ‖B‖ ‖u(s)‖ ds .

Gronwall’s inequality implies that ‖u(1)‖ ≤M eM‖B‖ proving (2.I.7).

In particular, the conditions (2.I.6) is stable under lower order perturbations.

In order for (2.I.7) to be satisfied it is neccessary that for all real ξ the matrix
∑
j Ajξj is similar

to a real diagonal matrix. This follows by considering only the restriction to real mulitples of the
given ξ. In particular the system (2.I.3) does not satisfy (2.I.6).

When (2.I.7) holds, f = 0, and, g ∈ Hs(Rd), then there is a solution continuous in time with
values lie in Hs. A Gronwall argument shows that this property is also valid if one adds a variable
coefficient lower order term, that is for L = ∂t +

∑
Aj∂j +B(t, x) with B satisfying (2.1.6).

Kreiss’ Matrix Theorem 2.I.2. If V is a complex normed vector space, then A ∈ Hom(V )
satisfies supσ∈R ‖eiσA‖ < ∞ if and only if A is diagonalisable with real eigenvalues. Write A =∑
j λjπj with distinct real λj and πj the projector along Rg (A− λjI) onto ker (A− λjI). Then

max
j

‖πj‖ ≤ sup
σ∈R

‖eiσA‖ ≤
∑

j

‖πj‖ . (2.I.8)

Proof. The diagonalisability characterisation is immediate from the Jordan form.

To prove (2.I.8) write

eiσA =
∑

j

eiσλj πj . (2.I.9)

The triangle inequality shows that,

∀σ ∈ R,
∥∥eiσA

∥∥ ≤
∑

j

‖πj‖ .

For the other half of (2.I.8), mulitply (2.1.8) by e−σλk and integrate dσ to show that,

πk = lim
T→∞

1

T

∫ T

0

e−iσλk eiAσ dσ .

The integral triangle inequality implies that
∥∥πk

∥∥ ≤ supσ∈R

∥∥eiσA
∥∥.

The result (2.I.8) is often rephrased as follows. The map

V ∋ u 7→ K(u) := (π1u , π2u , . . . , πmu) ∈ ⊕ ker(A− λjI)

has norm ≤ 1 if the direct sum is normed by the maximum of the norms. Since u =
∑
j πju and

there are at most N := dimV summands, one has maxj ‖πju‖ ≥ ‖u‖/N proving that ‖K−1‖ ≤
N . And KAK−1 is diagonal. Thus A is diagonalized by a transformation with ‖K‖ ‖K−1‖ ≤
N supσ ‖eiσA‖. The last condition is invariant when K is replaced by cK.

Therefore, (2.I.7) is satisfied if and only if there is an invertible matrix valued K(ξ) with K and
K−1 in L∞(Rd), and so that for all ξ ∈ Rd, K(ξ) (

∑
Ajξj)K

−1(ξ) is diagonal and real.
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Remarks. 1. The condition in italics is satisfied when the Aj are hermitian symmetric in which
case K can be chosen unitary and the projectors have norm 1.

2. By homogeneity it suffices to consider ξ with |ξ| = 1.

3. The condition is satisfied when for all ξ with |ξ| = 1,
∑
j Ajξj is diagonalisable and the

multiplicity of its eigenvalues is independent of ξ. In this case K(ξ) and πj(ξ) can be chosen
smooth on Rd \ 0.

4. A special case of 3 is when
∑
Ajξj has N distinct real eigenvalues for all ξ 6= 0. Such systems

are called strictly hyperbolic.

5. We prove in §5.4.4 that when d > 1 and for most systems satisfying (2.I.6), the map u(0) 7→ u(t)
is unbounded on Lp for p 6= 2.

Exercise 2.I.2. (i.) Prove 3.

(ii.) Prove that when 3 holds, K can be chosen smooth and homogeneous of degree 0 on ξ 6= 0.

Appendix 2.II. Functional analytic proof of existence

This appendix proves Theorem 2.2.1 from the a priori estimate (2.1.18) by an abstract argu-
ment. The idea of using the Sobolev spaces for negative s to give a particularly elegant version
dates at least to [Lax, 1955]. The argument uses Lax’s duality in the form L1([0, T ] ;Hs(Rd))′ =
L∞([0, T ] ; H−s(Rd)). We abuse notation in the usual way by writing the duality of Hs and H−s

as an integral.

Example. For δ′ ∈ H−2(R) and f ∈ H2(R),
∫
δ′(x) f(x) dx = f ′(0) is not an integral.

Proof of Theorem 2.2.1. Step 1. If f, g are as in Theorem 2.2.1, then there is a solution

u ∈ L∞([0, T ] ; Hs(Rd)) ∩ C([0, T ] ; Hs−1(Rd)) .

Let
Ψ :=

{
ψ ∈ ∩kCk([0, T ] ; ,Hk(Rd)) : ψ(T ) = 0

}
,

and
L†w := −∂t −

∑
∂j(Ajw) + B†,

the transposed operator so
∫

R1+d

Lφ ψ dt dx =

∫

R1+d

φ L†ψ dt dx,

for all smooth φ,ψ whose supports intersect in a compact set. Then L† is symmetric hyperbolic.
Proposition 2.1.1 with initial time T shows that,

∀ψ ∈ Ψ , sup
0≤t≤T

‖ψ(t)‖H−s(Rd) ≤ C(s, L)

∫ T

0

‖L†ψ(σ‖H−s(Rd) dσ . (2.II.1)

In particular, L† in injective on Ψ. Let V := L†Ψ a linear subspace of L1([0, T ] ; H−s(Rd)). Esti-
mate (2.II.1) asserts that (L†)−1 : V → C([0, T ] ; H−s(Rd)) is continuous. Since f ∈ L1([0, T ] ; Hs(Rd)),
the linear functional ℓ : V → C defined at v = L†ψ as,

ℓ(v) :=

∫ T

0

ψ f dt dx −
∫
ψ(0, x) g(x) dx,
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is continuous. The Hahn-Banach Theorem † implies that there is an extension of ℓ to all of
L1([0, T ] ; H−s(Rd)) so there is a u ∈ L∞([0, T ] ; Hs(Rd)) so that

ℓ(v) =

∫ T

0

u(t, x) v(t, x) dt dx .

This proves that for all ψ ∈ Ψ,

∫ T

0

∫
u(t, x) L†ψ(t, x) dt dx =

∫ T

0

∫
f(t, x) ψ(t, x) dt dx −

∫
ψ(0, x) g(x) dx . (2.II.2)

Exercise 2.II.1. Prove that u ∈ C([0, T ] ; Hs−1(Rd)) and (2.II.2) implies that Lu = f and
u|t=0 = g. Warning. The x integrals in (2.II.2) are pairings of Hs(Rd) and H−s(Rd) not integrals.

This completes the first Step.

Step 2. For f, g as in the Theorem, choose

fn ∈ C∞
0 (R1+d), gn ∈ C∞

0 (Rd),

with
fn → f in L1([0, T ] ; Hs(Rd)), gn → g in Hs(Rd).

Denote by un ∈ ∩sCs([0, T ] ; Hs(Rd)) the solution with data fn, gn constructed in Step 1. Propo-
sition 2.1.1 applied to un − um proves that {un} ∈ C([0, T ] ; Hs(Rd)) is a Cauchy sequence. The
limit u ∈ C([0, T ] ; Hs(Rd)) of this sequence is the desired solution, proving existence.

Step 3. Uniqueness. Uniqueness is proved as in the earlier proof.

† One can avoid the Hahn-Banach Theorem (and therefore uncountable choice) by using continuity
in L2[0, T ] ; Hs(Rd)). In this Hilbert space choose the unique extension which vanishes on V ⊥.
This yields a u ∈ L2([0, T ] ; H−s(Rd)) which requires small modifications in the end of the proof.
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Chapter 3. Dispersive Behavior

3.1. Orientation.

In this chapter we return to Fourier analysis techniques as in §1.3, §1.4. The Fourier transform
of the solution is written exactly and then analysed. The results show how the geometry of the
characteristic variety of L = L1(∂y) is reflected in qualitative properties of the solutions of Lu = 0.
The main idea is that when the characteristic variety is curved, the corresponding solutions tend to
spread out in space. This dispersive behavior is reflected in solutions becoming smaller in L∞(Rd)
in contast to L2(Rd) conservation.

Three simple examples illustrate the theme. The scalar advection operator

L := ∂t + v.∂x , (3.1.1)

in dimension d and the system
∂v

∂t
+

(
1 0
0 −1

)
∂v

∂x
= 0 (3.1.2)

in dimension d = 1 have only purely translating modes. The characteristic variety of (3.1.1) is the
hyperplane τ + v.ξ = 0 and for (3.1.2) it is the pair of lines τ ± ξ = 0. The variety is not curved
at all.

The system analogue of 1+2,

L := ∂t +

(
1 0
0 −1

)
∂1 +

(
0 1
1 0

)
∂2 (3.1.3)

behaves differently. Each component satisfies 1+2u = 0. For smooth compactly supported data,
they decay (in sup norm) as t−1/2. The characteristic variety is τ2−|ξ|2 = 0. Since all charateristic
varieties are conic their Gauss curvatures vanish. The present variety intersects τ = 1 in a strictly
convex set. So the variety is as curved as a conic set can be. The system is maximally dispersive.

Exercise 3.1.1. Prove the decay rate for compactly supported solutions of 1+2u = 0 by express-
ing solutions as convolutions with fundamental solutions. Discussion. An alternative proof uses
the stationary phase inequality. That method is systematically exploited in §3.4.

For all three examples the L2(Rd) norm is preserved during the time evolution.

For the solutions of the transport equation associated to (3.1.1), the size of the support of solutions
does not change in time. For (3.1.3), solutions spread out over a set whose two dimensional area
grows with time. The spread together with L2 conservation, explains the decay.

In optics, the word dispersion is used to mean that the speed of light depends on its wavelength.
In that sense, none of the above models is dispersive. The dispersion relations of the first and
third models are all positive homogeneous of degree one in ξ. The velocity at σξ is independent
of σ so the standard optical definition classifies them as nondispersive. However for (3.1.2), the
velocity depends strongly on ξ, though not on |ξ|. The fact that the group velocities point in
different directions has the effect of spreading the solution, and for large time the solutions decay.

The variation of the group velocity with ξ is given by the matrix of second derivatives ∇2
ξτ . For our

homogeneous operators, ∇ξτ is homogeneous of degree zero, so ξ belongs to the kernel of matrix.
The rank can be at most d − 1. The D’Alembertian 1+d achieves this maximal rank so is as
dispersive as a homogeneous operator can be.
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At the extreme opposite is ∇2
ξτ ≡ 0, in which case the dispersion relation is linear in ξ. The

associated graph is a hyperplane that belongs to the characteristic variety. The characteristic
variety for (3.1.1) and (3.1.2) consist of hyperplanes while for (3.1.3) the variety is curved. On a
hyperplane, {τ = −v.ξ}, contained in the characteristic variety, the group velocity is identically
equal to v so does not depend on ξ. This is the completely nondispersive situation. Solutions
translate without spread.

If the variety contains no hyperplanes, the variation of the group velocity spreads wavepackets. We
will show that as t → ∞, solutions decay in L∞. These results, presented in §3.2-§3.3, are taken
from [Joly, Métivier and Rauch, Indiana J., 1998].

An even stronger notion of uniform dispersion is when the rank of ∇2
ξτ is everywhere equal to

d− 1. In this case, the sheets of the characteristic variety are uniformly convex cones and smooth
compactly supported solutions decay at the rate t−(d−1)/2 as t→ ∞. This is investigated in §3.4. In
§3.4.1 L1 → L∞ decay estimates are proved. These are applied in §6.7 to prove global solvability
of for nonlinear problems with small initial data and high dimension. In §3.4.3 the L1 → L∞

estimates are used to derive Strichartz estimates. In §6.8, these estimates are applied to prove
global solvability of the nonlinear Klein-Gordon equation in the natural energy space.

§3.2. Spectral decomposition of solutions.

Since (τ, 0) is noncharacteristic for L, any hyperplane {aτ+b.ξ = 0} contained in the characteristic
variety must have a 6= 0. Therefore, it is necessarily a graph {τ = −v.ξ}.
Over each ξ ∈ Rd there are at most N points in the characteristic variety. Therefore, the number
of distinct hyperplanes in the variety can be no larger than N . Denote by 0 ≤M ≤ N the number
of such hyperplanes, H1, . . . ,HM ,

Hj = { (τ, ξ) : τ = −vj .ξ } , j = 1, . . . ,M ≤ N . (3.2.1)

Examples. 1. When d = 1 the characteristic variety is a union of lines so consists only of
hyperplanes. There are no curved sheets.

2. The characteristic variety of the operator (3.1.3) is the light cone, {τ2 = |ξ|2}. There are no
hyperplanes.

3. The characteristic varieties of Mawell’s Equations and the the linearization at u = 0 of the
compressible Euler equations are the union of a convex light cone and a single horizontal hyperplane
τ = 0.

Convention. In this chapter we assume that L(∂t, ∂x) is constant coefficient, homogeneous,
symmetric, and, A0 = I.

Definition. An ξ ∈ Rd \ {0} is good wave number when there is a neighborhood Ω of ξ and
a finite number of real valued real analytic functions λ1(ξ) < λ2(ξ) < · · · < λm(ξ) so that the

spectrum of
∑d
j=1 Ajξj is {λ1(ξ), . . . , λm(ξ)} for ξ ∈ Ω. The complementary set consists of bad

wave numbers. The set of bad wave numbers is denoted B(L).

Over a good ξ, the characteristic variety of L cotains exactly m nonintersecting sheets τ = −λj(ξ).
At bad wave numbers, eigenvalues cross and multiplicities change. The examples above have no
bad points.

Examples. Consider the characteristic equation (τ2 − |ξ|2)(τ − cξ1) = 0 with c ∈ R. If |c| < 1
then the variety is a cone and a hyperplane intersecting only at the origin and all wave numbers

86



are good. If |c| > 1 the plane and cone intersect in a cone whose projection on ξ space is the set
of bad wave numbers,

B =
{
ξ : (c2 − 1)ξ21 = ξ22 + . . . + ξ2d

}
.

When |c| = 1, B(L) degenerates to a line of tangency.

Proposition 3.2.1. i. B(L) is a closed conic set of measure zero in Rd \ {0}.
ii. The complementary set, Rd \(B∪{0}), is the disjoint union of a finite family of conic connected
open sets Ωg ⊂ Rd \ {0}, g ∈ G.

iii. The mulitplicity of τ = −vj .ξ as a root of detL(τ, ξ) = 0 is independent of ξ ∈ Rd \ (B∪ {0}).
iv. If λ(ξ) ∈ Cω(Ωg) is an eigenvalue of

∑
Ajξj depending real analytically on ξ, then either there

is j ∈ {1, . . . ,M} such that λ(ξ) = −vj · ξ or ∇2λ 6= 0 almost everywhere on Ωg.

Proof. i. Use the basic stratification theorem of real algebraic geometry (see [Benedettin and
Rissler], [Basu, Pollack, and Roy]). The characteristic variety is a conic real algebraic variety in
R1+d \ {0}.
Over each ξ it contains at least 1 and at most N points. Therefore its projection on Rdξ is the whole
space so the variety has dimension at least d. On the other hand it has measure zero by Fubini’s
Theorem so the dimension is at most d, since d+ 1 dimensional algebraic sets contain open sets.

The singular points are therefore a stratum of dimension at most d−1. The bad wave numbers are
exactly the projection of this singular locus and so is a real algebraic subvariety of Rdξ of dimension
at most d− 1 and i follows.

ii. That there are at most a finite number of components in the complementary set is a classical
theorem of Whitney proved in the reference cited in i.

iii. Denote by m the mulitplicity on Ωg andm′ the mulitplicity on Ωg′ . By definition of mulitplicity,

ξ ∈ Ωg and k < m =⇒ ∂k detL(τ, ξ)

∂τk

∣∣∣∣∣
τ=−vj .ξ

= 0 . (3.2.2)

Then ∂kτ L(−vj .ξ, ξ) is a polynomial in ξ which vanishes on the nonempty open set Ωg, so must
vanish identically. Thus it vanishes on Ωg′ and it follows that m′ ≥ m. By symmetry one has
m ≥ m′.

iv. If λ is a linear function λ = −v.ξ on Ωg, then detL(−v.ξ, ξ) = 0 for ξ ∈ Ωg so by analytic
continuation, must vanish for all ξ. It follows that the hyperplane τ = −v.ξ lies in the characteristic
variety and therefore that λ = −vj .ξ for some j.

If λ is not a linear function, then the matrix ∇2
ξλ is a real analytic function on Ωg which is not

identically zero and therefore vanishes at most on a set of measure zero in Ωg.

Definitions. Enumerate the roots of det L(τ, ξ) = 0 as follows. Let Af := {1, . . . ,M} denote the
indices of the flat parts, and for α ∈ Af , τα(ξ) := −vα.ξ. For g ∈ G and ξ ∈ Ωg, number the
roots other than the {τα : α ∈ Af} in order τg,1(ξ) < τg,2(ξ) < · · · < τg,M(g). Multiple roots are
not repeated in this list. Let Ac denote the indices of the curved sheets

Ac :=
{

(g, j) : g ∈ G and 1 ≤ j ≤M(g)
}
. (3.2.3)

Let A := Af ∪ Ac. For α ∈ Af and ξ ∈ Rd define Eα(ξ) := π(−vj .ξ, ξ). For α ∈ Ac define

Eα(ξ) :=




π
(
τα(ξ), ξ

)
for ξ ∈ Ωg

0 for ξ /∈ Ωg .
(3.2.4)
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The next proposition decomposes an arbitrary solution of Lu = 0 as a finite sum of simpler waves.

Proposition 3.2.2. 1. For each α ∈ A , Eα(ξ) ∈ Cω(Rd \ (B ∪ {0})) is an orthogonal projection
valued function positive homogeneous of degree zero.

2. For each ξ ∈ Rd \ (B ∪ {0}), CN is equal to the orthogonal direct sum

CN = ⊕α∈A ImageEα(ξ) . (3.2.5)

3. The operators Eα(Dx) := F∗E(ξ)F are orthogonal projectors on Hs(Rd), and for each s ∈ R,
Hs(Rd) is equal to the orthogonal direct sum,

Hs(Rd) = ⊕α∈A ImageEα(Dx) . (3.2.6)

4. If f ∈ S ′(Rd) has Fourier transform equal to a locally integrable function, then the solution of
the initial value problem

L(∂y)u = 0 , u|t=0 = f (3.2.7)

is given by the formula

û(t, ξ) =
∑

α∈A

ûα(t, ξ) :=
∑

α∈A

eitτα(ξ)Eα(ξ) f̂(ξ) . (3.2.8)

Remarks. 1. The last decomposition is also written

u :=
∑

α∈A

uα :=
∑

α∈A

eitτα(Dx)Eα(Dx)f .

2. Since τα is real valued on the support of Eα(ξ) the operator eitτα(Dx) Eα(Dx) is a contraction
on Hs(Rd) for all s.

3. If α ∈ Af then −iτα(Dx) = vα.∂x. For α = (g, j) ∈ Ac, |τα(ξ)| ≤ C|ξ|, so the operator τα(Dx)f
is continuous from Hs to Hs−1. The mode uα = eitτα(Dx)Eα(Dx)f satisfies ∂tuα = iτα(Dx)uα.
For α ∈ Af this is

(
∂t + vα.∂x

)
uα = 0, so

uα =
(
Eα(D)f

)(
x− vαt

)
.

4. Over B(L) only the Eα corresponding to the hyperplanes are defined. One does not have a

decomposition of CN . It is important that B is a negligible set for f̂ . The f̂ ∈ L1
loc assumption in

4 is essential.

§3.3. Large time asymptotics

Definition. Define A as the set of tempered distributions whose Fourier transforms belong to
L1(Rd). Then A is a Banach space with norm

‖f‖A := (2π)−d/2
∫

Rd

|f̂(ξ)| dξ . (3.3.1)
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The Fourier Inversion Formula implies that A ⊂ L∞(Rd) and

‖f‖L∞(Rd) ≤ ‖f‖A . (3.3.2)

The elements of A are continuous and tend to zero as x→ ∞. Moreover, the Fourier transform of
f2 is a multiple of f̂ ∗ f̂ and therefore in L1, so A is an algebra. It is called the Wiener algebra. It
is a centerpiece of the Tauberian Theorems of N. Wiener.

Theorem 3.3.1 (L∞ asymptotics for symmetric systems). Suppose that f ∈ A and u is the
solution of the initial value problem L(∂x)u = 0, u|t=0 = f . Then with the notation introduced in
the preceding section,

lim
t→∞

∥∥∥u(t) −
∑

α∈Af

(Eα(Dx)f) (x− vαt)
∥∥∥
L∞(Rd)

= 0 . (3.3.3)

Remarks. 1. This result shows that a general solution of the Cauchy problem is the sum of M
rigidly translating waves, one for each hyperplane in the characteristic variety, plus a term which
tends to zero in sup norm. The last part decays because of the dispersion of waves.

2. The Theorem does not extend to f whose Fourier Transform is a bounded measure. For example,
u :=

(
ei(x1−t), 0

)
satisfies Lu = 0 with f̂ equal to a point mass. The characteristic variety contains

no hyperplanes so (3.3.3) asserts that solutions with f̂ ∈ L1 tend to zero in L∞(Rd) while u(t) has
sup norm equal to 1 for all t.

Proof of Theorem. Step 1. Approximation-decomposition. Symmetric hyperbolicity
implies that for each t, ξ, exp

(
it
∑
Ajξj

)
is unitary on CN . Therefore S(t) := exp

(
− t
∑

j Aj∂j
)

is isometric on A. Since the family of linear maps

f 7−→ S(t)f −
∑

α∈Af

(Eα(Dx)f) (x− vαt)

is uniformly bounded from A to L∞(Rd), it suffices to prove (3.3.3) for a set of f dense in A.

For α ∈ Ac, Propostion 3.2.1.iv shows that the matrix of second derivatives, ∇2
ξτα can vanish at

most on a closed set of measure zero. The set of f we choose is those with

f̂ ∈ C∞
0

(
Rd \

{
B ∪ {0} ∪

⋃

α∈Ac

{ξ ∈ Ωg : ∇2
ξτα(ξ) = 0 }

} )
.

Since the removed set is a closed null set, these f are dense.

To prove (3.3.3) for such f decompose

f =
∑

α∈A

fα :=
∑

α∈A

Eα(Dx) f , u(t) = S(t)f =
∑

uα(t) :=
∑

S(t) fα . (3.3.4)

For α ∈ Af , uα(t) = (Eα(Dx)f) (x−vαt) which recovers the summands in (3.15). To prove (3.15)
it suffices to show that for α ∈ Ac

lim
t→∞

∥∥uα(t)
∥∥
L∞(Rd)

= 0 . (3.3.5)
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Step 2. Stationary and nonstationary phase. Part 4 of Proposition 3.2. shows that for
α ∈ Ac,

uα(t, x) =

∫

Ωg

ei(τα(ξ)t+x.ξ) f̂α(ξ) dξ , f̂α ∈ C∞
0 (Ωg) . (3.3.6)

For each ξ in the support of f̂α, there is a vector r ∈ Rd so that 〈∇2
ξτ(ξ) r, r 〉 6= 0 on a neighborhood

of ξ. Using a partition of unity we can write f̂α as a finite sum of functions hµ ∈ C∞
0 (Ωg) so that for

each µ there is a rµ ∈ CN so that on an open ball containing the support of hµ, 〈∇2
ξτ(ξ) rµ, rµ 〉 6= 0.

It suffices to show that for each µ

lim
t→∞

sup
x∈Rd

∫
ei(τα(ξ)t+x.ξ) hµ(ξ) dξ = 0 . (3.3.7)

For ease of reading we suppress the subscripts. Write x = tz. For each t > 0, the supremum in x
is equal to the supremum in z so it suffices to show that

lim
t→∞

sup
z∈Rd

∣∣∣
∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣∣∣ = 0 .

Choose
σ > sup

ξ∈supp h

∣∣∇ξτ(ξ)
∣∣ .

There is a δ > 0 so that for all |z| ≥ σ,

∣∣∇ξ(τ(ξ) + z.ξ)
∣∣ ≥ δ .

The method of nonstationary phase implies that

∀N > 0, ∃CN , ∀|z| ≥ σ, t > 1,
∣∣∣
∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣∣∣ ≤ CN t

−N .

It remains to show that

lim
t→∞

sup
|z|≤σ

∣∣∣
∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣∣∣ = 0 . (3.3.8)

Make a linear change of variables in ξ so that r = (1, 0, . . . , 0) and therefore

∂2τ

∂2ξ1
6= 0 , on supp h .

Choose R > 0 so that for ξ ∈ supph, |ξ| ≤ R. Set

Γ := {|z1| ≤ σ} × {|ξ2, . . . , ξd| ≤ R} ⊂ R1 × Rd−1 .

Define

K(t) := sup
|z|≤σ, |ξ2,...,ξd|≤R

∣∣∣
∫

eit(τ(ξ)+z1.ξ1) h(ξ) dξ1

∣∣∣

= sup
Γ

∣∣∣
∫

eit(τ(ξ)+z1.ξ1) h(ξ) dξ1

∣∣∣ .
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Then

sup
|z|≤σ

∣∣∣
∫

eit(τ(ξ)+z.ξ) h(ξ) dξ
∣∣∣

≤
∫

|ξ2,...,ξd|≤R

ei(z2ξ2+...+zd.ξd)
(∫

eit(τ+z1ξ1) h(ξ) dξ1

)
dξ2 . . . dξd

≤
∣∣∣
{
|ξ2, . . . , ξd| ≤ R

}∣∣∣ K(t) .

It therefore suffices to show that
lim
t→∞

K(t) = 0 . (3.3.9)

The points of Γ are split according to whether the phase τ(ξ) + z1ξ1 has a stationary point with
respect to ξ1 or not. If γ ∈ Γ is such that

∣∣∣∣
∂τ

∂ξ1
+ z1

∣∣∣∣ > δ > 0 for all |z1| ≤ σ, |ξ| ≤ R,

the same is true on a neighborhood of γ. The principal of nonstationary phase shows that

∫
eit(τα(ξ)+z.ξ) ĥµ(ξ) dξ1 = O(t−N)

uniformly on such a neighborhood.

On the other hand if for γ there is a stationary point, then the strict convexity of τ in ξ1 shows that
it is unique and nondegenerate. Therefore for nearby γ there is a nearby unique and nondegenerate
stationary point. The inequality of stationary phase (see Appendix) implies that

∫
eit(τα(ξ)+z.ξ) ĥµ(ξ) dξ1 = O(t−1/2)

uniformly on a neighborhood of γ.

Covering the compact set Γ by a finite family of neighborhoods proves (3.3.9) and therefore the
Theorem.

Definition. The operator L is purely dispersive when its characteristic variety contains no
hyperplanes. It is call nondispersive when its characteristic variety is equal to a union of hyper-
planes.

The nondispersive operators have a discrete set of group velocities. The characteristic variety
of purely dispersive operators have only curved sheets. The latter name is justified by the next
Corollary.

Corollary 3.3.2. If L = L1(∂x) is a constant coefficient homogeneous symmetric hyperbolic
operator, then the following are equivalent.

1. The characteristic variety of L contains no hyperplanes (i.e. L is purely dispersive).

2. Every solution of Lu = 0 with u
∣∣
t=0

∈ C∞
0 (Rd) satisfies,

lim
t→∞

‖u(t)‖L∞(Rd) → 0 . (3.3.10)
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3. Every solution of Lu = 0 with u
∣∣
t=0

∈ A satisfies (3.3.10).

4. If τ(ξ) is a C∞ solution of detL(τ, ξ) = 0 defined on a open set of ξ ∈ Rd then for every
v ∈ Rd, {ξ ∈ Rd : ∇ξτ = −v} has measure zero.

Proof. Theorem 3.3 shows that 1 ⇔ 3. To complete the proof we show that 3 ⇔ 2 and 1 ⇔ 4.

The assertions 2 and 3 are equivalent because the family of mappings u(0) 7→ u(t) is uniformly
bounded from A → L∞, and C∞

0 is dense in A.

That ∼ 1 =⇒∼ 4 is immediate.

If 4 is violated there is a smooth solution τ so that ∇ξτ = −v on a set of positive measure. It
follows from the stratification theorem of real algebraic geometry that ∇ξτ = −v on a conic open
real algebraic set of dimension d in Rd \ 0. Then τ = −v.ξ on this set and we conclude that
the polynomial detL(−v.ξ, ξ) vanishes on this set and therefore everywhere. Thus the hyperplane
{τ = −v.ξ} is contained in the characteristic variety and 1 is violated.

Thus 1 and 4 are equivalent.

Remarks. 1. Part four of this Corollary shows that for any velocity v the group velocity −∇ξτ
associated to a curved sheet of the characteristic variety takes the value v for at most a set of
frequencies ξ of measure zero.

2. If Ω ⊂ Rd is a set of finite measure, estimate using the Cauchy-Shwartz inequality,

∫

Ω

|u(t, x)|2 dx ≤ ‖u(t)‖L∞(Rd)

∫

Ω

|u| dx ≤ ‖u(t)‖L∞(Rd)‖ |Ω|1/2 ‖u‖L2(Rd),

shows that for Cauchy data in A the L2 norm in any tube of rays tends to zero at t→ ∞.

The nondispersive evolutions are described in the next results.

Corollary 3.3.3. If L = L1(∂y) is a constant coefficient homogeneous symmetric hyperbolic
operator with A0 = I, then the following are equivalent.

1. The characteristic variety of L is a finite union of hyperplanes.

2. (Motzkin and Tausky) The matrices Aj commute.

3. If u satisfies Lu = 0 with u(0) ∈ A and ‖u(t)‖L∞(Rd) → 0 as t→ ∞, then u is identically equal
to zero.

Proof. 2 ⇒ 3. A unitary change of variable u = V v replaces the equation Lu = 0 with the
equivalent equation L̃v = 0 with Ãj := V ∗AjV . When the Aj commute, V can be chosen so that

the Ãj are all real diagonal matrices. Property 3 is clear for the tilde equation as each component
of the solution rigidly translates as time goes on. The only way its supremum can tend to zero at
t→ ∞ is for it to vanish.

3 ⇒ 1. This is a consequence of Theorem 3.3.1.

1 ⇒ 2. This result of Motzkin and Tausky is proved next completes the proof.

Theorem 3.3.4. (Motzkin and Tausky) Suppose that A and B are hermitian N × N matrices.
The eigenvalues of ξA+ ηB are linear functions of ξ, η if and only if A and B commute.

Proof. We must show that linear eigenvalue implies commutation. The proof is by induction on
N . The case N = 1 is trivial. We suppose that N > 1 and the result is known for dimensions
≤ N − 1.
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Consider the characteristic variety det(τ + ξA + ηB) = 0. Choose a good wave number (ξ, η)
so that above this point the variety has k ≤ N real analytic sheets. If η = 0, leave the spatial
coordinates as they are. If η 6= 0, change orthogonal coordinates in R2 so that (ξ, η) is a mutiple
of dy1. We can without loss of generality assume that above η = 0 the variety consists of k real
analytic sheets.

For s small the eigenvalues of A + sB are real analytic function λj(s) with λj(0) < λj+1(0) for
1 ≤ j < k − 1. Denote by µj the multiplicity of λj(0) and therefore of λj(s) for s small. By
hypothesis the λj(s) are affine functions of s so λ′′ = 0. We use this only at s = 0.

By a unitary change of variable in CN one can arrange that A is block diagonal with diagonal
entries λj(0)Iµj×µj

.

Corresponding to this block structure and the eigenvalue λ1 one has,

π = diag
(
Iµ1×µ1

, 0µ2×µ2
, . . . , 0µk×µk

)
,

Q = diag
(
0µ1×µ1

,
1

λ2 − λ1
Iµ2×µ2

, . . . ,
1

λk − λ1
Iµk×µk

)
.

(3.3.11)

The matrix B has block structure

B =



B1,1 B1,2 ..... B1,k

B2,1 B2,2 ..... B2,k

Bk,1 Bk,2 .... Bk,k


 ,

with Bij a µi × µj matrix and Bij = B∗
ji.

The fundamental formula of second order perturbation theory (3.I.3) from Appendix 3.I, yields
λ′′π = 2πBQBπ. By hypothesis this is equal to zero.

Straightforward calculation shows that

πB =



B1,1 B1,2 ..... B1,k

0 0 ..... 0
0 0 0
0 0 .... 0


 , QBπ =




0 0 .... 0
1

λ2−λ1
B2,1 0 .... 0

1
λk−λ1

Bk,1 0 .... 0


 .

Therefore, the µ1 × µ1 upper left hand block block of πQBQπ is equal to

k∑

j=2

1

λj − λ1
B1,jB

∗
1,j .

Conclude that this sum of positive square matrices vanishes. Thus, for j ≥ 2, B1,j = 0 and
Bj,1 = 0.

Thus B and A are reduced by the splitting

CN = Cµ1 × CN−µ1 .

The commutation then follows by the inductive hypothesis applied to the diagonal blocks. This
proves the case N and completes the induction.
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Example. The implication 1 ⇒ 2 is not true without the symmetry hypothesis. For example, the
hypberbolic system

∂t +

(
1 0
0 −1

)
∂1 +

(
1 1
0 1

)
∂2

has flat characteristic variety with equation

(τ + ξ1 + ξ2)(τ − ξ1 + ξ2) = 0 ,

and the coefficient matrices do not commute. The conclusion is correct assuming that the hyper-
bolic system generates a semigroup in L2(Rd) (see [Gues and Rauch]).

Theorem 3.3.5. (P. Brenner). If L = L(∂y) is a constant coefficient homogeneous symmetric
hyperbolic operator with A0 = I, then the conditions of Corollary 3.3.3 are equivalent to each of
the following.

i. For all t ∈ R and p ∈ [1,∞] the Fourier multiplication operator

S(t) := F−1 e−it
∑

Ajξj F

is a bounded from Lp(Rd) to itself.

ii. For some t ∈ R \ 0 and 2 6= p ∈ [1,∞] the operator S(t) is bounded from Lp(Rd) to itself.

Remark. The Fourier multiplication operators are unitary on L2. Property ii means that the
restriction to S(R) extends to bounded operators on Lp, equivalently

sup
f∈S(Rd)\0

‖S(t)f‖Lp(Rd)

‖f‖Lp(Rd)

< ∞ .

Proof. The conditions of Corollary 3.3.3 imply that after an orthogonal change of basis, the Aj
are all real diagonal matrices. It is then elementary to verify that i is satisfied.

Clearly i implies ii. It remains to show that ii implies the conditions of Corollary 3.3.3. Equiva-
lently, if the conditions of the the Corollary are violated, then ii is violated. First remark that ii
is stronger than it appears. Since S(t) is unitary on L2, if ii is satisfied then S(t) is bounded on
Lp for all p between 2 and p. Thus we may assume that p in not equal to 1 or ∞.

For σ ∈ R \ 0, Lu = 0 if and only if uσ(t, x) := u(σt, σx) satisfies Luσ = 0. It follows that if ii is
satisfied then

‖S(t)‖Hom(L
p
) = ‖S(t)‖Hom(L

p
) < ∞ , ∀ t 6= 0 . (3.3.12)

If q is the conjugate index to p, that is 1
p

+ 1
q

= 1, then

‖S(t)‖Hom(L
q
(Rd)) = sup

f,g∈S\0

(
S(t)f , g)

‖f‖Lq
(Rd) ‖g‖Lp

(Rd)

= sup
f,g∈S\0

(
f , S(−t)g)

‖f‖Lq
(Rd) ‖g‖Lp

(Rd)

= ‖S(−t)‖Hom(L
p
(Rd) .

Thus when ii is satisfied for p it is satisfied for q so we may suppose that ∞ > p > 2.
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When the conditions of Corollary 3.3.3 are violated, there is a conic set of good wave numbers Ωg
and a sheet τ = τ(ξ) over Ωg with ∇2

ξξτ 6= 0 for almost all ξ ∈ Ωg. Denote by π(ξ) the associated

spectral projection. Choose an f ∈ S(Rd) with f̂ compactly supported in Ωg. Replacing f̂ by

π(ξ)f̂ we may assume that π(D)f = f . Theorem 3.3.1 implies that

lim
t→∞

‖S(t) f‖L∞(Rd) = 0 .

Then

‖S(t)f‖p
L

p
(Rd)

≤ ‖S(t)f‖p−2

L∞(Rd)
‖S(t)f‖2

L2(Rd) = ‖S(t)f‖p−2

L∞(Rd)
‖f‖2

L2(Rd) → 0 ,

as t→ ∞.

Therefore,
∥∥S(−t)

∥∥
Hom(L

p
)
≥
∥∥S(−t)

(
S(t)f

)∥∥
L

p∥∥S(t)f
∥∥
L

p

=

∥∥f
∥∥
L

p∥∥S(t)f
∥∥
L

p

→ ∞ .

Thus (3.3.12) is violated and the proof is complete.

Example. It may seem that (3.3.12) together with limt→0 S(t)f = f might imply that S(t) has
norm equal to 1. That this is not true can be seen from the one dimensional example

∂t +

(
0 0
0 1

)
∂x ,

and Lp norm defined by

‖(u1, u2)‖p :=

∫
‖(u1, u2)‖p dx

)1/p
, ‖(u1, u2)‖ :=

(
|u1|2 + |u2|2

)1/2
,

so that for p = 2 one has unitarity. Choosing u1(0) = u2(0) = f ∈ C∞
0 ({|x| ≤ ρ}) one has

‖u(0)‖pp = (
√

2)p‖f‖pp ,

and for |t| > ρ,
‖u(t)‖pp = 2 ‖f‖pp .

It follows that for all t 6= 0 and p < 2, ‖S(t)‖pHom(Lp) ≥ 21− p/2 > 1. Reversing time, treats p > 2.

§3.4. Maximally dispersive systems

§3.4.1. The L1 → L∞ decay estimate

If τ = τ(ξ) parametrizes a real analytic patch of the characteristic variety of a hyperbolic operator
then τ is homogeneous of degree 1 in ξ. The group velocity v(ξ) = −∇ξτ(ξ) is homogeneous of
degree 0. Therefore ξ.∇ξv = 0 so ξ belongs to the kernel of the symmetric matrix ∇ξv(ξ) = ∇2

ξτ(ξ).

Thus the rank of ∇2
ξτ is at most d−1. When the rank is equal to d−1 the group velocity depends

as strongly on ξ as possible. The dispersion is as strong as possible.

Definition. The homogeneous constant coefficient symmetric hyperbolic operator is maximally
dispersive when

CharL = ∪mj=1

{
(τ, ξ) : τ = τj(ξ)

}
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where for ξ ∈ Rd \ 0
τ1(ξ) < τ2(ξ) . . . < τm(ξ) ,

the τj are real analytic, positive homogeneous of degree one in ξ, and

∀j, ∀ ξ ∈ Rd \ 0 , rank∇2
ξτ(ξ) = d− 1 . (3.4.1)

Examples. i. The simplest example is

(τ2 − |ξ|2) (τ2 − c2|ξ|2) = 0 , 0 < c 6= 1 .

The variety in this case consists of two sheets τ = |ξ| and τ = c|ξ| which have d−1 strictly positive
principal curvatures. The other sheets bound τ ≤ −|ξ| and τ ≤ −c |ξ| and have d − 1 strictly
negative curvatures.

ii. The next figure gives an example with two sheets bounding strictly convex regions for which
the functions τj change sign. In particular the generator G = −∑Aj∂j is not elliptic since the
points where the cone crosses τ = 0 are characteristic for G.

The next result is closely related to Hadamard’s ovaloid theorem which is proved in Appendix
3.III.

Propostion 3.4.1. If τ(ξ) is smooth in ξ 6= 0, homogeneous of degree one and the hessian has
rank equal to d − 1 at all points, then the nonzero eigenvalues of ∇2

ξτ have the same sign. When
they are positive (resp. negative) τ is convex (resp. concave).

Proof. When d = 2, ∇2
ξτ has only one nonzero eigenvalue and the result is immediate.

For d ≥ 3, consider the mapping

Γ(ξ) := v(ξ) = −∇ξτ(ξ) .

The differential of the mapping Γ is equal to −∇2
ξτ so ξ is in its kernel and it is invertible when

restricted to the orthogonal to ξ.

Since Γ is homogeneous of degree 0, it is natural to consider Γ as a map from Sd−1 = {|ξ| = 1}.
As such it is an immersion onto a compact d− 1 dimensional manifold, M. The image is oriented
by the image of the orientation of Sd−1.

Since ξ is orthogonal to the image of −∇2
ξτ(ξ) it follows that the ξ is the unit normal to M at Γ(ξ).

Thus, at least locally, Γ is the inverse of the Gauss map of M. Since the differential is invertible
it follows that the Gauss curvature of M is nowhere vanishing.
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Since ξ ∈ ker(∇2
ξτ(ξ), the unit normal to M at v(ξ) is equal to ξ. Since the map from ξ ∈ Sd−1

to v(ξ) has invertible jacobian, the Gauss curvature of M is nowhere vanishing.

Since d ≥ 3, it follows from Hadamard’s ovaloid theorem, that M is the boundary of a strictly
convex set and Γ : Sd−1 → M is a diffeomorphism.

Thus each value −∇ξτ(ξ) ∈ M is attained at a unique ξ ∈ Sd−1.

The normals to τ = τ(ξ) are the nonzero multiples of (1, v(ξ)). Thus, the hyperplane {τ +v(ξ).ξ =

0} is tangent at τ = τ(ξ) and at no other point τ = τ(ξ′) with ξ′ ∈ Sd−1.

It follows that the cone τ = τ(ξ) is strictly convex in the sense that its intersection with its tangent
plane conists exactly of the line (R \ 0)(τ(ξ), ξ).

This implies that the d− 1 nonzero eigenvalues must have one sign.

Examples. The characteristic variety of a maximally dispersive system consists of m disjoint
sheets, each the boundary of a strictly convex cone.

Lemma 3.4.2 (Pointwise decay). If d ≥ 2, τ is as above and k ∈ C∞
0 (Rd \ 0) then there is a

constant C so that

u(t, x) :=

∫
eitτ(ξ) eix.ξ k(ξ) dξ ,

satisfies
‖u(t)‖L∞(Rd) ≤ C (1 + |t|)−(d−1)/2 . (3.4.2)

Remark. This is the decay rate for solutions of 1+du = 0 which corresponds to the choice
τ(ξ) = ±|ξ|.

Proof. The easy estimate

‖u(t, x)‖L∞(Rd) ≤
∫

|k(ξ)| dξ ,

shows that only the decay for |t| ≥ 1 needs to be proved.

Let
y :=

x

t
, x = ty .

Then

sup
x

∣∣u(t, x)
∣∣ = sup

y

∣∣u(t, ty)
∣∣ = sup

y

∣∣∣
∫
eit(τ(ξ)+y.ξ) k(ξ) dξ

∣∣∣ .

The phase τ(ξ) + y.ξ is stationary when

−∇ξτ(ξ) = y .

The left hand side is the group velocity.

As in Lemma 3.4.1, denote by M the set of attained group velocities which is an embedded strictly
convex compact d− 1 manifold.

For any open neighborhood O of M, the method of nonstationary phase shows that for any N ,

sup
y∈Rd\O

∣∣∣
∫
eit(τ(ξ)+y.ξ) k(ξ) dξ

∣∣∣ ≤ CN |t|−N ,
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as t→ ∞.

Choose 0 < r1 < r2 so that
supp k ⊂ {r1 ≤ |ξ| ≤ r2} .

Write ∫
eit(τ(ξ)+y.ξ) k(ξ) dξ =

∫ r2

r1

(∫

|ξ|=1

eit(τ(ξ)+y.ξ) k(r ξ) dσ(ξ)
)
rd−1 dr .

It suffices to show that for any y ∈ M and r ∈ [r1, r2] one has

∫

|ξ|=1

eit(τ(ξ)+y.ξ) k(r ξ) dσ(ξ) ≤ C |t|−(d−1)/2 ,

uniformly for r, y in a neighborhood of r, y.

For r, y fixed, there is a unique ξ with |ξ| = r for which the phase is stationary and the stationary
point is nondegenerate because of the rank equal to d − 1 hypothesis. It follows that for r, y in a
neighborhood, there is a unique uniformly nondegenerate stationary point. The desired estimate
follows from the inequality of stationary phase Theorem 3.II.1.

Proposition 3.4.3. Suppose that 0 < R1 < R2 < ∞ and ω := {ξ ∈ R : R1 < |ξ| < R2}. There

is a constant C so that for all f ∈ L1(Rdx) with supp f̂ ⊂ ω ,

u(t, x) := (2π)−d/2
∫
ei(tτj(ξ)+x.ξ) f̂(ξ) dξ := eitτj(Dx) f

satisfies
‖u(t)‖L∞(Rd) ≤ C (1 + |t|)−(d−1)/2 ‖f‖L1(Rd) . (3.4.3)

The proof is based on a simple idea. The solution u is equal to the convolution of the fundamental
solution with f . The Fourier transform of the fundamental solution at t = 0 is equal to a constant.
To have an analogous but more regular representation, it is sufficient that one convolve with a
solution whose initial data has Fourier Transform equal to this constant on the spectrum of f .

Proof. Choose a k ∈ C∞
0 (Rd \ 0) with k equal to (2π)−d/2 on a neighborhood of ω. Define G so

that Ĝ := k. Then since (2π)d/2 k f̂ = f̂ one has G ∗ f = f . Since eitτ(Dx) is a Fourier multiplier,
one has

u(t) := eitτ(Dx) f = eitτ(Dx)
(
f ∗G

)
= f ∗

(
eitτ(Dx)G

)
.

Then
‖u(t)‖L∞ ≤ ‖f‖L1 ‖eiτ(Dx)G‖L∞ .

The preceding Lemma shows that

‖eiτ(Dx)G‖L∞ ≤ C (1 + |t|)−(d−1)/2 .

The next subsections consist of two different paths for exploiting the estimates just proved. The
first is more elementary and will be used in Chapter 6 to derive, in the spirit of John-Klainerman,
that in high dimensions there is global solvability for maximally dispersive nonlinear problems with
small data. The second is devoted to Strichartz estimates which are important in trying to treat
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existence problems with low regularity data. That in turn is important in trying to pass from local
solvability to global solvability for nonlinear problems for which the natural a priori estimates
control few derivatives.

§3.4.2. Fixed time dispersive Sobolev estimates*

First find decay estimates for ‖u(t)‖L1 for sources with Fourier transform supported in λω for
0 < λ. The starting point is

‖u(t)‖L∞(Rd) ≤ C |t|−(d−1)/2 ‖f‖L1(Rd) , supp f̂ ⊂ ω . (3.4.4)

Proposition 3.4.4. There is a constant C so that for all λ > 0 and f ∈ L1 with supp f̂ ⊂ λω, the
solution of

Lu = 0 , u
∣∣
t=0

= f ,

satisfies
‖u(t)‖L∞(Rd) ≤ C |t|−(d−1)/2 ‖ |D|(d+1)/2f‖L1(Rd) . (3.4.5)

Next perform a dimensional analysis of the homogeneous estimate (3.4.5). With t, x having the
dimensions of a length ℓ, the factor |t|(d−1)/2 has dimension ℓ(d−1)/2. On the other hand, in

‖ |D|γf‖L1(Rd) =

∫ ∣∣|D|γf
∣∣ dx

the integrand has dimension ℓ−γ and dx has dimension ℓd. In total the right hand side of (3.4.5)
has dimension ℓd−γ−(d−1)/2. It is dimensionless as is the left hand side exactly when

γ :=
d+ 1

2
.

Proof. Choose ψ ∈ C∞
0 (Rdξ) so that ψ± = |ξ|±γ on ω. Then

|D|γf = C ψ̂+ ∗ f , and f = C ψ̂− ∗ (|D|γf) .

Young’s inequality implies that ‖ |D|γf‖L1 is a norm equivalent to that on the right in (3.4.4) so

‖u(t)‖L∞(Rd) ≤ C |t|−(d−1)/2 ‖ |D|γf‖L1(Rd) , supp f̂ ⊂ ω .

If uλ(t, x) := u(λt, λx) then, Luλ = 0 if and only if Lu = 0 and ûλ(λt, ξ) = λ−dû(t, ξ/λ). The
spectrum of u is contained in ω if and only if the spectrum of uλ is contained in λω.

Exercise 3.4.1. Show that if fλ(x) := f(λx),

|D|γfλ(x) = λ−γ
(
|D|γf

)
(λx) .

* The material in this subsection is not needed for the Strichartz estimates in the next subsection
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The change of variable z = λx yields

‖ |D|γfλ‖L1(Rd) =

∫
λ−γ

(
|D|γf

)
(λx) dx = λ−γ−d‖ |D|γf‖L1(Rd) .

Then (3.4.3) yields

∥∥uλ(t)
∥∥
L∞ =

∥∥u(λt)
∥∥
L∞ ≤ C

∣∣λt
∣∣−(d−1)/2 ‖ |D|γf‖L1(Rd)

= C
∣∣λt
∣∣−(d−1)/2 ‖ |D|γf‖L1(Rd)

= C λ−(d−1)/2+γ+d|t|−(d−1)/2‖ |D|γfλ‖L1(Rd) .

The choice γ = (d+ 1)/2 is made so that the λ factors cancel.

Since û and f̂ are locally integrable functions, the point ξ = 0 is negligible so we have the
Littlewood-Paley decompositions

u =
∞∑

j=−∞

χ(2−jDx)u :=
∞∑

j=−∞

uj , f =
∞∑

j=−∞

χ(2−jD) f :=
∞∑

j=−∞

fj ,

where the dyadic decomposition from Lemma 3.II.2. This expresses a solution of Lu = 0 as a
sum of spectrally localized solutions. The estimates of the next exercise show that |D|σ acts like
multiplication by 2σj on fj .

Exercise 3.4.2. Show that there is an integer k and a constant C depending on σ and χ so that
for p ∈ [1,∞] ∥∥ |D|σfj

∥∥
Lp ≤ C 2σj

∑

|n−j|≤k

‖fn‖Lp , (3.4.6)

∥∥ fj
∥∥
Lp ≤ C 2−σj

∑

|n−j|≤k

‖ |D|σfn‖Lp . (3.4.7)

Theorem 3.4.5. i. If Lu = 0 and u
∣∣
t=0

= f then,

‖u‖L∞ ≤ C |t|−(d−1)/2
∞∑

j=−∞

‖ |D|γfj‖L1 , γ =
d+ 1

2
. (3.4.8)

ii. If 0 < δ < γ there is a constant C(γ, δ) so that

∞∑

j=−∞

‖ |D|γfj‖L1 ≤ C
(∥∥ |D|γ−δf

∥∥
L1(Rd)

+
∥∥ |D|γ+δf

∥∥
L1(Rd)

)
. (3.4.9)

Remarks. 1. The sum on the right of (3.4.8) is the definition of the norm in the homogeneous
Besov space Ḃγ1,1. Estimate (3.4.9) yields a bound which is not as sharp but avoids these spaces.

2. A slightly weaker estimate than (3.4.8-3.4.9) was proved by [Lucente-Ziliotti].
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3. It is impossible to have a decay estimate of the form

‖u(t)‖L∞ ≤ g(t)‖f‖Hs , lim
t→∞

g(t) = 0 ,

with a conserved norm on the right hand side. If there were such an estimate one can apply it to
v(t) = v(t− T ) at t = T → ∞ to find

‖u(0)‖L∞ ≤ g(T ) ‖f‖Hs → 0 .

The appearance of norms which are not propagated by the equation is necessary.

4. An L1 condition encodes more rapid decay as |x| → ∞ than an L2 condition. This is natural
since the energy in a ring R < |x| < R + 1 can focus at time t ∼ R into a ball of radius O(1).
If the amplitude in the initial ring in ∼ a the L2 norm is ∼ a2Rd−1. If the focused amplitude is
∼ A one obtains A2 ∼ a2Rd−1. If this focussing is to take place at t ∼ R and also A2 ≤ t−(d−1)

one must have a ≤ R−(d−1). This is on the L1 borderline. Thus, one cannot have t−(d−1)/2 decay
estimates as in the Theorem with Lp norms on the right with p > 1.

Proof of Theorem. i. Estimate (3.4.5) implies

‖uj(t)‖L∞ ≤ C |t|−(d−1) ‖ |D|γfj‖L1 .

Summing yields

‖u‖L∞ ≤
∑

‖uj‖L∞ ≤ C |t|−(d−1)
∑

‖ |D|γfj‖L1 .

ii. For j ≥ 0, estimate (3.4.6) implies

∥∥ |D|γfj
∥∥
L1 ≤ C 2γj

∑

|n−j|≤k

∥∥fn
∥∥
L1 .

Estimate (3.4.7) implies

∥∥fn
∥∥
L1 ≤ C 2−σn

∑

|m−n|≤k

∥∥ |D|σfm
∥∥
L1 .

Finally, ∥∥ |D|σfm
∥∥
L1 ≤ C

∥∥ |D|σf
∥∥
L1 .

Combining yields

∑

j≥0

‖ |D|γfj‖L1 ≤ C
∥∥ |D|σf

∥∥
L1

∑

j≥0

∑

|n−j|≤k

2γj−σn .

With σ = γ + δ, the sum is finite, so

∑

j≥0

‖ |D|γfj‖L1 ≤ C
∥∥ |D|γ+δf

∥∥
L1 .

Exercise 3.4.3. Prove the complementary low frequency estimate

∑

j<0

‖ |D|γfj‖L1 ≤ C
∥∥ |D|γ−δf

∥∥
L1 .
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This completes the proof.

Corollary 3.4.6. For any d/2 > δ > 0 there is a constant C so that if Lu = 0, then

‖u(t)‖L∞(Rd) ≤ C 〈t〉−(d−1)/2
(
‖f‖Hd/2+δ(Rd)

+ ‖ |D|(d+1)/2+δf‖L1(Rd) + ‖ |D|(d+1)/2−δf‖L1(Rd)

)
.

(3.4.10)

Remark. The smaller is δ > 0 the stronger is the conclusion.

Proof. Sobolev’s inequality yields

‖u(t)‖L∞(Rd) ≤ C ‖u(t)‖Hδ+d/2(Rd) = C ‖f‖Hδ+d/2(Rd) .

This yields (3.4.10) for |t| ≤ 1.

For |t| ≥ 1 use the two estimates of the Theorem.

§3.4.3. Strichartz estimates

The estimates involve norms

∥∥u
∥∥
Lq

tL
r
x

:=

(∫ ∞

0

‖u(t)‖q
Lr(Rd

x)
dt

)1/q

which integrate over space and time. If such a norm is finite, then the integrand must be small
for large times. This requires r > 2. The estimates express time decay because of dispersion.

The group velocities lie on the strictly convex manifold M. For a typical Fourier transform, an
open set of these velocites is sampled. The method of nonstationary phase shows that for large
time the solution is concentrated on the rays with these speeds, starting from the support of the
initial data. Thus, a solution is expected to be concentrated on and spread over a region of measure
which grows like td−1. An example is concentration in an annulus ρ1 < |x| − t < ρ2. Or even finer,
concentration on that part of the annulus subtending a fixed solid angle.

Conservation of L2(Rd) and also Lemma 3.4.2 show that the expected amplitude is O(t−(d−1)/2).
Then

‖u(t)‖rLr ∼ t−r(d−1)/2 td−1 ,

so ∥∥u
∥∥q
Lq

tL
r
x

∼
∫ ∞

1

(
t−r(d−1)/2 td−1

)q/r
dt .

The limiting indices are those for which the power of t is equal to −1, that is with

σ := d− 1 ,

(−rσ
2

+ σ
)q
r

= −1 , equivalently,
−σ
2

+
σ

r
=

−1

q
.

The admissible indices are those for which the power is less than or equal to −1,

−σ
2

+
σ

r
≤ −1

q
.
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Definitions. The pair 2 < q, r <∞ is σ-admissible if

1

q
+

σ

r
≤ σ

2
.

It is sharp σ-admissible when equality holds.

The estimates involve the homogeneous Sobolev norms

‖ |D|γf‖L2 :=
(∫ ∣∣ |ξ|γ f̂(ξ)

∣∣2 dξ
)1/2

.

Theorem 3.4.7 (Strichartz inequality). Suppose that L(∂) is maximally dispersive, σ = d−1,
q, r is σ-admissible, and γ is the solution of

1

q
+

d

r
=

d

2
− γ .

There is a constant C so that for f ∈ L2 with ‖ |D|γf‖L2 < ∞, the solution of Lu = 0, u|t=0 = f
satisfies ∥∥u

∥∥
Lq

tL
r
x

≤ C
∥∥ |D|γf

∥∥
L2(Rd)

. (3.4.11)

There are two complicated relations in this assertion. The first is the definition of admissibility. It
is the crucial one which encodes the rate of decay of solutions. The second is the definition of γ.
Once admissible q, r are chosen, γ is forced so that the two sides of (3.4.11) scale the same under
dilatation, (t, x) 7→ (at, ax). From this perspective the dispersion is key as it constrains the q, r.

There is a diametrically opposite perspective which starts from the scaling relation which is inde-
pendent of the dispersion. For example if you are obliged to work with a specific γ (e.g. when we
treat the energy space in §6.8) then the scaling restricts 1/q, 1/r to lie on a line. The admissability
chooses an interval on that line. Changing the dispersion, for example considering a problem with
the same scaling but weaker dispersion leaves the line fixed but constrains the 1/q, 1/r to lie on a
smaller subinterval.

We follow the proof of [Keel-Tao]. ([Ginibre-Velo] is a second standard reference). The limit point
case (not discussed here) is treated in the first reference. The key step is an estimate for spectrally
localized data.

Lemma 3.4.8. Suppose that σ := d− 1, q, r is σ-admissible, and ω is as in the Proposition 3.4.3.
There is a constant C so that for all f ∈ L2(Rd) with supp f̂ ⊂ ω,

u(t) := eitτj(Dx)f := U(t)f , U(t)∗ = U(−t) ,

satisfies ∥∥u
∥∥
Lq

tL
r
x

≤ C
∥∥f
∥∥
L2 . (3.4.12)

Futhermore, for all F ∈ Lq
′

t L
r′

x with supp F̂ (t, · ) ⊂ ω,

∥∥∥
∫ ∞

0

U(s)∗ F (s) ds
∥∥∥
L2(Rd)

≤ C
∥∥F
∥∥
Lq′

t L
r′
x

(3.4.13)
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Remark. The estimate is true in the sharp admissible case even though for the heuristics given
before the definition, the integral diverged. It is not possible to achieve the concentration suggested
in the heuristics with data which has spectrum with support in an annulus. For example, if one
considers the wave operator on R1+3 with data supported in |x| ≤ 1 the solutions are supported
in |x| − t ≤ 1 and decay along with their derivatives exactly as in the heuristic. Thus one gets
divergent integrals. However, compact support and compactly supported Fourier transform are
not compatible, and the compact spectrum is enough to overcome the logarithmic divergence of∫∞

1/t dt which appears in the heuristics.

Proof. Denote by ( , ) the L2(Rd) scalar product. Since.

∫ ∞

0

(U(t) f , F (t)) dt =

∫ ∞

0

(f , U(t)∗ F (t)) dt =
(
f ,

∫ ∞

0

U(t)∗ F (t) dt
)
,

estimates (3.4.12) and (3.4.13) are equivalent thanks to the duality representations of the norms,

∥∥∥
∫ ∞

0

U(t)∗ F (t) dt
∥∥∥
L2(Rd)

= sup
{(
f ,

∫ ∞

0

U(t)∗ F (t) dt
)

: f̂ ∈ C∞
0 (ω), ‖f‖L2 = 1

}
,

∥∥∥U(t)f
∥∥∥
LqLr

= sup
{∫ ∞

0

(U(t) f , F (t)) dt : F̂ ∈ C∞
0

(
]0,∞[×ω

)
, ‖F‖Lq′Lr′ = 1

}
.

Estimate (3.4.13) holds if and only if

(∫ ∞

0

(U(t)∗F (t)) dt ,

∫ ∞

0

(U(s)∗G(s)) ds
)

is a continuous bilinear form on Lq
′

Lr
′

, that is

∣∣∣
∫ ∞

0

∫ ∞

0

(
U(s)∗ F (s) , U(t)∗G(t)

)
ds dt

∣∣∣ ≤ C ‖F‖
Lq′

t L
r′
x
‖G‖

Lq′

t L
r′
x
. (3.4.14)

Unitarity implies that

∀s, t , B := U(t)U∗(s) , satisfies ‖Bf‖L2 ≤ ‖f‖L2 .

The dispersive estimate (3.4.3) is

∀s, t , ‖Bf‖L∞ ≤ C〈t− s〉−σ‖f‖L1 .

With r′ ∈]1, 2[ the dual index to r, choose θ ∈]0, 1[ so that

1

r′
= θ

1

1
+ (1 − θ)

1

2
, then, θ =

2 − r′

r′
=
r − 2

r
. (3.4.15)

The Riesz-Thorin Theorem implies that

‖Bf‖Lr ≤ Cθ 〈t− s〉−σθ ‖f‖Lr′ .
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With Hölder’s inequality, this yields the interpolated bilinear estimate,

∣∣∣
(
U(s)∗ F (s) , U(t)∗G(t)

)∣∣∣ ≤ Cθ 〈t− s〉−σθ ‖F (s)‖Lr′‖G(t)‖Lr′ .

Admissibility implies that

1

q
≤ σ

(1

2
− 1

r

)
= σ

(r − 2

2r

)
=

σ θ

2
.

When strict inequality holds in the definition of admissibility, 〈t−s〉−σθ ∈ Lq/2(Rt). The hypothesis
q > 2 is used here. For the limiting case, it is nearly so. The Hardy-Littlewood inequality shows
that convolution with |t|−2/q has the Lp mapping properties that convolution with an element of
Lq/2(R) would have.

The Hausdorff-Young inequality shows that

Lp1 ∗ Lp2 ⊂ Lp3 , provided
1

p1
+

1

p2
= 1 +

1

p3
. (3.4.16)

The Hardy Littlewood inequality asserts that when 1 < p1, p2, p3 <∞

1

〈t〉1/p1 ∗ Lp2(R) ⊂ Lp3(R) , provided
1

p1
+

1

p2
= 1 +

1

p3
. (3.4.17)

Set
p1 =

q

2
, p2 = q′, and, p3 = q . (3.4.18)

The index conditions in (3.4.16)-(3.4.17) become

2

q
+

1

q′
= 1 +

1

q
,

which holds by definition of q′. Then (3.4.16) in the admissible case and (3.4.17) in the sharp
admissible case imply that

∥∥∥
∫ ∞

−∞

〈t− s〉−σθ ‖F (s)‖Lr′ ds
∥∥∥
Lq(Rt)

≤ C
∥∥F
∥∥
Lq′

t L
r′
x
. (3.4.19)

Hölder’s inequality yields

∫ ∞

0

(∫ ∞

0

〈t− s〉−σθ
∥∥F (s)

∥∥
Lr′ ds

) ∥∥G(t)
∥∥
Lr′ dt ≤ C

∥∥F
∥∥
Lq′

t L
r′
x

∥∥G
∥∥
Lq′

t L
r′
x
.

This proves the desired estimate (3.4.14).

A scaling yields estimates for sources with Fourier transform suppoerted in λω for 0 < λ.

Lemma 3.4.9. With q, r, ω, σ as in the previous lemma and γ as in the Theorem, there is a C so
that for all 0 < λ and f ∈ L2 with supp f̂ ⊂ λω,

u(t) := eitτj(Dx)f := U(t)f ,
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satisfies ∥∥u
∥∥
Lq

tL
r
x

≤ C
∥∥ |D|γf

∥∥
L2 . (3.4.20)

Proof of Lemma. If uλ(t, x) := u(λt, λx) then, Luλ = 0 and the spectrum of uλ is contained in
ω.

The two sides of (3.4.12) scale differently. Compute

∥∥uλ(t)
∥∥
Lr =

(∫
|uλ(t, x)|r dx

)1/r

=
(∫

|u(λt , λx)|r dx
)1/r

.

The substitution y = λx, dx = λ−ddx yields

= λ−d/r
(∫

|u(λt , y)|r dy
)1/r

= λ−d/r
∥∥u(λt)

∥∥
Lr .

A similar change of variable for the time integral shows that

∥∥uλ
∥∥
Lq

tL
r
x

= λ−1/q− d/r
∥∥u
∥∥
Lq

tL
r
x
.

For any γ, ‖ |D|γf‖L2 is a norm equivalent to the norm on the right hand side for sources with
spectrum in ω. Compute

‖ |D|γfλ‖L2 =
(∫

|ξ|2γ
∣∣f̂λ(ξ)

∣∣2dξ
)1/2

=
(∫

|ξ|2γ
∣∣λ−df̂(ξ/λ)

∣∣2dξ
)1/2

= λγ− d/2
(∫

|ξ|2γ
∣∣f̂(ξ)

∣∣2dξ
)1/2

= λγ− d/2‖ |D|γf‖L2 .

Given q, r, the γ of the Theorem is the unique value so that the two norms scale the same. Therefore
the estimate of the present Lemma follows from the preceding Lemma.

Proof of Theorem. With χ from the dyadic partition of unity for Rdξ \ 0 from Lemma 3.II.2.
Introduce the Littlewood-Paley decomposition of tempered distributions

g =
∑

J∈Z

gj , gj := χ(D/2j) g := (2π)−d/2
∫
eixξ χ(ξ/2j) ĝ(ξ) dξ .

Then for 1 < r < ∞ the square function estimate (see [Stein, 1970]) asserts that there is a
C = C(p) > 1 so that

C−1‖g‖Lr ≤
∥∥(∑

j∈Z

|gj |2
)1/2∥∥

Lr ≤ C ‖g‖Lr .

Lemma 3.4.10. If 2 ≤ q, r <∞, there is a constant C so that

∥∥F
∥∥2

Lq
tL

r
x

≤ C
∑

j∈Z

∥∥Fj
∥∥2

Lq
tL

r
x
, (3.4.21)
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where F (t) =
∑

j Fj(t) is the Littlewood-Paley decomposition in x.

Proof of Lemma. The square function estimate yields

∥∥F (t)
∥∥2

Lr
x

≤ C

∫ (∑

j

|Fj(t)|2
)r/2

dx = C
∥∥∑

j

|Fj(t)|2
∥∥
Lr/2 .

Minkowski’s inequality in Lr/2 shows that this is

≤ C
∑

j

∥∥Fj(t)2
∥∥
Lr/2 = C

∑

j

∥∥Fj(t)
∥∥2

Lr .

Using this yields

∥∥F
∥∥2

Lq
tL

r
x

≤ C
(∫ ∞

0

(∑

j

∥∥Fj(t)
∥∥2

Lr

)q/2
dt
)2/q

= C
∥∥∑

j

‖Fj(t)‖2
Lr(Rd

x)

∥∥
Lq/2(Rt)

.

Minkowski’s inequality in Lq/2(Rt) shows this is

≤ C
∑

j

∥∥‖Fj(t)‖2
Lr(Rd

x)

∥∥
Lq/2(Rt)

= C
∑

j

‖Fj(t)‖2
Lq

tL
r
x
.

Return now to the proof of the Theorem. Associate to the sheet τ = τk(ξ) the projector πk(ξ) :=
π(τk(ξ), ξ) from §3.2. The πk are real analytic on ξ 6= 0 and homogeneous of degree 0 in ξ. In
addition

∑
k πk = I. The solution u satisfies

u =
∑

k

eitτk(D) πk(D) f :=
∑

k

uk .

Apply (3.4.21) to uk to find using (3.4.20)

∥∥uk
∥∥2

Lq
tL

r
x

≤ C
∑

j

‖uk,j‖2
Lq

tL
r
x

≤ C ′
∑

j

‖ |D|γπk(D)fj‖2
L2 ≤ C ′ ‖ |D|γf‖2

L2 .

The finite sum on k completes the proof of the Theorem.

Corollary 3.4.11. Denote by S(t) the L2 unitary mapping u(0) 7→ u(t) for solutions of Lu = 0.
With the indices of the Theorem one has

∥∥∥
∫ ∞

0

S(s)∗ F (s) ds
∥∥∥
L2(Rd)

≤ C
∥∥|Dx|γ F

∥∥
Lq′

t L
r′
x
. (3.4.22)

Proof. Estimate (3.4.22) is equivalent to the Strichartz estimate (3.4.11) by a duality like that
used to establish the equivalence of (3.4.12) and (3.4.13).

Exercise 3.4.4. Prove the following complement to (3.4.21) which comes from the other side of
the square function inequality. If 1 < p ≤ 2 and 1 ≤ r ≤ 2 then there is a C so that

∞∑

j=−∞

∥∥Fj
∥∥2

Lr
tL

p
x

≤ C
∥∥F
∥∥2

Lr
tL

p
x
. (3.4.23)
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Appendix 3.I. Perturbation theory for semisimple eigenvalues

The computation of the form of the operator π Lπ requires formulas from the perturbation theory of
eigenvalues. These results for multiple eigenvalues which are semisimple is not that well known. The
key idea is that one should NOT make a choice of basis of eigenfunctions, but work systematically
with the spectral projections.

Definition. An eigenvalue λ of a matrix A is semisimple when the kernel and range of A − λI
are complementary subspaces. In this case denote by π the spectral projection onto the kernel
of A− λI along its range and by Q the partial inverse defined by

Qπ = 0 , Q
(
A− λ I

)
= I − π . (3.I.1)

Examples. i. Every eigenvalue of a hermitian symmetric or normal matrix is semisimple.

ii. More generally, a matrix is similar to a diagonal matrix if and only if each of its eigenvalues is
semisimple.

Theorem 3.I.1. Suppose that Ω ⊂ Rm is open and M(Y ) ∈ C∞(Ω,Hom (CN)) is a matrix valued
function. Suppose that there is a disk D ∈ C so that for every Y there is exactly one eigenvalue,
λ(Y ) of M in D and that eigenvalue is semisimple. Denote by π(Y ) the projection along the range
of M − λI onto the kernel of M − λI and by Q(Y ) the partial inverse defined by

Q(Y )π(Y ) = 0, Q(Y ) (M(Y ) − λI) = I − π(Y ),

Then λ, π and Q are smooth functions of Y .

Proof. It suffices to prove smoothness at an arbitrary Y . Suppose that D = {|z− z| < r}. Choose
ǫ > 0 so that for |Y − Y | < ǫ the disk |z − z| ≤ r + ǫ contains only one eigenvalue. The regularity
of π(Y ) for those Y follows from the contour integral representation,†

π(Y ) =
1

2πi

∮

|z−z|=r+ǫ

(
z − (M(Y ) − λ(Y )I)

)−1

dz .

The regularity of Q and λ follow from the identities,

Q(Y ) = (I − π(Y ))
(
π(Y ) +M(Y )

)−1
, λ(Y ) =

trace(M(Y )π(Y )

traceπ(Y )
.

Theorem 3.I.2. Suppose that ]a, b[∋ s → A(s) is a smooth family of complex matrices so that
the disk D ⊂ C contains a single semisimple eigenvalue λ(s). Denoting d/ds by ′ , one has the
following perturbation formulas,

λ′(s) π(s) = π(s) A′(s) π(s) , (3.I.2)

λ′′ π = π A′′ π − 2πA′QA′ π , (3.I.3)

† A short proof is to evaluate the right hand sides in a basis whose first k elements form a basis for
ker (M − λI) and whose last elements are a basis for the range.
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π′ = −π A′Q−QA′π . (3.I.4)

Example. If A is hermitian symmetric semisimplicity is automatic and π is hermitian. If v is
a unit eigenvector, then multiplying (3.I.2) on the right by v and then taking the scalar product
with v yields the standard formula, λ′ = 〈v , A′ v〉.

Proof. The smoothness of π(s),Q(s), λ(s) follows from Theorem 3.I.1.

The formulas (3.I.2-3.I.4) are proved by differentiating the identity (A− λ)π = π(A− λ) = 0 with
respect to s. The equation for each dj/dsj is analysed by considering its projections π and I − π.
Equivalently, each equation is multiplied first by π, then by Q.

Differentiating (A− λ)π yields,

(A− λ)′ π + (A− λ) π′ = 0 . (3.I.5)

Mulitplying on the left by π eliminates the second term to yield,

π (A− λ)′ π = 0 , (3.I.6)

which is (3.I.2).

Multiply equation (3.I.5) on the left by Q to find,

(I − π)π′ = −Q
(
A− λ

)′
π .

Since Qπ = 0 this simplifies to,
(I − π)π′ = −QA′π . (3.I.7)

Equation (3.I.5) is exhausted and we take a second derivative,

(A− λ)′′π + 2(A− λ)′π′ + (A− λ)π′′ = 0 .

Mutiply on the left by π to eliminate the last term,

π(A− λ)′′π + 2π(A− λ)′π′ = 0 .

Subtract 2(π(A− λ)′π)π′ = 0 to find,

π(A− λ)′′π + 2π(A− λ)′(I − π)π′ = 0 .

Then (3.I.7) yields
π(A− λ)′′π + 2π(A− λ)′(−QA′π) = 0 . (3.I.8)

Since π Q = 0 one has
2πλ′(−QA′π) = 0 . (3.I.9)

Adding (3.I.8) and (3.I.9) yields (3.I.3).

To prove (3.I.4) knowing (3.I.7), what is needed is π π′. Differentiate π2 = π to find,

π π′ + π′ π = π′ , whence, π π′ = π′(I − π) . (3.I.10)

Differentiate π (A− λ) = 0 to find,

π′(A− λ) + π (A− λ)′ = 0 .

Mulitply on the right by Q to find,

π′(I − π) = −π (A′ − λ′)Q .

Use (3.I.10) and simplify using πQ = 0 to find,

π π′ = π′(I − π) = −πA′Q .

Adding this to (3.I.7) completes the proof.
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Chapter 3. Appendix II. The stationary phase inequality

Definition. A point x in an open subset Ω ⊂ Rd is a stationary point of φ ∈ C∞(Ω ; R) when
∇xφ(x) = 0. It is a nondegenerate stationaray point when the matrix of second derivatives
at x is nonsingular.

When x is a nondegenerate stationary point the map x 7→ ∇xφ(x) has nonsingular Jacobian at x.
It follows that the map is a local diffeomorphism and in particular the stationary point is isolated.

Taylor’s Theorem shows that

∇xφ(x) =
1

2
∇2
xφ(x) (x− x) + O(|x− x|2) .

Therefore if ω ⊂⊂ Ω contains x and no other stationary point, nondegeneracy implies that there
is a constant C > 0 so,

∀x ∈ ω ,
∣∣∇xφ(x)

∣∣ ≥ C |x− x| . (3.II.1)

We estimate the size of oscillatory integrals whose phase has a single nondegenerate stationary
point. These integrals have a complete asymptotic expansion. I learned the a dyadic argument
using the method of nonstationary phase from G. Métivier. See [Stein, Real Variable Methods] for
an alternate proof.

Theorem 3.II.1. Suppose that φ ∈ C∞(Ω ; R) has a unique stationary point x ∈ Ω. Suppose
that x is nondegenerate and let m denote the smallest integer strictly larger than d/2. Then for
any ω ⊂⊂ Ω there is a constant C so that for all f ∈ Cm0 (ω), and 0 < ǫ < 1,

∣∣∣
∫
eiφ/ǫf(x) dx

∣∣∣ ≤ C ǫd/2 sup
|α|≤m

‖∂αf(x)‖L∞(ω) . (3.II2)

Lemma 3.II.2. There is a nonnegative χ ∈ C∞
0 (Rd\0) so that for all x 6= 0,

∑∞
k=−∞ χ(2k x) = 1.

Proof of Lemma. Choose nonnegative g ∈ C∞
0 (Rd \ 0) so that g ≥ 1 on {1 ≤ |x| ≤ 2}. Define

the locally finite sum

G(x) :=

∞∑

k=−∞

g(2kx) , G(2kx) = G(x) .

Then G ∈ C∞(Rd \ 0), and G ≥ 1. The function χ := g/G has the desired properties.

Proof of Theorem. Translating coordinates we may suppose that x = 0. Choose χ as in the
lemma and write

∫
eiφ/ǫf(x) dx =

∞∑

k=−∞

∫
χ(2k x) eiφ/ǫ f(x) dx :=

∞∑

k=−∞

I(k) .

The half sum
∑
k<0 χ(2kx) is a smooth function on Rd which vanishes on a neighbhorhood of the

origin and is identically equal to 1 outside a large ball. The nonstationary phase Lemma 1.2.2
implies that ∣∣∣

∫
eiφ/ǫ

(∑

k<0

χ(2k x)
)
f(x) dx

∣∣∣ ≤ C ǫm sup
|α|≤m

‖∂αf(x)‖L1(ω) .
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The sum
∑

2kǫ1/2≥1 χ(2k x) is a bounded function supported in a ball |x| ≤ Cǫ1/2 so

∣∣∣
∫

eiφ/ǫ
( ∑

2kǫ1/2≥1

χ(2k x)
)
f(x) dx

∣∣∣ ≤ C ǫd/2 ‖f(x)‖L∞(ω) .

There remains the sum over 1 ≤ 2k < ǫ−1/2. The change of variable y = 2k x yields

I(k) = 2−kd
∫

χ(y) eiφk(y)/(22kǫ) f(2−ky) dy , φk(y) := 22k φ(2−k y) .

It follows from (3.II.1) that there is a constant c > 0 so that on the support of χ,

c−1 ≤
∣∣∇φk

∣∣ ≤ c .

In addition there is are constants C(α) independent of k ≥ 0 so that |∂αφk| ≤ Cα. The method
of nonstationary phase shows that there is a constant independent of k ≥ 0 so that

∣∣∣
∫

χ(y) eiφk(y)/(22kǫ) f(2−ky) dy
∣∣∣ ≤ C

(
22k ǫ

)m
sup

|α|≤m

‖∂αf(x)‖L1(ω) .

Therefore

∑

1≤2k<ǫ−1/2

|I(k)| ≤ C ǫm
∑

1≤2k<ǫ−1/2

2−kd 22km sup
|α|≤m

‖∂αf(x)‖L1(ω) .

The finite geometric sum has ratio r = 22m−d > 1. If K is the largest index,

rK ≤ 1 + r + r2 . . .+ rK =
rK+1 − 1

r − 1
<

r

r − 1
rK := C(r) rK .

The sum is comparable to the last term. Therefore, with C = C(m,d) = r/(r − 1),

ǫm
∑

1≤2k<ǫ−1/2

2−kd 22km ≤ C ǫm
(
2K)2m−d ≤ C ǫm

(
ǫ−1/2

)2m−d
= C ǫd/2 .

This completes the proof.

Corollary 3.II.3. Suppose that φ(x, ζ) is a family of phases depending smoothly on ζ on a
neighborhood of 0 ∈ Rq and that φ(x, 0) satisfies the hypotheses of the preceding Theorem. Then
there is a neighborhood 0 ∈ O so that the hypotheses are satisfied for ζ ∈ O and the estimate
(3.II.1) holds with a constant independent of ζ ∈ O.

Proof. The first assertion follows from the implicit function theorem applied to the system of
equations ∇xφ(x, ζ) = 0. The estimates of the proof are all locally uniform which proves the
second assertion.
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Chapter 3. Appendix III. Hadamard’s ovaloid theorem.

Theorem 3.III.1. (Hadamard). If d ≥ 3 and M is an oriented connected compact immersed
hypersurface of Rd whose Gaussian curvature is nonzero at all points, then M is the boundary of
a strictly convex set.

Proof. Consider the Gauss map N from M to Sd−1 which takes a point to its unit normal
consistent with the orientation.

The nonvanishing curvature is equivalent to the differential of N being invertible at all points. The
inverse function theorem shows that this is equivalent to N being a local diffeomorphism.

For any ξ ∈ Sd−1 the point(s) x ∈ M where x.ξ is maximal have normal equal to ξ so N is
surjective.

The number of preimages of points is finite and locally constant, hence constant. Therefore N is
a covering map.

Since Sd−1 is simply connected, it follows that N is a homeomorphism and therefore a diffeomor-
phism. We recall the proof.

It suffices to show that N is injective. If N (m1) = N (m2) = p ∈ Sd−1 choose a curve γ0 : [a, b] →
M connecting m1 to m2. The image N ◦ γ is a closed curve µ0 in Sd−1 beginning and ending at p.

Simple connectivity implies that there is a homotopy of closed curves µt for 0 ≤ t ≤ 1 beginning
and ending at p with µ1 reducing to the constant path p.

Since N is a covering, the homotopy lifting lemma shows that there is a homotopy γt, 0 ≤ t ≤ 1
so that N ◦ γt = µt.

The point γt(a) is a point of M depending continuously on t with N (γt(a)) = p. It follows that
γt(a) is constant and therefore equal to m1. Similarly γt(b) = m2. In particular this holds for
t = 1.

But γ1 is a lifting of the constant map µ1 and is therefore constant. Therefore

m1 = γ1(a) = γ1(b) = m2

proving injectivity.

Thus each vector in Sd−1 is normal to M at exactly one point. This shows that M is strictly
convex in the sense that it intersects each tangent plane in exactly one point.

That it is strictly convex in the stronger sense of osculating ellipsoids, then follows from the
nonvanishing Gaussian curvature.

Example. A curve in R2 with positive curvature and looping twice about the origin shows that
the result is not true when d = 2.
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Chapter 4. Linear Elliptic Geometric Optics

The study of oscillatory solutions of elliptic equations is easier than the corresponding hyperbolic
theory. The reason is simple. Oscillations propagate in the hyperbolic case, and have only local
effects in the elliptic case. Nevertheless, the elliptic case is a good starting point for several reasons.
First, it is easier to introduce some of the basic notions in this case. Second, the elliptic results
are needed eventually in the proofs of nonlinear hyperbolic results.

For the analysis of this section there is no need for symmetry or any other hypothesis of hyperbol-
icity. Similarly the independent variable y is not split into space and time. The partial differential
operator

L(y, ∂y) =
∑

Aµ(y)
∂

∂yµ
+B(y)

is assumed to have smooth matrix valued coefficients on an open set O ⊂ Rn.

The fundamental dichotomy is between oscillations with phases φ such that (y, dφ(y)) is character-
istic or not. For elliptic operators only the second possibility occurs while for hyperbolic problems
both are possible.

When the phase is noncharacteristic one can have oscillatory solutions only when there are oscil-
latory sources.

§4.1. Euler’s method and elliptic geometric optics with constant coefficients

Our starting point is the elementary theory of constant coefficient ordinary differential operators

L(d/dt) := pm
dm

dtm
+ pm−1

dm−1

dtm−1
+ · · · + p1

d1

dt1
+ p0 , am 6= 0 .

Euler taught that since L(d/dt)eiτt = L(iτ)eiτt, a solution of,

Lu = b eiτt

is given by
u = L(iτ)−1 b eiτt, provided that, L(iτ) 6= 0 . (4.1.1)

Since

|L(τ)| ≥ |pm τm| −
m−1∑

0

|pj τ |j , pm 6= 0 ,

L(iτ) 6= 0 for large τ so this method suffices for rapidly oscillating sources.

Consider a localized strongly oscillatory source,

L(d/dt)u = b(t) eiφ(t)/ǫ , b ∈ C∞
0 (R) , 0 < ǫ << 1 .

To guarantee oscillation suppose that φ′ 6= 0 on supp b. For t outside of supp b, u satisfies Lu = 0.
The general solution of this homogeneous equation is a linear combination of m solutions of the
form q(t) ert with polynomial q and roots r of L(r) = 0. In particular it does not oscillate on scale
ǫ for small ǫ. Oscillations do not propagate beyond the support of b. We will see that elliptic
partial differential equations behave like this while in the hyperbolic case, oscillations propagate.

For a constant coefficient partial differential operator Euler’s identity is, L(∂y)e
iy.η = L(iη)eiy.η,

so a particular solution of a constant coefficient system of partial differential equations,

L(∂y)u = b eiy.η , b ∈ CN , (4.1.2)

113



is given by
u = L(iη)−1 b eiy.η, provided that, detL(iη) 6= 0 .

To study the case of a first order system in the limit of small wavelength, use η/ǫ in place of η and
consider ǫ→ 0. Since

L(iη/ǫ) = L1(iη/ǫ) + L0 =
1

ǫ

(
L1(iη) + ǫL0

)
,

it follows that if η is not characteristic then L(iη/ǫ) is invertible for ǫ small. For such η, ǫ, an
explicit solution of (4.2) is given by

u = eiy.η/ǫ
(
L1(iη/ǫ) + L0

)−1
b = ǫ eiy.η/ǫ

(
L1(iη) + ǫ L0

)−1
b .

Write
L1(iη) + ǫ L0 = L1(iη)

(
I + ǫ L1(iη)

−1 L0

)
,

to show that for ǫ small, the inverse is given by a convergent Neumann series,

u(y) = ǫ eiy.η/ǫ
∞∑

n=0

(
− ǫ L1(iη)

−1 L0

)n
L1(iη)

−1 b

= ǫ eiy.η/ǫ
(
L1(iη)

−1 b+ higher order terms
)
.

The form of the solution is a series

eiy.η/ǫ
(
ǫ a1 + ǫ2a2 + · · ·

)

where the vector valued summands are each obtained by multiplying b by a finite product of
matrices.

Multiplying the source and the solution by eic/ǫ with real c shows that the computation above
works for the affine phase φ = c+ y.η, in which case η = dφ.

A key feature of this solution is that the leading term depends only on the principal symbol L1.
The reason is simple. For the highly oscillatory solutions, the derivatives are of order 1/ǫ larger
than u. Thus so long as the combination of derivatives represented by L1(iη)u is nonzero it will
be dominant. When η is noncharacteristic, L1(iη) is invertible and this condition is satisfied. The
general principle here is that for noncharacteristic short wavelength oscillations, the principal sym-
bol dominates. In contrast when L1(iη) is not invertible, the lower order terms play an important
role (see §1.4 and Chapter 5).

§4.2. Iterative improvement for variable coefficients and nonlinear phases

The next step is a key insight. Suppose that one considers source terms which are rapidly oscillating
with possibly nonlinear phase, and a source with amplitude which depends on y and a differential
operator with possibly variable coefficients

L(y, ∂y)u = b(y) eiφ(y)/ǫ . (4.2.1)

The phase φ is a smooth real valued function whose gradient is assumed to be nonvanishing on
the support of b(y). The coefficients of L are assumed to be smooth on a neighborhood of this
support.
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Imagine an observer who looks at u near a point y. Suppose that the observation region is large
compared to ǫ but small compared to the scale on which b, the coefficients of L, and dφ vary. To
such an observer these quantities appear constant and the differential equation looks like

L(y, ∂y)u = b(y) ei(φ(y)+dφ(y).(y−y))/ǫ . (4.2.2)

If (y, dφ(y)) is not in the characteristic variety of L, the previous analysis shows that for ǫ small
an approximate solution on this region is given by

uapprox ∼ ǫ ei(φ(y)+dφ(y).(y−y))/ǫ L1(y, idφ(y))−1 b(y) ≈ ǫ eiφ(y)/ǫ L1(y, idφ(y))−1 b(y) .

These computations suggest that

u(y) = ǫ eiφ(y)/ǫ a1(y) , a1(y) := L1(y, idφ(y))−1 b(y) , (4.2.3)

defines a reasonable approximate solution.

The idea leading to this guess was that in the limit of very small wavelength the problem can be
replaced by an approximate problem with constant coefficients, a source with constant amplitude,
and, an affine phase. To assess the accuracy of the approximation, take u as defined in (4.2.3) and
apply L(y, ∂). The largest O(1/ǫ) arise when a derivative falls on the exponential factor where
L1(y, ∂)eiφ/ǫ = L(y, idφ/ǫ) eiφ/ǫ yielding,

L(y, ∂y)
(
ǫ eiφ/ǫa1(y)

)
= eiφ/ǫ

(
L1(y, idφ) a1 + L(y, ∂)a1

)
= eiφ/ǫ

(
b(y) + ǫb1(y)

)
, (4.2.4)

where
b1(y) := L(y, ∂y) a1(y) . (4.2.5)

The error on the right hand side is of the same order of magnitude as the approximate solution
which is not an auspicious start. The good news, is that the previous computation tells us a
corrector. It suffices to subtract from the approximate solution an approximate solution, v, to
Lv = ǫb1 e

iφ/ǫ). Thus, take

u := eiφ(y)/ǫ
(
ǫ a1(y) + ǫ2 a2(y)

)
, a2(y) := −L1(y, idφ(y))−1 b1(y) , (4.2.6)

to find
L(y, ∂y)u = eiφ(y)/ǫ

(
b(y) + ǫ2b2(y)

)
, (4.2.7)

where
b2(y) := L(y, ∂y) a2(y) . (4.2.8)

This process, by induction on m, then proves the following theorem.

Theorem 4.2.1. Suppose that m ≥ 1 is an integer, Ω ⊂ Rn is a bounded open set, b(y) is a
smooth amplitude on Ω and φ is a smooth real valued phase such that for all y ∈ Ω, dφ(y) 6= 0
and (y, dφ(y)) /∈ CharL. Then, there are uniquely determined smooth amplitudes aj on Ω so that

uǫ := eiφ(y)/ǫ
(
ǫ a1(y) + ǫ2 a2(y) + · · · + ǫm am(y)

)
(4.2.9)

satisfies
Luǫ = eiφ(y)/ǫ b(y) + ǫm eiφ(y)/ǫ rǫ(y) , (4.2.10)
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with
∀α sup

(ǫ,y)∈]0,1]×Ω

∣∣∂αy rǫ(y)
∣∣ < ∞ .

The principal amplitude is given by a1 = L(y, idφ(y))−1 b(y).

We have followed a path leading from the method of Euler for constant coefficient ordinary differ-
ential equations to these expansions (4.2.9) of WKB type.

§4.3. Formal asymptotics approach

Once the form of the expansion (4.2.9) is known, the exact coefficients can be computed without
going through the above recursion. We treat a more general situation where a sequence of smooth
amplitudes bj are given and we seek amplitudes aj so that

L(y, ∂y)
(
eiφ(y)/ǫ

(
ǫ a1(y) + ǫ2a2(y) + · · ·

))
∼ eiφ(y)/ǫ

(
b0(y) + ǫ1b1(y) + · · ·

)
. (4.3.1)

The previous analysis was the case where the bj = 0 for j ≥ 1. The source on the right hand side
is O(1) while the response in O(ǫ) as it was in the preceding sections. Computing the left side as
in (4.2.4) yields,

eiφ(y)/ǫ

(
L1(y, idφ(y))a1(y) +

∞∑

j=1

ǫj
(
L1(y, idφ(y))aj+1(y) + L(y, ∂y)aj(y)

))
. (4.3.2)

The equations determining the aj are then read off to be

L1(y, idφ(y)) a1(y) = b0(y) , (4.3.3)

and for j > 1,
L1(y, idφ(y)) aj(y) = −L(y, ∂y) aj−1(y) + bj−1 . (4.3.4)

The relation (4.3.1) was left purposely vague to show that the formal computations are straight-
forward. To put meat on the bones of the formal series one has to give meaning to the sums in
(4.3.1). These sums do not usually converge but represent asymptotic expansions as ǫ → 0. The
interpretation is like that of Taylor expansions of smooth but not analytic functions.

Definitions. 1. If O is an open set in Rn, bj(y) is a sequence of smooth functions on O, and
b ∈ C∞(]0, 1[×O ; CN ), the asymptotic relation

b(ǫ, y) ∼ b0(y) + ǫ b1(y) + ǫ2 b2(y) + · · · in C∞(O) (4.3.5)

means that for every integer m ≥ 0, every multiindex α ∈ Nn, and every compact subset K ⊂ O,

sup
K

∣∣∣ ∂αy
(
b−

m∑

j=0

ǫj bj(y)
) ∣∣∣ = O(ǫm+1) (4.3.6)

as ǫ→ 0. If c ∈ C∞(]0, 1[×O), the asymptotic relation

b(ǫ, y) ∼ c(ǫ, y)

means that b− c ∼∑ ǫj 0.
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2. If O is a bounded open set then b ∼ ∑
ǫjbj in C∞(O) is defined similarly by replacing the

supremum over compact subsets K by the supremum over O.

Remarks. 1. Instead of ∼∑ ǫj 0 we write ∼ 0.

2. If b is smooth on a neighborhood of ǫ = 0, then Taylor’s theorem shows that (4.3.5) is equivalent
to

bj(y) =
1

j!

∂jb(0, y)

∂ǫj
.

The definition still leaves the interpretation of (4.3.1) up in the air since the construction went
from bj to aj with no mention of functions of a(ǫ, y) and b(ǫ, y). The key link is Borel’s Theorem.

Borel’s Theorem 4.3.1. Given a sequence bj of smooth functions on the open set O ⊂ Rn there
is a smooth function b(ǫ, y) defined on R ×O so that

b(ǫ, y) ∼ b0(y) + ǫb1(y) + ǫ2b2(y) + · · · .

Remarks. 1. If b̃(ǫ, y) is a second such function then b̃ ∼ b.

2. Returning to the discussion of the Definition, Borel’s Theorem implies that one can choose
c(ǫ, y) ∈ C∞(R × O) with c ∼ ∑ ǫj bj(y). Then b ∼ c and j! bj = ∂jc(0, y)/∂ǫj. This shows that
the smooth in ǫ case of Remark 3 is the general case.

The proof of Borel’s theorem is a direct generalization of the proof of the following seemingly much
more special result.

Borel’s Theorem 4.3.2. Given a sequence bj , 0 ≤ j of complex numbers there is a smooth
function b(ǫ) on R whose Taylor series at the origin is

∑
ǫj bj .

Proof. The idea is to set b(ǫ) =
∑
ǫj bj . However, this series has no reason to converge since the

bj may grow arbitrarily rapidly. The clever idea is to cut off the summands so that they live only
where |ǫ| is so that the ǫj compensate the bj .

Choose a function χ ∈ C∞
0 (] − 1, 1[) such that χ(ǫ) = 1 for |ǫ| ≤ 1/2.

The summand ǫjbj is replaced by ǫj χ(Mjǫ)bj where the sequence of positive numbers Mj is chosen
as follows.

Set M0 = 1. For j ≥ 1 choose Mj ≥ 1 so that for m = 0, 1, 2, . . . , j − 1 and all ǫ ∈ R,

∣∣∣ d
m

dǫm
(
χ(Mjǫ) ǫ

j bj
)∣∣∣ ≤ 1

2j
. (4.3.7)

This is possible since when the derivatives are expanded there are a finite number of terms. Each
term is a bounded function of ǫ times

bj ǫ
j−lMk

j

dkχ

dǫk
(Mjǫ) , k + l = m ≤ j − 1 . (4.3.8)

In the support of the χ(k) term, ǫ < 1/Mj. Thus the term (4.3.8) is bounded by

c(χ, j)|bj |
M j−k−l
j

≤ c(χ, j)|bj |
Mj

,
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so (4.3.7) can be achieved by choosing Mj sufficiently large.

Then ∑
ǫj χ(Mjǫ) bj

converges uniformly with all of its derivatives to a function b(ǫ). That it satisfies the conditions of
the theorem is immediately verified by differenting term by term and setting ǫ = 0.

Exercise 4.3.1. Prove Theorem 4.3.1.

Given the language of asymptotic expansions in ǫ the computations prove the following result. In
the construction ellipticity was used only to ensure that L1(y, dφ) was invertible. The next result
is stated for possibly nonelliptic operators for which this is true.

Theorem 4.3.3. Suppose that Ω ⊂ Rn is an open set,

b(ǫ, y) ∼
∞∑

j=0

ǫj bj(y)

is a smooth family of amplitudes on Ω, and φ is a smooth real valued phase such that for all y ∈ Ω
dφ(y) 6= 0 and (y, dφ(y)) /∈ CharL. Then, there is a smooth

a(ǫ, y) ∼
∞∑

j=1

ǫj aj(y)

such that
L(y, ∂y)

(
eiφ(y)/ǫ a(ǫ, y)

)
− b(ǫ, y)eiφ(y)/ǫ ∼ 0 .

The amplitude a is unique in the sense that if ã(ǫ, y) is a second solution then a(ǫ, y)− ã(ǫ, y) ∼ 0.
In particular the aj(y) are uniquely determined and the principal amplitude is given by (4.2.3).

Remark. One can take both a(ǫ, y) and b(ǫ, y) as smooth functions on [0,∞[×Ω. However, neither
the source eiφ(y)/ǫ b(ǫ, y) nor the response eiφ(y)/ǫ a(ǫ, y) is smooth up to ǫ = 0. This follows from

dk

dǫk
eiφ(y)/ǫ b(ǫ, y) =

(−1)k−1(k − 1)!

ǫk
φ(y) eiφ(y)/ǫ b0(y) +O(ǫ1−k) ,

and a similar expression differing by a power of ǫ for the response. These derivatives diverge to
infinity as ǫ→ 0.

Exercise 4.3.2. Compute two terms of an asymptotic solution of

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂u

∂x1
= eix.ξ/ǫ .

It is interesting to ask whether the asymptotic solution u(ǫ, y) := a(ǫ, y)eiφ(y)/ǫ can be corrected
by a term c(ǫ, y) ∼ 0 so that

L(u+ c) = eiφ/ǫ a .

Define the residual by
r(ǫ, y) := L(y, ∂y)u(ǫ, y) − eiφ/ǫ b ∼ 0 .
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One needs to solve

L(y, ∂y) c(ǫ, y) = −r(ǫ, y) , with c ∼ 0 .

Under a variety of conditions this is possible. For example, if L is symmetric hyperbolic it suffices
to supplement the equation for c with the initial condition c|t=0 = 0. A similar argument works
for parabolic equations determining c in t ≥ 0.

If L is elliptic, then inhomogeneous equations like that for c are solvable on sufficiently small
neighborhoods of arbitrary points. Thus the asymptotic expansion can be locally corrected.

If L has constant coefficients, one can choose a fundamental solution E and a plateau cutoff χ and
set c := E ∗ (χr). This works on compact subsets of space time.

However, [Levy] showed that linear partial differential equations with variable coefficients, even
with polynomial coefficients, need not be locally solvable. In such cases the equation for c need
not have solutions, and the construction of an asymptotic solution is the best that one can do.

§4.4. Perturbation approach

The fundamental equations, (4.3.3), (4.3.4) have now been derived two different ways, one inductive
and one by plugging in the right ansatz. Here is a third derivation which has more the feel of
perturbation theory. It is useful to have a variety of approaches for at least three reasons. First
one sees that they are all versions of the same thing. In much of the mathematical and scientific
literature these different computations are confused as fundamentally different things. Second, in
extending these ideas sometimes one or the other point of view is more easily adaptable. Finally,
different arguments appeal to different people and you can choose your favorite.

Suppose that as ǫ→ 0,

b(ǫ, y) ∼ b0(y) + ǫb1(y) + ǫ2 b2(y) + · · · . (4.4.1)

Seek u(ǫ, y) solving

L(y, ∂y)u ∼ eiφ(y)/ǫ b . (4.4.2)

Motivated by the case of constant coefficient ordinary differential equations try

u = eiφ(y)/ǫ a(ǫ, y) . (4.4.3)

Compute

L(y, ∂y)
(
eiφ(y)/ǫ a

)
= eiφ(y)/ǫ

(1

ǫ
L1(y, idφ(y)) + L(y, ∂y)

)
a . (4.4.4)

Thus (4.4.2) holds if and only if

(
L1(y, idφ(y)) + ǫL(y, ∂y)

)
a ∼ ǫb . (4.4.5)

If there is a solution a which has derivatives which are O(1) as ǫ→ 0, then there are two terms on
the left, one of order 1 and the other of order ǫ. Neglecting the latter yields a first approximation
which is identical to (4.2.3). There are at least two natural ways to proceed from here. One is to
seek a as an asymptotic (a.k.a. Taylor series) in ǫ

a(ǫ, y) ∼ ǫ a1(y) + ǫ2 a2(y) + · · · . (4.4.5)

Plugging this into (4.4.5) is the method of §4.3.
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An alternative is to do fixed point iteration on the equation (4.4.5) generating a sequence of
approximations by solving

aν(y) = L(y, idφ(y))−1
(
b− ǫL(y, ∂y) a

ν−1
)
. (4.4.6)

The first approximation is found by dropping the ǫ L term from the right hand side to find

a1 = ǫ L(y, idφ(y))−1 b . (4.4.7)

The same choice is generated by choosing a0=0. The iteration implies that

aν+1 − aν = −ǫ L(y, idφ(y))−1 L(y, ∂y)
(
aν − aν−1

)
. (4.4.8)

This implies that
aν = ǫ a1 + ǫ2 a2 + · · · + ǫν aν + O(ǫν+1) , (4.4.9)

with the aj from (4.3.3), (4.3.4).

Having given three distinct approaches to solving (4.4.5) which all lead to the same answer you may
have the misimpression that the solution of this equation is trivial. In fact, that is not the case.
The differential operator on the left of (4.4.5) is a first order operator with the property that the
differentiation terms have a coefficients of size ǫ. The derivative terms which are normally the main
terms have a small coefficient and so end up playing the role of corrections. One consequence is
that the successive correction terms are generated by applying operators of high order in ǫ∂y. This
is all to say that the approximation just produced is subtle, and also that convergence of the series
in ǫ is unlikely except when the operators and sources satisfy real analyticity hypotheses. Such
hypotheses are physically unnatural since they imply that knowledge of sources in one neighborhood
determines them everywhere.

§4.5. Elliptic regularity.

A striking application of Theorem 4.3.3 is a proof of the interior ellliptic regularity theorem. The
proof is modified in §4.6 to give the microlocal version which is one of the two central results in
linear microlocal analysis. The other is proved in Chapter 5.

The most familiar elliptic regularity theorems assert that harmonic functions and solutions of the
Cauchy Riemann equations are real analytic. More generally if ∆u is real analytic then so is u.
Such results extend to elliptic equations with real analytic coefficients.

We will treat sources which are smooth or only finitely differentiable. Elliptic regularity assert
that if L is an mth order elliptic operator and Lu has k deriviatives in an appropriate sense then u
has m+ k derivatives. In dimension greater than one, it is false that if Lu ∈ Ck, then u ∈ Ck+m.
That solutions of ∆u = ρ with ρ in the Hölder space Ck+α, α ∈]0, 1[ satisfy u ∈ C2+k+α is
a classical regularity theorem for Newtonian potentials. This Hölder version extends to general
elliptic equations. The version we give is for Sobolev spaces.

Whenever there is elliptic regularity, there is a corresponding estimate. For example, if L is first
order on Ω and elliptic on ω ⊂⊂ Ω, Theorem 4.5.1 implies that if u and Lu belong to Hs(Ω) then
u ∈ Hs+1(ω). Thus there is an inclusion

{
u ∈ Hs(Ω) : Lu ∈ Hs(Ω)

}
→ Hs+1(ω) .

Both sides are Hilbert spaces. The norm for the left hand side is equal to

(∥∥u
∥∥2

Hs(Ω)
+
∥∥Lu

∥∥2

Hs(Ω)

)1/2

.
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Exercise 4.5.1. Prove that the inclusion has closed graph so is continuous.

Therefore, there is a constant C = C(L,ω,Ω, s) so that

‖u‖Hs+1(ω) ≤ C
(
‖Lu‖Hs(Ω) + ‖u‖Hs−1(Ω)

)
. (4.5.1)

Such closed graph arguments showing that qualitative results implied quantitative estimates were
invented in [Banach]. They show that in practice to prove regularity you must prove the estimate.
In some cases, like the proof below, this is done but is not emphasized.

If L = L1(∂) is homogeneous with constant coefficients, (4.5.1) cannot hold for nonelliptic opera-
tors. In the nonelliptic case, there would be a point η ∈ CharL and associated plane wave solutions
Lvǫ = 0,

vǫ := eiy.η/ǫ a , a ∈ kerL1(η) .

The functions
uǫ := ψ vǫ

with ψ ∈ C∞
0 (Ω) violate (4.5.1) in the limit ǫ→ 0. This construction can be lifted to the variable

coefficient case.

Exercise 4.5.2. Show that in the variable coefficient case, if there is a point (y, η) ∈ CharL then
(4.5.1) cannot be satisfied for any neighborhood ω of y. Hint. Use plane waves for the operator

L1(y, ∂) and a cutoff of the form ψ
(
(y − y)/ǫµ)

)
for suitable µ > 0 and ψ ∈ C∞

0 ({|y| < 1}).

Definition. If Ω ⊂ Rn is open, y ∈ Ω and u is a distribution on Ω, we say that u is in Hs at y
and write u ∈ Hs(y), if and only if there is a ψ ∈ C∞

0 (Ω) with ψ(y) 6= 0 and ψu ∈ Hs(Ω).

Elliptic Regularity Theorem 4.5.1. Suppose that y ∈ Ω, L(y, ∂y) is an elliptic operator of

order 1 on Ω, u is a distribution on Ω, and, Lu ∈ Hs(y). Then u ∈ Hs+1(y).

Proof. Let
f := Lu

which is defined and Hs on a neighborhood of y. Choose a smooth ψ̃, compactly supported in this
neighborhood and identically equal to 1 on a smaller neighborhood of y so that L is elliptic and

f ∈ Hs on a neighborhood of the support of ψ̃. Choose a second such function, ψ supported in
the set where ψ̃ = 1

Denote by ω the points of the unit sphere, Sn−1 ⊂ Rn.

The strategy is to prove that ψu ∈ Hs+1 by studying the Fourier transform ψ̂u(η) for k = |η| → ∞.
Let k := 1/ǫ and ω := η/|η|. Compute

ψ̂u(η) = ψ̂u (kω) =
〈
ψu, e−ikω.y

〉
=
〈
u , e−iω.y/ǫψ(y)

〉
.

The differential equation Lu = f assserts that for v ∈ C∞
0 ,

〈u,L†v〉 = 〈f, v〉 . (4.5.2)

If v(ǫ, ω, y) is a good approximate solution of L†(y, ∂y) v = ψ e−iy.ω/ǫ then

ψ̂ u(ω/ǫ) =
〈
u,ψ e−ix.ω/ǫ

〉
≈
〈
u,L†v

〉
=
〈
f, v(ǫ, ω, ·)

〉
.
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Since L is elliptic, every ω is noncharacteristic. The same is therefore true for the transposed
operator L(y, ∂y)

† since the principal symbol is −L1(y, η)
†. Thus we have constructed, for each

ω, asymptotic solutions v(ǫ, ω, y) to

L(y, ∂y)
† v(ǫ, ω, y) − ψ(y)e−iy.ω/ǫ ∼ 0 . (4.5.3)

The construction is uniform in the parameters in the sense that it yields aj(ω, y) ∈ C∞(Sn−1×Rn)
which vanish for y outside the support of ψ. Borel’s theorem yields

C∞([0, 1] × Sn−1 × Rn) ∋ a(ǫ, ω, y) ∼
∞∑

j=0

ǫj aj(ω, y) in C∞(Sn−1 × Rn) , (4.5.4)

with a vanishing for y outside the support of ψ.

Setting

v(ǫ, ω, y) := ǫ a(ǫ, ω, y) eiy.ω/ǫ , (4.5.5)

(4.5.3) holds in C∞(Sn−1 × Rn). Then

ψ̂u(η) =
〈
u , L†v

〉
+ 〈u , ψeix.ω/ǫ − L†v〉, (4.5.6)

and

∀M, 〈u,ψeix.ω/ǫ − L†v〉 = O(|η|−M ) .

The proof is completed by showing that 〈η〉s+1ψ̂u(η) ∈ L2 by showing that 〈η〉s+1 times each of
the summands on the right of (4.5.6) belongs to L2(Rnη ).

For the second summand it suffices to choose M with 2M − 2(s+ 1) > n so that,

∫

|η|>1

< η >2(s+1)

|η|2M dη < ∞ .

The approximate solution v vanishes for y oustide the support of ψ. Therefore, ψ̃ v = v. This with
(4.5.2) shows that

〈
u , L†v

〉
=
〈
ψ̃f , v

〉
. Formula (4.5.5) shows that the right hand side is equal

to ∫
ψ̃ f a e−iy.ω/ǫ dy = ǫ F

(
a(ǫ, ω, ·) ψ̃(·) f(·)

)(
η
)
, η = ω/ǫ . (4.5.7)

Expressing the Fourier transform of a product as a convolution yields

〈
u , L†v

〉
= ǫ c

∫
F(ψ̃f)(ζ) â(ǫ, ω, ζ − η) dζ . (4.5.8)

The smoothness and compact support of a implies that,

∀N, ∃CN , ∀ (ǫ, ω) ∈ [0, 1] × Sn−1,
∣∣â(ǫ, ω, ζ)

∣∣ ≤ CN 〈ζ〉−N . (4.5.9)

Since ψ̃f ∈ Hs, ∣∣F
(
ψ̃f
)
(ζ)
∣∣ = 〈ζ〉−s g , with g(ζ) ∈ L2(Rn) . (4.5.10)
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Estimates (4.5.8-4.5.10) imply that for |η| > 1

∣∣∣
〈
u , L†v

〉∣∣∣ ≤
∫

C g(ζ)

〈ζ〉s |η| 〈ζ − η〉N dζ ,

where the key is the factor ǫ = |η|−1. Multiplying by 〈η〉s+1 taking advantage of the fact that
|η| ≥ 1 yields the bound

〈η〉s+1
∣∣∣
〈
u , L†v

〉∣∣∣ ≤ C

∫ 〈η〉s
〈ζ〉s 〈ζ − η〉N g(ζ) dζ . (4.5.11)

Suppose that s ≥ 0. Since (ζ − η) + ζ = η either |ζ − η| > |η|/2 or |ζ| > |η/2| so the integrand is
bounded by

〈η〉s
〈ζ〉s 〈ζ − η〉s

g(ζ)

〈ζ − η〉N−s
≤ C

g(ζ)

〈ζ − η〉N−s
.

Choose N > n+ s so 〈ζ〉−N+s ∈ L1(Rnζ ). Young’s inequality implies that

∥∥∥〈η〉s+1
〈
u , L†v

〉∥∥∥
L2(Rn

η )
≤ C

∥∥〈ζ〉N−s ∗ g
∥∥
L2(Rn

ζ
)
≤ C ‖〈ζ〉−N+s‖L1(Rn

ζ
) ‖g‖L2(Rn) < ∞ .

This completes the proof when s ≥ 0.

When s < 0 the integrand is bounded by

g(ζ) 〈ζ〉|s|
〈η〉|s| 〈ζ − η〉N ≤ 〈ζ〉|s|

〈η〉|s| 〈ζ − η〉|s|
g(ζ)

〈ζ − η〉N−|s|
≤ C

g(ζ)

〈ζ − η〉N−|s|
,

since either |η| ≥ |ζ|/2 or |ζ − η| ≥ |ζ|/2. Young’s inequality completes the proof.

Remarks. 1. In the heart of the proof the gain of one derivative came from the factor ǫ in the
approximate solution. In a fundamental sense elliptic regularity is a reflection of the fact that a
right hand side oscillating with wavelength ǫ yields a response oscillating in the same way whose
amplitude is smaller by a factor ǫ.

2. A standard proof of the regularity theorem is to construct a pseudodifferential operator P (y, ∂)
of order -1 so that LP = I + Smoothing. Then P

(
b(y)eiω/ǫ

)
is an infinitely accurate approximate

solution of Lu = b(y) eiy.ω/ǫ. The computation of the full symbol of P is the same analytic problem
as computing the full asymptotic expansion a(ǫ, y) eiy.ω/ǫ. From this perspective the computation
in §4.2 resembles the Levi construction of elliptic parametrices, while the computations in §4.3
and §4.4 resemble more closely the calculations using the symbol calculus for pseudodifferential
operators.

3. The heart of the proof is an explicit formula for ψ̂u(η) with error bound O(|η|−∞). This is an
impressive achievment for a variable coefficient problem.

Corollary 4.5.2. If L(y, ∂y) is elliptic on the open set Ω and u ∈ D′(Ω) satisfies Lu ∈ C∞(Ω),
then u ∈ C∞(Ω).

Proof. If y ∈ Ω then u is Hs(y) for some possibly very negative s. The Theorem implies that
u ∈ Hs+1(y). A second application implies that u ∈ Hs+2(y). An induction shows that u belongs
to Hs+m(y) for all integers m. Sobolev’s embedding theorem implies that for every k, u ∈ Ck on
a neighborhood of y.
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§4.6. The Microlocal Elliptic Regularity Theorem

This is one of the two basic theorems in microlocal analysis. What needs to be added to the ideas
of the last section are two fundamental definitions.

Definition. If u is a distribution defined on an open set Ω, y ∈ Ω, s ∈ R and η ∈ Rn \ 0, we say
that u is in Hs microlocally at (y, η) and write u ∈ Hs(y, η) if and only if there is a ψ ∈ C∞

0 (Ω)
with ψ(y) 6= 0 and a χ ∈ C∞(Rn \ 0) homogeneous of degree 0 with χ(η) 6= 0 so that

∫

Γ

χ(η)
∣∣ψ̂u(η)

∣∣2 〈η〉2s dη < ∞ . (4.6.1)

The set of (y, η) so that u /∈ Hs(y, η) is called the Hs wave front set and is denoted WFs(u).

Examples. i. If u = δ(x) then for s ≥ −d/2 then WFs(δ) = {(0, η) : η 6= 0}. For s < −d/2
u ∈ Hs and WFs is empty.

ii. Consider u(y1, y2) = h(y2) with h denoting Heaviside’s function. The singular support of u is
equal to {y2 = 0}. Thus if y2 6= 0, u ∈ Hs(y, η) for all s, η.

For points with y2 = 0, take a cutoff function ψ = φ1(y1)φ2(y2) so

ψ̂u(η1, η2) = φ̂1(η1) F(φ2(y2)h(y2)) .

Since φ̂1(η1) is rapidly decreasing, this proves that for any η with η1 6= 0, u ∈ H∞(y, η), that is in
Hs(y, η) for all s.

There remain the points with y2 = 0 and η1 = 0. Use |F(φ2 h)(η2)| ∼ c/|η2|. On a conic
neighborhood one has

ψ̂u(η1, η2) ≤ |φ̂1(η1)|
〈η2〉

.

Using Fubini’s Theorem shows that u is microlocally Hs(y, η) if and only if s < 1/2.

Exercise 4.6.1. Prove that WFs−1(∂ju) ⊂ WFs(u).

Exercise 4.6.2. Prove that if u ∈ Hs(y, η) and ψ ∈ C∞(Ω) then ψu ∈ Hs(y, η). Hints. After

a cutoff ψ ∈ C∞
0 (Ω) and u = u1 + u2 . û1 = O(〈ξ〉M) and vanishes on a conic neighborhood of

η while u2 ∈ Hs(Rd). Write the transform of the product as a convolution. Consider only η in a

small conic neighborhood of η. For ψ̂ ∗ û1 show that the argument of ψ̂ is ≥ c|η|.

Microlocal Elliptic Regularity Theorem 4.6.1. Suppose that on a neighborhood of y, L(y, ∂y)
is a system of differential operators of order 1 with smooth coefficients and that L is noncharac-
teristic at (y, η). If u is a distribution with Lu ∈ Hs(y, η), Then u ∈ Hs+1(y, η).

Proof. The proof follows the proof of Theorem 4.5.1. The change comes in the construction of
the approximate solution (4.5.3). In the elliptic case this was done for all ω using the fact that
L1(y, ω) is invertible for all (y, ω).

In the present context we choose the cutoffs ψ and χ with sufficiently small support so that that
(y, η) is noncharacteristic on suppψ × suppχ.

Then v(ǫ, y, η) is defined for (y, η) ∈ suppψ× suppχ. Estimates are uniform on the corresponding
compact set of (y, ω).
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The estimate for the integral (4.5.8) must be changed because it is no longer assumed that ψ̃f ∈ Hs.

What is true is that one can choose ψ̃ so that F(ψ̃f) is the sum of two terms. One is as in the
right hand side of (4.5.10) and is treated as before. The second term, h(ζ), vanishes on a conic
neighborhood of η and for some σ, possibly very large,

h(ζ)

〈ζ〉σ ∈ L2(Rnζ ) .

For this h part of (4.5.8) we must show that

∫
h(ζ) 〈η〉s

〈ζ〉s 〈ζ − η〉N dζ

is square integrable on a small closed conic neighborhood of η. Choosing that neighborhood small
enough it will be disjoint from a closed cone containing the support of h. Then, in the support of
the integrand, |ζ − η| ≥ Cmax{|ζ|, |η|}. For s ≥ 0 and ζ in the support of the integrand,

h(ζ) 〈η〉s
〈ζ〉s 〈ζ − η〉N ≤ h(ζ)

〈ζ〉σ
C

〈ζ − η〉N−σ−s
.

Choosing N > σ + s+ n, Young’s inequality finishes the proof.

For s < 0, the integrand is dominated by

h(ζ) 〈ζ〉|s|
〈η〉|s| 〈ζ − η〉N ≤ h(ζ)

〈ζ〉σ
C

〈ζ − η〉N−σ−|s|
,

and choosing N > σ + |s| + n, Young’s inequality completes the proof.

WFs(u) is a closed conic subset of Ω × Rn \ 0. Theorem 4.6.1 implies that if (y, η) /∈ CharL then

(y, η) ∈WFs+1u ⇐⇒ (y, η) ∈WFs(Lu) .

The theorem yields the ⇒ part. The ⇐ implication is not hard to prove using Exercise 4.6.1.

A candidate for a microlocal smoothness set is the set of points (y, η) such that u ∈ Hs(y, η) for
all s. This is the complement of ∪sWFs(u). There is a stronger notion which leads to a possibly
smaller set.

Definition. If u is a distribution on Ω the wavefront set of u, denoted WF (u) is a set of points
(y, η) ∈ Ω × Rn \ 0 so that (y, η) /∈WF (u) if and only if there is a ψ ∈ C∞

0 (Ω) with ψ(y) 6= 0 and
a χ ∈ C∞(Rn \ 0) homogeneous of degree 0 with χ(η) 6= 0 so that for all N ∈ Z+,

sup
η∈Rn

|η|N F(χu)(η) < ∞ .

Exercise 4.6.3. Prove that if ψ ∈ C∞(Ω) then WF (ψ u) ⊂ WF (u). Hint. Read the hint in
exercise 4.6.2.

Exercise 4.6.4. Prove that WF (∂αu) ⊂ WF (u). Discussion. Combining with exercise 4.6.3
proves that WF (p(x, ∂)u) ⊂ WF (u) for partial differential operators p with smooth coefficients.
Operators which do not increase wavefront sets are called microlocal.
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Example. Define u = F−1k where k(η) ∈ C∞(Rn) is homogeneous of degree σ on |η| ≥ 1. That
is, there is a homogeneous function K so that k = K on |η| ≥ 1. Combining the results of the next
three exercises shows that WFu = {0} × suppK.

Exercise 4.6.5 Prove that the singular support of u is equal to the origin by showing that for any
k there is an N so that |y|2N u ∈ Ck.

Exercise 4.6.6. Show that for any η disjoint from the support of K, (0, η) /∈ WF (u). Hint.
Estimate products as in the proof of Theorem 4.6.1.

Exercise 4.6.7. If ψ ∈ C∞
0 (R2) with ψ(0) = 1, then

F(ψu) −K = O(|η|σ−1)

as η → ∞. Hint. Write the transform of the product as a convolution. Then take advantage of
the fact that ψ̂ is rapidly decreasing.

Microlocal Elliptic Regularity Theorem 4.6.2. If L is as in Theorem 4.6.1, (y, η) /∈ CharL,
and, (y, η) /∈WF (Lu), then (y, η) /∈WF (u).

Exercise 4.6.8. Prove this by suitably modifying the proof of Theorem 4.6.1.

Next analyse the wavefront set of a piecewise smooth function by using two methods.

Definition. If M is a embedded hypersurface, m ∈ M and u is a distribution defined on a
neighborhood of M , then u is piecewise smooth at m if the restriction of u to each side of M
has a smooth extension to a neighborhood of m.

Exercise 4.6.9. If u is piecewise smooth at m prove using the definition of WF that on a
neighborhood of m, WF (u) is contained in the conormal bundle of M . Hint. By subtracting a
function smooth nearm reduce to the case of u vanishing on one side. Estimate F(ψu) in directions
not conormal by the method of nonstationary phase. Compute the boundary terms that appear
in the integration by parts. Show that they are small by the method of nonstationary phase.

Remark. For the same u one can prove the slightly weaker result that for all s, WFs(u) is
contained in the conormal variety using only the microlocal! elliptic regularity theorem. If η is not
conormal, at m one can find a smooth vector field V (y, ∂) on a neighborhood of m so that V is
tangent to M and V (m,η) 6= 0. Then for any k, V ku ∈ L2

loc. Microlocal elliptic regularity applied
for the operator V implies by induction that V k−ju ∈ Hj(m,η) for 0 ≤ j ≤ k.
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Chapter 5. Linear Hyperbolic Geometric Optics

§5.1. Introduction

The mathematical subject of geometric optics is devoted to the construction and analysis of asymp-
totic solutions of partial differential equations which are accurate when wavelengths are small com-
pared to other natural lengths in the problem. Since the wavelength of visible light is of the order
of magnitude 5× 10−5cm a great deal of what one sees falls into this category. The description of
optical phenomena was and is a great impetus to study short wavelength problems.

The key feature of geometric optics, propagation along rays, is not present in the elliptic case of
the last section. Rays occur for hyperbolic problems, and in the same spirit, for singular elliptic
problems which arise when looking for high frequency time periodic solutions of a hyperbolic
equation. An example of the latter is that solutions of the form

u(t, x) = eiτtw(x) , τ >> 1 (5.1.1)

to D’Alembert’s equation
u = 0 (5.1.2)

must satisfy
τ2 w + ∆w = 0 . (5.1.3)

The singularity in this elliptic equation is that one is interested in solutions in the limit τ → ∞
and therefore a coefficient is tending to infinity.

The key dichotomy is that in the (nonsingular) elliptic case, rapid oscillations have only local
effects. The values of the coefficients aj in the neighborhood of a point are determined by the
values of the bj in the same neighborhood. For hyperbolic equations (and their related singular
elliptic problems like (5.1.3)) the oscillations may and usually do propagate to distant parts of
space time. This is why they are the main carriers of information in both the communications
industry and in the universe.

The starting point for the construction of the asymptotic solutions of geometric optics is the
observation that if L = L1(∂y) has constant coefficients and no lower order terms then there are
plane waves

u(y) := a(y.η) , y.η :=
d∑

µ=0

yµηµ .

In §2.4 we showed that u satisfies Lu = 0 when η ∈ CharL and

∀σ , a′(σ) ∈ kerL1(η) . (5.1.4)

For η ∈ CharL, the plane wave solutions (modulo constants) are parameterized by functions
a : R → kerL(η). With the notation

η = (η0, η1 · · · , ηd) := (τ, ξ1, · · · , ξd) , (5.1.5)

plane wave solutions have the form
u = a(τt+ x.ξ). (5.1.6)

They translates at velocity v in the sense that u(t, x) = u(0, x − vt) if and only if v satisfies
v.ξ = −τ .
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The early sections of this chapter construct a generalization of the plane wave solutions which can
be localized in space and apply to systems with variable coefficients and lower order terms.

Among the plane wave solutions described above are those with short wavelength sinusoidal oscil-
latory behavior,

u = eiy.η/ǫ a(y.η), (5.1.7)

where a is smooth and ǫ is small compared to the typical distances on which a varies. Equation
(5.1.7) represents wave packets with wavelength ǫ << 1. They have derivatives of order 1/ǫ >> 1.
A zero order term applied to (5.1.7) is bounded so much smaller. For variable coefficient problems,
the coefficients do not vary much on the scale ǫ of a wavelength. This suggests that at least locally,
replacing an operator by its constant coefficient part without lower order terms is a reasonable
approximation for high frequency solutions. This turns out to be not quite true since in the
solutions the large contributions of the highest order terms nearly cancel and the lower order terms
can be important as in the striking example of §1.4. In addition, the derivatives of the coefficients
affect the local propagation. Only a detailed computation reveals the exact laws.

The model problem of §1.2 is a first such calculation based on the Fourier Transform. In the next
section we treat the case of scalar second order equations with constant coefficients. They are
interesting in their own right. The scalar results are algebraically a little more straight forward
than the systems treated afterward. Thus they are a natural starting point. For many applications,
the systems are essential. An impatient or experienced reader can skip directly to §5.3.

§5.2. Second order scalar constant coefficient principal part

Begin with the example of a second order scalar constant coefficient operator which may not be
hyperbolic,

L :=
d∑

µ,ν=0

aµν∂µ∂ν +
d∑

µ=0

bµ∂µ + c , aµν = aνµ . (5.2.1)

Suppose that the principal coefficients aµν are real and do not depend on y. Otherwise linear
phases would be unrealistic, since for variable coefficient operators surfaces of constant phase are
unlikely to be planar.

In §1.2 we found short wavelength solutions of the form,

eiy.η/ǫ a(ǫ, y) , a(ǫ, y) ∼
∑

j

aj(y) ǫ
j .

Similar expansions were successful in Chapter 4. Seeking solutions of that form, compute L
(
eiy.η/ǫ a

)
.

The most singular terms occur when both derivatives fall on the exponent yielding

1

ǫ2

∑
aµν (iηµ)(iην) a(ǫ, y) .

In order to find solutions one must have

∑
aµν ηµην = 0 . (5.2.2)

This asserts that η ∈ CharL. Recall that for an mth order differential operator, the characteristic
variety is defined by the equation detLm(y, η) = 0. The equation (5.2.2) has a solution 0 6= η ∈
R1+d if and only if L is not elliptic.
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Given (5.2.2), there are terms of order ǫ−1 when one derivative hits the exponent and terms of
order ǫ0 when all the derivatives fall on a,

L(∂)
(
eiy.η/ǫ a(ǫ, y)

)
= eiy.η/ǫ

(
i
(
2
∑

µ,ν

aµ,ν ην ∂µ +
∑

µ

bµηµ

)
/ǫ+ L(∂)

)
a .

Injecting the expansion of a(ǫ, y) and setting the coefficient of ǫj−1 equal to zero yields the recur-
rence,

i
(
2
∑

µ,ν

aµνην∂µ + b.η
)
aj + L(∂) aj−1 = 0 , (5.2.3)

with the convention that a−1 = 0. Define the vector field V and scalar c by

V :=
∑

aµν ην ∂µ, γ :=
∑

µ

bµηµ . (5.2.4)

The leading amplitude a0(y) must satisfy the transport equation

(
V + γ

)
a0 = 0 . (5.2.5)

The integral curves of V are straight lines called rays. Equation (5.2.5) shows that the restriction
of a0 to a ray satisfies a first order linear ordinary differential equation whose solutions are expo-
nentials. If γ = 0, then a0 is constant on rays. The eikonal equation (5.2.2) shows that the phase
φ(y) = y.η satisfies V φ = 0 so φ is constant on rays.

Example of phases and rays. For the operator ∂2
t − c2∆, and η = (τ, ξ) with τ = ±|cξ| the

phase is given by,

φ(y) = φ(t, x) = y.η = (t, x).(τ, ξ) = τt+ x.ξ .

The vector field V is given by,

V = φt∂t − c2∇xφ.∇x = τ ∂t − c2 ξ.∇x = ±|cξ|
(
∂t ∓ c

ξ

|ξ| .∇x

)
.

The integral curves of V move with speed c in the direction ∓ξ/|ξ|. This is equal to the group
velocity associated to (τ, ξ) in §2.4. In the present computation there is no hint of the stationary
phase argument usually used to introduce the group velocity as in §1.3.

Initial conditions for a0 can be prescribed, for example, on a hyperplane P transverse to V . The
other aj can be similarly determined from their values on P . For j > 0 the transport equation for
aj has a source term depending on aj−1.

Proposition 5.2.1. Suppose that η is characteristic, P is a hyperplane transverse to V in (5.2.4),
and fj ∈ C∞(P ) for j ≥ 0. Then there are uniquely determined aj with aj

∣∣
P

= fj so that (5.2.5)

is satisfied. In this case L
(
eiy.η/ǫ a

)
∼ 0.

In sharp contrast to the elliptic case, there are oscillatory asymptotic solutions without oscillatory
source terms in the equation. To leading approximation, the oscillations propagate with velocity
given by the vector field V .
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The vector field V has integral curves which move with velocity v := (a1, . . . , ad)/a0. The eikonal
equation implies that this velocity satisfies v.ξ = −τ , the condition defining the phase velocities.
Usually (as in exercise 5.2.2 below), v is not parallel to ξ .

Exercise 5.2.1. If the principal symbol
∑
aµνηµην is a nondegenerate quadratic form on Rd+1

η ,

it defines an isomorphism from Rd+1
η to Rd+1

y by η 7→ y defined by

∀ζ, a(η, ζ) = y.ζ .

Prove that the vector V is the image by this isomorphism of the covector η ∈ CharL.

Exercise 5.2.2. Suppose that L2 = ∂2
t − c2∂2

1 − ∂2
2 . Compute the characteristic variety and the

velocity of transport for every η ∈ CharL. Discussion. For c 6= 1 the velocity of transport is
not parallel to ξ except when ξ1ξ2 = 0.

Definitions. The operator (5.2.1) is strictly hyperbolic with time variable t if and only if
L2(1, 0, . . . , 0) 6= 0 and for every ξ ∈ Rd \ 0, the equation L2(τ, ξ) = 0 has two distinct real roots.
The time like cone is the connected component in {η : L2(η) 6= 0} containing (1, 0, . . . , 0). A
hyperplane is space like if it has a conormal belonging to the time like cone.

τ

Figure 5.2.1. The time like cone.

Exercise 5.2.3. For what real values γ is the operator ∂2
t + γ∂t∂x − ∂2

x strictly hyperbolic with
time t?

Exercise. 5.2.4. Show that L = ∂2
t −

∑
ij aij∂i∂j is strictly hyperbolic with time t if and only if∑

aijξiξj is a strictly positive definite symmetric bilinear form.

Exercise 5.2.5. Show that the set of operators L of form (5.2.1) with real symmetric aµν that
are strictly hyperbolic with time t, is open.

Exercise 5.2.6. Carry out the construction of asymptotic solutions of the Klein-Gordon operator
L = ∂2

t −
∑
ij aij∂i∂j+m

2, with aij real and strictly positive. In particular show that the equations
for the leading amplitude do not involve m. Discussion. The propagation of short wavelength
oscillations is to leading order unaffected by the m2u term. This is consistent with the idea that
for highly oscillatory solutions, lower order terms are less important. Note however that the first
order terms b.∂y do affect the leading amplitude a0. These results are closely related to the fact
(see §1.2) that the jump discontinuities in the fundamental solution of utt−uxx+m2u = 0 are not
affected by m.
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Exercise 5.2.7. Prove that if L is strictly hyperbolic with time t, H is a space like hyperplane,
and η is characteristic, then the transport vector field is transverse to H.

The structure of the leading approximation eiyη/ǫa0(y) is visualized as follows. The surfaces of
constant phase are the hyperplanes y.η = const. The eikonal equation (5.2.2) implies that the
transport vector field V is tangent to these surfaces. In the absence of lower order terms, the
leading amplitude a0 is constant on the rays which are integral curves of the constant vector field
V . In the general case, the restriction of a to a ray is an exponential function. If a0

∣∣
t=0

is supported

in a set E ⊂ Rdx then a0 is supported in the tube of rays

T =
{
(0, x) + tV : x ∈ E, t ∈ R

}
.

The velocity associated to V is called the group velocity. From the definition of V one has

group velocity := −
∑d
j=1

∑
µ ajµ ηµ ∂j∑

µ a0µηµ

Exercise 5.2.8. Show that in the strictly hyperbolic case, the characteristic variety is parameter-
ized as a graph τ = τ(ξ), and the group velocity is equal to −∇ξτ . Discussion. This is the same
formula for group velocity found in §2.4.

Examples of raylike solutions. For ∂2
t − c2∆x, and η = (τ, ξ) with τ = ±|cξ|, ff a0(0, x) = f(x)

then a0(t, x) = f(x∓ ctξ/|ξ|). A particularly interesting case is when f has support in a small ball
centered at a point x. In this case the principal term in the approximate solution is supported in a
cylinder in space time about the ray starting at x. If one takes initial data aj(0, x) = 0 for j ≥ 1,
then Theorem 5.2.1 yields approximate solutions uǫ which are supported in such a narrow cylinder
and whose residual is infinitely small in ǫ.

Figure 5.2.2 The cylindrical support of a ray like solution.

This recovers in a different way, the approximate solutions derived by Fourier transform in §1.4.

The reader is encouraged to think of these as flashlight beams or raylike approximate solutions to
the wave equation. It is worth noting that the only exact solution of the multidimensional wave
equation which is supported in such a cylinder is the solution u = 0.

Exercise 5.2.9. Prove that if d > 1 and u is a smooth solution of u = 0 supported in a tube

{
(t, x) :

∣∣(x1 − ct, x2, . . . , xd)
∣∣ ≤ R

}
,

then u = 0. Hint. Prove that ‖∇t,xu(t)‖L∞(Rd) → 0 as t → ∞ (actually = O
(
t(1−d)/2)

)
).

This together with the support condition shows that the energy is o(1) as t → ∞. Conservation
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of energy implies u = 0. Alternate hint. The boundary of the tube is characteristic where
x2 = x3 = . . . = xd = 0. It is noncharacteristic at the other points. Apply the Global Hölmgren
Uniqueness Theorem to prove that u = 0 vanishes in the cylinder.

§5.3. Symmetric hyperbolic systems

Convention. From here on, the underlying operator L(y, ∂y) is assumed to be a symmetric hy-
perbolic first order system and y = (t, x).

With the background of the elliptic case from Chapter 4, and the scalar hyperbolic examples in
§5.2, it is natural to seek solutions,

L(y, ∂y)
(
a(ǫ, y) eiφ(y)/ǫ

)
∼ 0 . (5.3.1)

with vector valued

a(ǫ, y) ∼
∞∑

j=0

ǫj aj(y) as ǫ→ 0 . (5.3.2)

Here φ is assumed to be a smooth real valued function with dφ 6= 0 on the domain of interest.
This guarantees that the solutions are rapidly oscillating as ǫ→ 0. The surfaces of constant phase
in space time have conormal vectors equal to dφ.

Computing as in the derivation of (4.3.2) yields

L(y, ∂y)
(
eiφ(y)/ǫ a

)
∼ eiφ(y)/ǫ

(
1

ǫ
L1(y, idφ(y)) a + L(y, ∂y)a

)

∼ eiφ(y)/ǫ

(
1

ǫ
L1(y, idφ(y)) a0 +

∞∑

j=0

ǫj
[
L1(y, idφ(y)) aj+1(y) + L(y, ∂y) aj(y)

])
.

The convention a−1 := 0 yields,

L(y, ∂y)
(
eiφ(y)/ǫ a

)
= eiφ(y)/ǫ

∞∑

j=−1

ǫj
[
L1(y, idφ(y)) aj+1(y) + L(y, ∂y) aj(y)

]
. (5.3.3)

Therefore, equation (5.3.1) holds if and only if

L1

(
y, idφ(y)

)
aj(y) + L(y, ∂y) aj−1(y) = 0 , for j = 0, 1, 2, · · · . (5.3.4)

The special case j = 0 is,
L1(y, idφ(y)) a0 = 0 . (5.3.5)

Proposition 5.3.1 If

a(ǫ, y) ∼
∞∑

j=0

ǫj aj(y) in C∞(Ω)

then
L(y, ∂y)

(
a(ǫ, y) eiφ(y)/ǫ

)
∼ 0 in C∞(Ω)

if an only if the coefficients aj(y) and phase φ satisfy (5.3.4).
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In contrast to the scalar case of the previous section, it is not at all obvious how or whether the
equations (5.3.4) determine the amplitudes aj and phase φ. The rest of this section is devoted to
that question.

In order for (5.3.5) to admit nonzero solutions, the matrix valued function L1(y, dφ(y)) must be
singular,

detL1(y, dφ(y)) = 0. (5.3.6)

This is a nonlinear first order partial differential equation for the real valued phase φ. It is called
the eikonal equation. It asserts that the graph of dφ belongs to the characteristic variety of L.
Such equations are the subject of Hamilton-Jacobi Theory which is recalled in Appendix 5.I.

Example. If L is the Maxwell system the equation (5.3.6) becomes,

(∂tφ)2
(
(∂tφ)2 − c2|∇xφ|2

)2
= 0 .

The phases leading to solutions which satisfy the divergence constraint are those which satisfy

(∂tφ)2 = c2|∇xφ|2 . (5.3.7)

For the macroscopic Maxwell’s equations in matter with scalar dielectric and magnetic suscepti-
bilties ε(y) and µ(y) one obtains the same result with the speed of light c = c(y) depending on
position.

Examples of solutions of (5.3.7) with c = const.. 1. We have already encountered the linear
phases φ = tτ + x.ξ, with τ2 = c2|ξ|2 which occur in plane waves.

2. Spherically symmetric solutions satisfy φ2
t = c2φ2

r . So long as dφ 6= 0, φt 6= 0 and they satisfy
one of the two equations φt = ±cφr. The general solution is φ = f(c t± |x|), with smooth f with
f ′ 6= 0. For the plus sign, the surfaces of constant phase are incoming spheres. The sphere which
starts at radius R degenerates at time t = R, showing that solutions of the eikonal equation will
normally exist only locally in time.

3. An interesting class of solutions to (5.3.7) is those of the form

φ(t, x) := c t± ψ(x) , with |∇ψ| = 1 .

Discussion. If ψ is a smooth solution of |∇ψ| = 1 on a neighborhood of x, then on a neighborhood
of x, ψ − ψ(x) is equal to the signed distance from x to M := {ψ(x) = ψ(x)}.
Proof. Replace ψ by ψ − ψ(x) to reduce to the case ψ(x) = 0. Denote by φ the signed distance
which is positive on the same side of M as ψ. Then, |∇φ| = |∇ψ| = 1 and φ|M = ψ|M . It follows
from the sign condition that dφ = dψ on M . The uniqueness from the Hamilton-Jacobi Theory
applied to the equation |∇ψ| = 1 completes the proof.

If the level set {ψ = ψ(x)} in the last example is curved, then the distance function will not be
smooth, developing singularities at centers of curvature. Theorem 6.6.3.ii proves that for d ≥ 2 the
only C2 solutions of |∇ψ| = 1 everywhere defined on Rd are affine functions.

There are essentially two strategies for finding solutions of the eikonal equation. The first is to look
for exact solutions. The simplest such are linear functions φ(t, x) = tτ + xξ when L1 has constant
coefficients and (τ, ξ) is characteristic. The second is to appeal to Hamlton-Jacobi Theory to
obtain local solutions. To apply the results of Appendix 5.I, let F (y, η) := det L1(y, η) so the
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eikonal equation reads F (y, dφ(y)) = 0. Seek to determine φ from initial values φ(0, x) = g(x). To
determine φt(0, x) from its values at a single point (0, x) one uses the implicit function theorem
which requires that

∂F (0, y, τ, dg(x))

∂τ

∣∣∣
τ=φt(0,x)

6= 0.

This is equivalent to τ being simple root of the polynomial equation F (0, x, τ, dg(x)) = 0. When this
condition is satisfied, Hamilton-Jacobi Theory yields a local solution φ and dim kerL1(y, dφ(y)) =
1.

For the example of Maxwell’s e equations above, the roots are double. However the double roots
result from the fact that the factors τ and τ2 − c2|ξ|2 appear squared. To apply Hamilton-Jacobi
Theory one solves (5.3.7) and not (φ2

t − c2|∇xφ|2)2 = 0.

This phenomenon of multiple roots which appear because of repeated factors is so common that
we give a general treatment. Suppose that F (0, x, φt(0, x), dg(x)) = 0 and that on a neighborhood
of (x, η) := (0, x, φt(0, x), dg(x)) one has with integer p > 1,

F (y, η) = G(y, η)pH(y, η),

with
∂G(0, x, τ, dg(x))

∂τ

∣∣∣
τ=φt(0,x)

6= 0, and H(y, x) 6= 0.

In this case, one applies Hamilton-Jacobi Theory to the reduced equation

G(y, dφ(y)) = 0,

which satisfies the simple root condition. The root has multiplicity p > 1 for F . This shows that

−τ is an eigenvalue of multiplicity p of the hermitian matrix A
−1/2
0

(∑
Ajξj

)
A

−1/2
0 . Therefore,

dimkerL1(y, dφ(y)) = p.

All the above strategies, lead to phases φ satisfying the following hypothesis.

Constant rank hypothesis. On an open connected subset Ω ⊂ R1+d, φ ∈ C∞(Ω), ∂tφ 6= 0, and
kerL1(y, dφ(y)) has strictly positive dimension independent of y.

Example. If L = L(∂y) has constant coefficients, and φ = y.η is linear with η ∈ CharL, then dφ
is constant so kerL1(dφ) is independent of y and the constant rank hypothesis is automatic. This
is so even when η is a singular point of the characteristic variety.

Recall from (2.4.4) that π(y, dφ(y)) denotes the orthogonal projection of CN onto the kernel of
L1(y, dφ(y)). Introduce the natural partial inverse, Q(y) of the singular symmetric matrix valued
function L1(y, dφ(y)) by

Q(y)π(y, dφ(y)) = 0 , Q(y)L1(y, dφ(y)) = I − π(y, dφ(y)) . (5.3.8)

When the constant rank hypothesis is satisfied, Theorem 3.I.1 implies that these are smooth matrix
valued functions.

Remark. The example of linear phase and constant coefficient L shows that while it is true that
the points ∇yφ ∈ CharL are smooth in y, the characteristic variety near the points (y, dφ(y))
can be singular. Conical refraction in triaxial crstals is an important example (see [Ludwig], or
[Joly-Métiver-Rauch, MR, Ann. Inst. Fourier]).
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Equation (5.3.5) holds if and only if

a0(y) ∈ kerL1(y, dφ(y)) .

Since L1(y, dφ(y)) is singular, it is not surjective. Thus the case j = 1 of (5.3.4) has information
about a0, namely

L(y, ∂) a0 ∈ range L1(y, dφ(y)) . (5.3.9)

The last two displayed equations are sufficient to determine a0 from its initial data, though this
is by no means obvious. In the scalar analysis of §5.2, the analogous equations clearly determined
the aj from their initial data.

First check that the number of equations is equal to the number of unknowns. The polariza-
tion equation (5.3.11) shows that a takes values in a linear space of dimension equal to k :=
dim

(
kerL1(y, φ(y)

)
. Thus there k unknown functions. Equation (5.3.10) asserts that L(y, ∂y) a0

takes values in rangeL1(y, dφ(y)) which has codimension k. Thus this is equivalent to k partial
differential equations for the k unknowns a0.

For ease of reading, we suppose that φ is fixed and write π(y) for π(y, dφ(y)). Equation (5.3.5) is
equivalent to

π(y) a0(y) = a0(y) (5.3.10)

which is the analogue of equation (5.1.1). The condition (5.3.9) is satisfied if and only if,

π(y)L(y, ∂y) a0 = 0 . (5.3.11)

Equations (5.3.10) and (5.3.11) are our second formulation of the equations which determine a0.

There are other equivalent forms of (5.3.9). In the science literature, the usual proceedure is to take
linear combinations of the equations given by the rows of the system L(y, ∂)a0 + iL1(y, dφ(y))a1 =
0. The combinations which elimate the L1 a1 terms are chosen. The constant rank hypothesis
implies that the annihilator of rgL1(y, dφ(y)) is a smoothly varying subspace of dimension k. If
ℓ1(y), . . . , ℓk(y) form a basis, then (5.3.9) holds if and only if

〈
ℓj(y) , L(y, ∂)a0

〉
= 0 , 1 ≤ j ≤ k .

Equation (5.3.11) is of this form with the ℓj chosen to be k linearly independent rows of the matrix
of the projector π(y). More generally, if K(y) is an N ×N matrix satisfying for all y,

rankK(y) = k, K(y)
(
rgL(y, dφ(y))

)
= 0,

then the equation (3.4.9) is equivalent to K(y)L(y, ∂) a0 = 0 (see [MR] for more on this circle of
ideas.

One consequence of the nonlinearity of the eikonal equation is that phases φ are usually only
defined locally. As a result the amplitudes aj are also only constructed locally, at best where the
φ are defined. For the next result the local existence theorem for symmetric hyperbolic systems
is used. In most concrete situations, the equations for the aj are simple and sharper results true.
This theme is investigated in §5.4.

Theorem 5.3.2. Suppose that Ω ⊂ {0 < t < T <∞} is a domain of determinacy for L as defined
in the assumption at the start of §2.6 and that the phase φ ∈ C∞(Ω) satisfies the the constant
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rank hypothesis and the eikonal equation on Ω. Given gj(x) ∈ C∞(Ω0) satisfying π(0, x)gj = gj ,
there is one and only one sequence aj ∈ C∞(Ω) satisfying (5.3.4) and the initial conditions

π(0, x) aj(0, x) = gj(x) j = 0, 1, · · · . (5.3.13)

As initial data, what is needed is the projections π(y) aj(0, x). For j = 0 this is equal to a0. For
j ≥ 1, it is only part of the values of aj |t=0. Those amplitudes are not in general polarized.

Proof of Theorem. Denote by (5.3.4j) the case j of (5.3.4). Each equation (5.3.4j) is equivalent
to a pair of equations,

(5.3.4j) ⇐⇒ π(y)(5.3.4j) and
(
I − π(y)

)
(5.3.4j) .

At the same time note that since Q is an isomorphism on Range (I − π(y)),

(
I − π(y)

)
(5.3.4j) ⇐⇒ Q(y)(5.3.4j) .

We will show that for each J , there are uniquely determined aj for j ≤ J satisfying

(5.3.4j) and π(y)aj |t=0 = gj for j ≤ J, π(y)(5.3.4(J + 1)).

The proof is inductive. Suppose that j ≥ 0 and that a−1, . . . , aj−1 are determined and the profile
equations up to π(5.3.4j) are satisfied.

Multiplying (5.3.4j) by Q shows that

(
I − π(y)

)
(5.3.4j) ⇐⇒

(
I − π

)
aj = −QL(y, ∂y) aj−1 . (5.3.14)

Thus, (I − π)aj is determined from aj−1.

Express
aj = π aj + (I − π) aj = π aj − QL(y, ∂y) aj−1 .

Inject this into π(y)(5.3.4(j + 1)) to find

π(y)L(y, ∂y)π(y) aj = fj , fj := π(y)L(y, ∂y)QL(y, ∂y) aj−1 . (5.3.15)

Reversing the steps shows that if (5.3.14) and (5.3.15) imply the equations (I − π(y))(5.3.4j) and
π(y)(5.3.4(j + 1)).

Thus, to prove the iductive step it suffices to show that the equations (5.3.14) and (5.3.15) are
uniquely solvable for π(y)aj for arbitrary initial data π(y)aj(0, y) = gj . That is the content of the
next Lemma which completes the proof.

Lemma 5.3.3. For any f ∈ C∞(Ω) and g ∈ C∞(Ω0) satisfying

π(y) g = g , π(y) f = f ,

there is a unique w ∈ C∞(Ω) satisfying

π(y)L(y, ∂y)π(y)w = f , π(y)w = w , w
∣∣
t=0

= g .
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Proof of Lemma. For a solution, π w = w so the differential equation implies that one piLπ w =
0. Since (I − π)w = 0 one has ((−π)L (I − π)w = 0. Adding yields,

π Lπ w + (I − π)L (I − π)w = f . (5.3.16)

The result is proved by showing that the differential operator L̃ := π Lπ + (I − π)L (I − π) is

symmetric hyperbolic and for all y, T (y, L) ⊃ T (y, L̃). This last comparison implies that the

propagation cones of L̃ are contained in the propagtion cones of L. Therefore, Ω is also a domain
of determinacy for L̃.

The coefficient matrices of L̃ are,

Ãµ := π Aµπ + (I − π)Aµ (I − π).

They are symmetric since Aµ and π are. The coefficient of ∂t is

Ã0 := π A0π + (I − π)A0 (I − π)

Since A0 is postive definite one estimates with c > 0,

〈Ã0v , v〉 = 〈πA0 π v , v〉 + 〈(I − π)A0 (I − π) v , v〉
= 〈A0 π v , π v〉 + 〈A0 (I − π)v , (I − π)v〉 ≥ c

(
‖π v‖2 + ‖(I − π)v‖2

)
= c‖v‖2,

proving that L̃ is symmetric hyperbolic on Ω

For the comparison of timelike cones, it suffices to remark that if L1(y, η) ≥ 0, then

L̃1(y, η) = πL1(y, η)π + (I − π)L1(y, η)(I − π) ≥ 0

as the sum of nonnegative matrices.

Theorem 2.6.1 then implies that for a given initial data w(0, x), (5.3.16) has a solution on Ω. This
proves uniqueness of w.

To prove existence, we show that the function w so constructed solves the equations of the Lemma.
Multiplying (5.3.16) by π(y) shows that the solution w satisfies

π(y)L(y, ∂y)π(y)w = f . (5.3.18)

Thus, if w satisfies (5.3.16) then so does v := πw. Since v = w at t = 0, it follows that v satisfies
the same symmetric hyperbolic initial value problem as w so

π(y)w = w . (5.3.19)

This together with (5.3.18) yields the equations of the Lemma completing the existence proof.

The Lemma completes the proof of Theorem 5.3.2.

Remark. An alternate approach to the Lemma is to consider g as a kerL1(y, dφ(y)) valued
function. The operator g 7→ π(y)L(y, ∂y) g maps such functions to themselves. Choosing a smooth
orthonormal basis ej(y), 1 ≤ j ≤ k for kerL1(y, dφ(y)) and expanding w =

∑
wj(y)ej(y) yields a
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symmetric hyperbolic system for the wj . Such bases exist locally. To avoid the choice of bases one
can consider symmetric hyperbolic systems on hermitian vector bundles. The proof above avoids
appealing to that abstract framework.

The next result proves that the asymptotic solutions differ by an infinitely small quantity from
exact solutions.

Theorem 5.3.4. [Lax, 1957]. Suppose that Ω, φ, and aj are as in the Theorem 5.3.2 and that

a(ǫ, y) ∼
∞∑

j=0

ǫj aj(y) in C∞(Ω) .

Suppose that u(ǫ, y) ∈ C∞(Ω) is the exact solution of the initial value problem

L(y, ∂y)u(ǫ, y) = 0 , u(ǫ, 0, x) = a(ǫ, 0, x) eiφ(0,x)/ǫ . (5.3.20)

Then
u(ǫ, y) − eiφ(y)/ǫ a(ǫ, y) ∼ 0, in C∞(Ω) . (5.3.21)

Remark. As in Theorem 4.3.3, neither the family of exact solution uǫ nor the family of approxi-
mation eiφ(y)/ǫ a(ǫ, y) is smooth at ǫ = 0.

Proof. For any m, s ∈ N there is a constant C so that

‖L(y, ∂y)
(
u(ǫ, y) − eiφ(y)/ǫ a(ǫ, y)

)
‖Hs(Ω) ≤ C ǫm ,

and
‖u(ǫ, 0, x) − eiφ(0,x)/ǫ a(0, x) ‖Hs(Ω0)

≤ C ǫm .

The basic linear Hs energy estimate from §2 implies that

‖u(ǫ, y) − eiφ(y)/ǫ a(ǫ, y)‖Hs(Ω) ≤ C ′(T,m, s) ǫm .

Since this is true for all m, s the result follows from Sobolev’s Embedding Theorem.

For the study of nonlinear equations, it is important to understand the effect of oscillatory source
terms. The case of nowhere characteristic phase is treated in Chapter 4. The case of an everywhere
characteristic phase is analysed exactly as above. The result is the following.

Theorem 5.3.5. [Lax, 1957]. Suppose that the domain of determinacy Ω and the real phase
φ satisfying the eikonal equation are as above. Given smooth functions bj ∈ C∞(Ω) there are
uniquely determined amplitudes aj ∈ C∞(Ω) satisfying π(y)aj(0, x) = 0 and a0(0, x) = 0 and so
that if

a(ǫ, y) ∼
∞∑

j=0

ǫj aj(y) and b(ǫ, y) ∼
∞∑

j=0

ǫj bj(y)

then
L(y, ∂y)

(∑
ǫj aj(y) e

iφ(y)/ǫ
)

− b(ǫ, y) eiφ(y)/ǫ ∼ 0 in C∞(ΩT ).
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The principal amplitude is determined by the pair of equations

π(y) a0 = a0 , π(y)L(y, ∂y)π(y) a0 = b0 , (5.3.22)

with the initial condition a0(0, x) = 0.

Remarks. i. This result shows that a source of size one with characteristic phase yields waves of
size one. This contrasts with the case of noncharacteristic phases in Chapter 4 where the response
is order ǫ.

ii. Once one knows that there is such an infinitely accurate approximation one usually studies
only the leading term, which for ǫ small is dominant. One does NOT compute the correctors in
practice. Their existence is crucial for accurate estimates of the error and its derivatives.

Exercise 5.3.1. Prove Theorem 5.3.5. Discussion. The proof of error estimates is exactly the
same as Theorem 5.3.4.

§5.4 Rays and transport

§5.4.1. The smooth variety hypothesis

One of the key ideas in geometric optics is transport along rays. The equation

π Lπ a0 = 0 (5.4.1)

determines a0 from its polarized initial data. The key and not obvious fact is that under the
smooth variety hypothesis which is satisfied in the vast majority of applications, the differential
operator π(y)L(y, ∂y)π(y) has first order part which is just a directional derivative.

Using the product rule for the derivative ∂µ(πaj) yields

π(y)L(y, ∂y)π(y) =
∑

µ

πAµπ ∂µ +
∑

µ

π(Aµ(∂µπ) +B)π . (5.4.2)

Each matrix π(y)Aµ(y)π(y) defines a linear transformation from kerL1(y, dφ(y)) to itself. Where
the variety is smooth it is true but not obvious that each of these transformations is a scalar
multiple of π(y)A0(y)π(y) so the differential operator is essentially a directional derivative.

Example. When kerL1(y, dφ(y)) is one dimensional, it is easy to see that one gets a directional
derivative. In that case, π(y) is a projector of rank 1, and the polarization π a0 = a0 determines a0

up to a scalar multiple. Since kerL1(y, dφ(y)) is one dimensional, there are uniquely determined
scalars vµ(y) such that

π(y)Aµ(y)π(y) = vµ(y)π(y) .

Similarly there is a unique scalar valued γ(y) such that

π(y)
∑

µ

(
Aµ(∂µπ) + B

)
π(y) = γ(y)π(y) .

Define a vector field V (y, ∂y) by

V (y, ∂y) :=
3∑

µ=0

vµ(y)
∂

∂yµ
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The equation π Lπa0 = 0 is equivalent to the transport equation

V (y, ∂y) a0 + γ(y) a0 = 0 ,

along the integral curves of V .

Example. Consider

L = ∂t +

(
c1(y) 0

0 c2(y)

)
∂

∂x
+ B , c1 > c2 ,

where x ∈ R1. The eikonal equation is

(
φt + c1(y)φx)

) (
φt + c2(y)φx)

)
= 0 .

Phases satisfy the linear eikonal equations (∂t + cj∂x)φ = 0. Consider j = 1. Then the projector
π and principal profile are

π =

(
1 0
0 0

)
, a0 = (a(y) , 0) .

The transport equation is (
∂t + c1(y)∂x + B11(y)

)
a = 0 .

A particularly interresting case is when L = ∂t +G with G antiselfadjoint, precisely

L = ∂t +

(
c1(y) 0

0 c2(y)

)
∂

∂x
+

(
∂xc1(y) 0

0 ∂xc2(y)

)
+ B , B = −B∗ .

In this case solutions of Lu = 0 suitably small as x→ ∞ satisfy

∂t

∫
|u(t, x)|2 dx = 0 .

The transport equation is

(
∂t + c1(y)∂x + ∂xc1 + B11

)
a = 0 , B11(y) ∈ iR .

Where ∂xc > 0 (resp. < 0) the amplitude a decreases (resp. increases) along rays. Where cx > 0
(resp. < 0) neighboring rays spread apart (resp. approach). The energy between neighboring rays
is spread over a larger region in the first case so the amplitude decreases to compensate. In the
second case the energy is compressed and the amplitude increases. These results are illustrated in
the Figure 5.4.1. More general results are presented in the next sections.

Figure 5.4.1. Compression on the left and expansion on the right.

The operator π(y)L(∂)π(y) is a transport operator under the next hypothesis which holds in each
of the examples above.
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Smooth characteristic variety hypothesis. The smooth characteristic variety hypothesis is
satisfied at (y, η) = (τ , ξ) ∈ Char L if there is a neighborhood of (y, η) so that in that neighborhood,

the characteristic variety is a smooth graph τ = τ(y, ξ). †

Theorem 3.I.1 applied to L1(y, τ(y, ξ), ξ) which has 0 as an isolated eigenvalue, implies that
π(y, τ(y, ξ), ξ) and Q(y, τ(y, ξ), ξ) are smooth functions of y, ξ.

Examples. 1. When kerL1(τ, ξ) is one dimensional, the eigenvalue τ of H(y, ξ) is simple. Thus
for (y, ξ) near (y, ξ), there is a unique simple eigenvalue near τ and the smooth variety hypothesis
is satisfied.

2. If L1 = L1(∂) has constant coefficients, it was remarked in §2.4, that the stratification theorem
of real algebraic geometry implies that the set of points where the smooth variety hypothesis is
violated is at most a d− 1 dimensional subvariety. In particular, the smooth variety hypothesis is
satisfied for generic linear phases, φ(y) = y.η, η ∈ CharL.

3. The argument in 2. extends to L1(y, ∂) with real analytic coefficients showing in that case that
with the exception of a codimension one set in CharL, the smooth variety hypothesis is satisfied.

Definitions. If (y, τ, ξ) belongs to the characteristic variety and satisfies the smooth variety
hypothesis, define the group velocity v(y, τ, ξ)) by

v(y, τ, ξ).∂x := −
d∑

j=1

∂τ(y, ξ)

∂ξj

∂

∂xj

If φ(t, x) is a solution of the eikonal equation and the points (y, dyφ(y)) ∈ CharL satisfy the smooth
variety hypothesis with associated function τ(y, ξ), define the associated transport operator by

V (y, ∂y) := ∂t −
d∑

j=1

∂τ

∂ξj
(y, dφ(y))

∂

∂xj
= ∂t + v(y, dφ(y)).∂x . (5.4.3)

A geometric construction leading to in (5.4.3) was given in §2.4. The velocity also appeared in the
nonstationary phase calculation in §1.3. To show that this same velocity is hidden in the leading
profile equation requires an algebraic identity.

Proposition 5.4.1. At characteristic points (y, τ, ξ) where the smooth variety hypothesis is sat-
isfied, the following fundamental algebraic identities hold,

π
(
y, τ(y, ξ), ξ

)
Aj π

(
y, τ(y, ξ), ξ

)
= − ∂τ

∂ξj
πA0 π

(
y, τ(y, ξ), ξ

)
, 1 ≤ j ≤ d .

Example. When kerL1 is not one dimensional, and A0 = I, the operatores πAjπ act as scalars
on kerL1(y, dφ(y)) in spite of their appearence as typical symmetric linear transformations on
that space.

Proof. The variable y acts purely as a parameter and is suppressed. Consider the map

ξj 7→ L1

(
τ(ξ), ξ

)
π
(
τ(ξ), ξ

)
.

† It is sufficient to assume that the variety is locally a continuous graph. The smoothness then
follows from Theorem 3.I.1.
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The matrix on the right has λ = 0 as an isolated eigenvalue of constant multiplicity thanks to the
smooth variety hypothesis.

The perturbation equation (3.I.2) implies that

π(τ(ξ), ξ)
( ∂τ(ξ)
∂ξj

A0 + Aj
)
π(τ(ξ), ξ) = 0 ,

where the term in the middle is the derivative with respect to ξj of L1. This identity is the desired
relation.

Using these identities yields

π(y)Aj(y)π(y)
∂

∂xj
= π(y)A0(y)π(y)

(
− ∂τ(y, dφ(y))

∂ξj

)
∂

∂xj
.

Using this in (5.4.2) together with the definition of the group velocity v(y, dφ(y)) yields

π Lπ = πA0 π
(
∂t + v.∂x

)
+ π

(
B(y) +

∑

µ

Aµ∂µπ
)
π .

The matrix π
(
B +

∑
µAµ∂µπ

)
π annihilates kerπ and maps the image of π to itself. Since π A0 π

is an isomorphism of the image of π to itself, there is a unique smooth matrix valued γ(y) such
that

γ(y) (I − π(y)) = (I − π(y)) γ(y) = 0, and π
(
B +

∑

µ

Aµ∂µπ
)
π = πA0 π γ .

Therefore,

π Lπ = π(y)A0(y)π(y)
(
∂t + v.∂x + γ(y)

)
,

and equation (5.4.1) is equivalent to the homogeneous transport equation,

(
∂t + v.∂x + γ(y)

)
a0 = 0 . (5.4.4)

Definition. The integral curves of ∂t + v.∂x are called rays associated to φ. Equation (5.4.4) is
called the transport equation for a0.

Solving equation (5.4.4) amounts to solving ordinary differential equations. When the smooth
variety hypothesis is satisfied, the operator π Lπ is essentially a linear transport operator and the
existence theorem Theorem 5.3.2 can be strengthened.

Theorem 5.4.2. Suppose that φ satisfies the eikonal equation on a set Ω, the smooth variety
hypothesis is satisfied at the points (y, dφ(y)), and, for each point in Ω the backward ray can
be continued in Ω till it reaches t = 0. Then for the asymptotic solutions of L(a eiφ/ǫ) ∼ 0 the
determination of the aj from the initial data (π aj)|t=0 ∈ C∞(Ω∩ {t = 0}) reduces to the solution
of inhomgeneous tranport equations

(
∂t + v.∂x + γ(y)

)
a0 = fj ,
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where f0 = 0 and fj = π(y) fj is determined from aj−1. If for all j, the support of π(y) aj |t=0 is
contained in a set E then the aj are supported in the tube of rays with feet in E.

When the smooth variety hypothesis is satisfied let p denote the dimension of kerL1(y, η)). Then
p is also the dimension for nearby characteristic points since π(y, τ(y, ξ), ξ) is smooth. Division of
polynomials depending smoothly on y, ξ shows that

detL(y, η) = (τ − τ(y, ξ))pK(y, ξ), K ∈ C∞, K(y, ξ) 6= 0.

Therefore phases can be determined from their initial data applying Hamilton-Jacobi Theory to
the reduced eikonal equation

φt(y) = τ(y,∇xφ(t, x)) . (5.4.5)

as in the discussion before the Constant Rank Hypothesis with G := (τ − τ(y, ξ)).

Introduce the hamiltonian,

H(y, η) = H(t, x, τ, ξ) := τ − τ(y, ξ) = τ − τ(t, x, ξ) ,

and its Hamlton vector field

XH :=
d∑

µ=0

( ∂H
∂ηµ

∂

∂yµ
− ∂H

∂yµ

∂

∂ηµ

)
. (5.4.6)

Hamilton-Jacobi theory shows that the graph of dφ, that is {(y, dφ(y))}, is generated from the
initial points, (0, x, τ(0, x,∇xφ(0, x)),∇xφ(0, x)), by flowing along the the integral curves of XH .

The function H is constant on integral curves. The integral curves along which H = 0 are curves
in (y, η) space which lie in the characteristic variety and are called bicharacteristics or null bichar-
acteristics. The graph of dφ is foliated by a family of bicharacteristics parameterized by initial
points over {t = 0}. The definitions of XH V yield the following result.

Theorem 5.4.3. Suppose that φ satisfies the eikonal equation and the points
(
y, dφ(y)

)
satisfy

the smooth characteristic variety hypothesis so (5.4.5) holds. Then, the projection on spacetime
of the bicharacteristics foliating the graph of dφ are exactly the rays. Equivalently,

d∑

µ=0

∂H

∂ηµ
(y, dφ(y))

∂

∂yµ
= ∂t + v.∂x . (5.4.7)

Remark on numerics. If you find φ by solving the Hamilton-Jacobi equation using bicharacter-
istics, you will have computed integral curves of the vector field (5.4.6). The amplitude a0 satisfy
transport equations along the space time projections of these curves. The additional computational
cost required to determine the a0 is negligible. This is true theoretically and also when the theory
is used for numerical simulations. This method has numerical defects when rays grow far apart,
since then the phase φ and amplitudes are determined at a sparse set of points. There is a well
developed computational art of inserting new rays to help overcome this weakness. The methods
are called ray tracing algorithms.

§5.4.2. Transport for L = L1(∂)

143



When L = L1(∂) has constant coefficients and no lower order terms the transport equation for
phases with (y, dφ(y)) satisfying the smooth variety hypothesis can be understood in purely geo-
metric terms. To simplify the formulas we suppose that A0 = I which can always be achieved by

the change of variable u = A
−1/2
0 ũ.

Theorem 5.4.4. Suppose that L = L1(∂) has constant coefficients, no lower order terms, and
A0 = I. Suppose φ solves the eikonal equation and the points (y, dφ(y)) satisfy the smooth
characteristic variety hypothesis. Then when π(y)w = w, one has

π(y)L(∂)w =
(
∂t + v(y).∂x +

1

2
div v

)
w , (5.4.8)

where v denotes the group velocity determined by φ. The transport equation determining a0 is

(
∂t + v(y).∂x +

1

2
div v

)
a0 = 0 . (5.4.9)

The divergence of v involves second derivatives of τ . The calculation, from [Gues-Rauch, 2006],
uses second order perturbation theory from Theorem 3.I.2.

Proof. In π L(∂)w, write the spatial derivatives as

πAj∂jw = πAj∂j (πw) = π Aj π ∂jw + π Aj(∂jπ)π w .

The eikonal equation satisfied by φ is (5.4.5). Consider the eigenvalue −τ(ξ) and eigenprojection
π(ξ) of the matrix A(ξ) :=

∑
j Ajξj as functions of the parameter ξj . Formula (3.I.2) implies that

πAj π = − ∂τ

∂ξj
π = vjπ . (5.4.10)

Consider −τ(sξ) as an eigenvalue of
∑
j Ajsξj . Since the second derivative of

∑
j Ajsξj with

respect to s vanishes, formula (3.I.3) implies that

−π d2

ds2
τ(sξ) =

∑

i,j

π
∂2τ

∂ξi∂ξj
ξi ξj = −2π

d

ds

(∑

j

Ajsξj

)
Q
d

ds

(∑

i

Aisξi

)
π

= −2π
(∑

j

Ajξj

)
Q
(∑

i

Aiξi

)
π

= −2
∑

i,j

πAjQAiξjξi π .

Symmetrizing the right hand side yields

∂2τ

∂ξj∂ξk
π = −πAjQAkπ − πAkQAjπ. (5.4.11)

Next consider the eigenvalue −τ(∇xφ) and eigenprojections π(y) of M(y) :=
∑

k Ak∂kφ(y) as
functions of the parameter xj . The formula (3.I.4) yields

(∂jπ)π = −Q∂jM π = −Q
∑

k

Ak π
∂2φ

∂xk∂xj
.
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Using (5.4.11) yields,

π Aj (∂jπ)π = −
∑

k

πAjQAkπ
∂2φ

∂xk∂xj
=
∑

k

1

2

∂2τ

∂ξj∂ξk

∂2φ

∂xk∂xj
π .

Differentiating v = −∇ξτ
(
∇xφ(y)

)
shows that

divv = −
∑

j

∂

∂xj

∂τ(∇xφ)

∂ξj
=
∑

j,k

∂2τ

∂ξj∂ξk

∂2φ

∂xk∂xj
= .

Therefore, ∑

j

π Aj (∂jπ)π =
1

2

(
div v

)
π . (5.4.12)

Combining (5.4.10), (5.4.11), (5.4.12) with the first identity of the proof yields when w = π w,

π L(∂)w = π
(
∂t + v.∂x

)
w +

1

2

(
divv

)
w .

Since ∇xφ is constant along integral curves of ∂t + v.∂x it follows that π(y) is also constant so

π
(
∂t + v.∂x

)
w =

(
∂t + v.∂x

)
πw =

(
∂t + v.∂x

)
w ,

and the proof of the Theorem is complete.

Exercise 5.4.1. The corresponding computation in the scalar case is simpler. For a homogeneous
second order scalar strictly hyperbolic operator without lower order terms, modify the computation
of §5.2 to treat the case of nonlinear phases φ(y). In particular find a formula for the associated
group velocity v and show that the leading amplitude a0 satisfies (5.4.9).

Both φ and ∇xφ are constant on the ray which start at point (0, x) and has velocity given by(
1,−τξ(∇xφ0(x))

)
= (1,v). This ray has equation,

t 7→
(
t , x+ tv

(
∇xφ(0, x)

))
:=

(
t,Φ(t, x)

)
. (5.4.13)

The rays t 7→
(
t,Φ(t, x)

)
are integral curves of the vector field ∂t + v.∂x. Equivalently,

d

dt

(
t,Φ(t, x)

)
=
(
1 , v(Φ(t, x))

)
, Φ(0, x) = x .

This equation shows that Φ is the flow of the time dependent vector field v,

d

dt
Φ(t, x) = v(Φ(t, x)) , Φ(0, x) = x .

The Jacobian determinant,
J(t, x) := det

(
DxΦ(t, x)

)
,

describes the infinitesimal deformation of d dimensional volumes as in (5.4.20) below.
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Differentiating with respect to x yields the evolution of DxΦ(t, x),

d

dt
DxΦ(t, x) =

(
Dxv

)
(Φ(t, x)) DxΦ(t, x) .

For x fixed this is an equation of the form

dM

dt
= A(t)M(t),

where A and M are smooth N ×N matrix valued functions. It follows that

d detM

dt
=
(
traceA(t)

)
detM .

This follows from the following three estimates as ∆t→ 0,

M(t+ ∆t) = (I +A(t)∆t)M(t) + O((∆t)2),

detM(t+ ∆t) = det(I +A(t)∆t) detM(t) + O((∆t)2) ,

det(I + A(t)∆t) = 1 + traceA(t) ∆t + O((∆t)2) .

Applying the formula for (detM)′ yields,

d

dt
J(t, x) = trace

(
Dxv

(
Φ(t, x)

)
J =

(
div v(Φ(t, x)

)
J . (5.4.14)

Corollary 5.4.5 The amplitude a0 = π(y) a0 satisfies the transport equation (5.4.9) if and only if
the function

a0(t,Φ(t, x))
√
J(t, x) (5.4.15)

does not depend on t.

Proof. Equation (2.8) implies that
√
J(t, x) satisfies

∂t
√
J(t, x) =

1

2
√
J(t, x)

∂tJ =
1

2

(
div v)(Φ(t, x)

) √
J(t, x) .

Therefore

∂t

(
a0(t,Φ(t, x))

√
J(t, x)

)

=
(
∂t
√
J(t, x)

)
a0(t,Φ(t, x)) +

√
J(t, x)

(
∂ta0 + v.∂xa0

)(
t,Φ(t, x)

)
.

Using the formula for ∂t
√
J(t, x), yields

∂t

(
a0(t,Φ(t, x))

√
J(t, x)

)
=
√
J(t, x)

(
∂ta0 + v.∂xa0 +

1

2

(
div v

)
a0

)(
t,Φ(t, x)

)
.

For fixed t denote byX = Φ(t, x) the point on the ray whose initial point is x. Then the infinitesimal
volumes satisfy

dX =

∣∣∣∣det
∂X

∂x

∣∣∣∣ dx = J(t, x) dx . (5.4.20)
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Equation (5.4.15) implies that

|a0(t,X)|2 J(t, x) = |a0(0, x)|2 , equivalently |a0(t,X)|2 dX = |a0(0, x)
2| dx .

This is an infintesimal conservation of energy law.

If ω ⊂ {t = 0} is a nice bounded open set the family of rays starting in ω is called a bundle or tube
of rays. It is denoted T and its section at time t is denoted ω(t). In particular, ω = ω(0). Then,

∫

ω

|a0(0, x)
2| dx =

∫

ω(t)

|a0(t,X)|2 dX . (5.4.21)

Since A0 = I, the energy density for solutions of Lu = 0 is 〈u,A0u〉 = 〈u, u〉. Equation (5.4.21)
shows that to leading order, the energy in any tube of rays is conserved.

Example. Linear phases. Suppose that φ(y) = tτ+x.ξ is linear and satisfies the smooth variety
hypothesis. The group velocity v = −∇ξτ(ξ) is then constant and the rays are lines in space time
with this velocity. The divergence of v vanishes, so a0 is constant on rays, so a0(t, x) = g(x− tv)
where g(x) := a0(0, x) is the initial value of a0. The leading approximation is

ei(tτ+x.ξ)/ǫ g(x− tv) , π g = g .

This generalizes the result obtained in §1.2.

The transport equation and its solution in the last two results depend only the phase φ and its
associated group velocity. Two constant coefficient homogeneous systems leading to the same
eikonal equation (5.4.5) lead to the same profile equation. For example Maxwell’s equations, Dirac
equations, and the wave equation all have the same eikonal equation ∂tφ

2 = |∇xφ|2 so their
principal profiles satisfy the same transport equations. A third example is the operator

L := ∂t +

(
1 0
0 −1

)
∂

∂x1
+

(
0 1
1 0

)
∂

∂x2
. (5.4.16)

The characteristic polynomial is detL1(τ, ξ) = τ2 − |ξ|2 and the eikonal equation is φ2
t = |∇xφ|2.

The computation that follows is performed in dimension d. The case d = 3 applies to Maxwell’s
equations. The computation for any d applies to any Lorentz invariant field equation without lower
order terms, e.g. the wave equation.

Example. Outgoing spherical solutions of φ2
t = |∇xφ|2. A particular solution of φ2

t = |∇xφ|2
for |x| 6= 0 is,

φ(y) := t− |x| , φt = |∇xφ| . (5.4.17)

With τ(ξ) = |ξ|, the group velocity is

v = −∇ξτ(∇xφ) = − ξ

|ξ|

∣∣∣∣
ξ=∇xφ

=
x

|x| .

Since

∂j
xj
|x| =

1

|x| + xj∂j
1

|x| , div v =
d

|x| + r∂r(r
−1) =

d

|x| − r

r2
=
d− 1

|x| .
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The rays move radially away from the origin with speed equal to one. The flow is given by

Φ(t, x) = x + t
x

|x| .

The annulus ρ < r < ρ+ δρ is mapped to the annulus ρ+ t < r < ρ+ t+ δρ.

Figure 5.4.1. Outgoing annulus has growing volume

Considering δρ << 1 shows that the volume is amplified by
(
(ρ+t)/ρ

)d−1
. Therefore the Jacobian,

which depends only on |x|, is given by

J(t, x) =

( |x| + t

|x|

)d−1

. (5.4.18)

Given initial values a0(0, x) = g(x) ∈ C∞
0 (Rd \ 0) the amplitude a0 is defined for all t ≥ 0 and has

support in the set of outgoing rays with feet in the initial support. Equation (5.4.15) yields

a0(t, x+ tx/|x|) J(t, x)1/2 = a0(0, x) , so a0(t, x) = g(x− tx/|x|)
( |x|
|x| + t

)(d−1)/2

.

The leading term in the geometric optics approximation is

ei(t−|x|)/ǫ g(x− tx/|x|)
( |x|
|x| + t

)(d−1)/2

. (5.4.19)

Exercise 5.4.2. Compute formula (5.4.15) for the Jacobian directly using the definition of J(t, x)
and/or (5.4.14).

Example. Incoming spherical solutions of φ2
t = |∇xφ|2. The preceding example has an

important sibling. If one considers the outgoing example for times t < 0, the level sets φ = const.
are incoming spherical shells, which focus to a point. If the closest point to the origin in the support
of a0(t, x) is at distance r, then the equation for the amplitude becomes singular at t = −r.
Equivalently, had we considered the phase φ(t, x) = t + |x|, the group velocity would have been
v = −x/|x| and the wavefonts would be incominging.

Figure 5.4.2. Incoming or focussing wavefronts.
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The leading approximation of geometric optics for such focussing spherical wavefronts is,

ei(t+|x|)/ǫ g(x+ tx/|x|)
( |x|
|x| − t

)(d−1)/2

. (5.4.21)

The amplitudes become infinitely large where x = t. If you follow a ray approaching the origin,
the amplitudes grow to compensate for the volume compression. When a spherical front focuses
to a point, the amplitude explodes. For ǫ fixed, the initial data are smooth and the exact solution
of the initial value problem is smooth. BUT, the approximation of geometric optics becomes
infinitely large at focal points. The conclusion is that in a small neighborhood of the focal point,
the approximation is inaccurate. What is surprising is that after the focus one finds that, in the
linear case, the approximation becomes accurate again, with the phase changed by an additive
constant called the Guoy shift (see chapter 12.2 of [Hö2]) after the physicist whose two mirror
experiment verified the phenomenon for d = 3.

The geometric optics approximation is valid until the first ray along which a0 is nonzero touches
the origin. For example so long as the rays lie in |x| ≥ δ > 0. Choosing δ small shows that solutions
do grow as they focus. They just do not grow infinitely large.

Exercise 5.4.3. Prove that the solutions of the the wave equation in d = 3 with oscillatory radial
initial data

uǫ(0, r) = a(r) eir/ǫ, uǫt(0, r) = ǫ−1 b(r) eir/ǫ

with smooth compactly supported radial a, b vanishing for r ≤ R, has maximum value that grows
no faster than 1/ǫ as ǫ → 0. Hint. Use the formula for the general radial solution of the d = 3
wave equation,

u =
f(t+ r) − f(t− r)

r
for r 6= 0, u(t, 0) = 2f ′(t).

Find f in terms of a, b. Discussion. i. Each solution uǫ is a sum of an outgoing and an incoming
spherical solution. For δ > 0 and 0 ≤ t ≤ R − δ the solution is supported in r ≥ δ and the
approximations of geometric optics are accurate. When t = R the incoming wave can arrive at the
origin, the phase loses smoothness, and the approximation breaks down. ii. One 0 ≤ t ≤ R − δ,
the family (ǫ∂)αuǫ is bounded as ǫ → 0. The exercise shows that for typical a, b, this is not true
[0, R + 1] × {|x| ≤ 1}.

§5.4.3. Energy transport with variable coefficients

The energy identity (2.3.1) implies that when Lu = 0,

d

dt

∫ 〈
A0(y)u(t, x), u(t, x)

〉
dx+

∫ 〈
(B +B∗ −

∑ ∂Aµ
∂yµ

)u(t, x), u(t, x)
〉
dx = 0.

Denote,

Z(y) := B + B∗ −
∑

∂µAµ .

Definition. A symmetric hyperbolic system is conservative when

B + B∗ −
∑ ∂Aµ

∂yµ
≡ 0 . (5.4.22)
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Since Cauchy data at time t are abitrary, one has the following equivalence.

Proposition 5.4.6. A system is conservative if and only if
∫

Rd〈A0u(t, x), u(t, x)〉 dx is independent
of time for all solutions of Lu = 0 whose Cauchy data are compactly supported in x.

Theorem 5.4.7. Suppose that L is conservative, and, the smooth characteristic variety hypothesis
is satisfied at all points

(
y, dφ(y)

)
over a tube of rays T with sections ω(t). If a(ǫ, y)eiφ(y)/ǫ is an

asymptotic solution of Lu ∼ 0, then at leading order, the energy in the tube is conserved, that is

∫

ω(t)

〈
A0(y) a0(t, x), a0(t, x)

〉
dx (5.4.23)

is independent of t.

Proof. For 0 < δ << 1, choose a cutoff function 0 ≤ χδ(x) ≤ 1 such that χ is equal to one on ω0

and χ(x) = 0 when dist (x, ω0) > δ. Construct a Lax solution ã(ǫ, y)eiφ(y)/ǫ with

ã0(0, x) = χδ(x) a0(x) . (5.4.24)

Then Lax’s Theorem together with conservation of energy implies that for all m and t

∫

Rd

〈
A0 ã(ǫ, t, x), ã(ǫ, t, x)

〉
dx −

∫

Rd

〈
A0 ã(0, x), ã(0, x)

〉
dx = O(ǫm) .

In addition the quantity on the left is controlled by its principal term, so

∫

Rd

〈
A0 ã0(t, x), ã0(t, x)

〉
dx −

∫

Rd

〈
A0 ã0(0, x), ã0(0, x)

〉
dx = O(ǫ) . (5.4.25)

Since the left hand side is independent of ǫ it must vanish identically.

The amplitudes ã are uniformly bounded for bounded t and for δ < 1. They differ from a on a set
of measure O(δ). Therefore, for all t

∫

Rd

〈
A0 ã0(t, x), ã0(t, x)

〉
dx −

∫

ω(t)

〈
A0 a0(t, x), a0(t, x)

〉
dx = O(δ) . (5.4.26)

The result follows from (5.4.24) and (5.4.25) by letting δ tend to zero.

Consider ω(0) shrinking to a point x so the tube converges to the ray through x. Then

vol (ω(t))

vol (ω(0))
→ J(t, x) (5.4.27)

where J(t, x) is the jacobian det dΨ
dx

of the flow Ψ(t, x) generated by the vector field V .

The law of conservation of energy applied to a tube of diameter δ implies that

vol (ω(t))
〈
A0(ψ(t, x)) a0(ψ(t, x)) , a0(ψ(t, x))

〉
=

vol (ω(0))
〈
A0(ψ(0, x))a0(ψ(0, x)) , a0(ψ(0, x))

〉
(1 +O(δ)) .
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Dividing by vol (ω(0)) and passing to the limit δ → 0 implies that the quantity

〈
A0(ψ(t, x)) a0(ψ(t, x)) , a0(ψ(t, x))

〉
J(t, x)

is independent of t proving the next result.

Corollary 5.4.8. Suppose that the the smooth characteristic variety hypothesis is satisfied at all
points

(
y, dφ(y)

)
over a tube of rays T , and that the system L is conservative. If a(ǫ, y)eiφ(y)/ǫ is

an asymptotic solution of Lu ∼ 0, then the quantity

〈
A0(y) a0(y) , a0(y)

〉
J(y)

is constant on the rays associated to φ.

Remark. This shows that for converative problems the size of the leading amplitude a0 is deter-
mined from its initial size entirely by conservation and volume deformation. This is weaker than
the results for L = L1(∂) where volume deformation alone determined the exact values of a0.

The above results show that there is negligible energy flux into or out of the tube of rays. We
give an alternate proof which allows us to generalize the results to nonconservative problems. The
point of departure is the energy law (2.3.1). For a smooth w, the energy flux per unit area across
an element of hypersurface dσ with unit outward conormal ν is given by

〈∑

µ

νµAµ w , w
〉
.

Proposition 5.4.9. Suppose that φ satisfies the eikonal equation and
(
y, dφ(y)

)
satisfies the

smooth variety hypothesis. Then transport is along (1,v) = (1,−∇ξτ(y,∇xφ(y)). If the conormal
to an infinitesimal hypersuface element dσ is orthogonal to (1,v), that is,

ν0 +
∑

j

νj vj = 0 , (5.4.28)

then, for any polarized w = π(y, dφ(y))w, the flux through dσ vanishes,

〈∑

µ

νµ Aµw , w
〉

= 0 . (5.4.29)

Proof. Using the polarization, the flux is equal to

〈∑

µ

νµAµ w , w
〉

=
〈∑

µ

νµ Aµ π w , π w
〉

=
〈∑

µ

νµ π Aµ π w , w
〉
.

The identity of Theorem 5.4.1 implies that this is equal to

〈(
ν0 +

∑

j

νj vj
)
πA0 π w , w

〉
,

which vanishes thanks to (5.4.28).
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Corollary 5.4.10. If φ satisfies the eikonal equation and the smooth variety hypothesis on a tube
of rays, and w = π w satisfies the the profile equation π Lπ w = 0, then along each ray (t,Φ(t, x))
of T the energy density satisfies

∂

∂t

(〈
A0 w , w

〉
(t,Φ(t,x))

J(t, x)

)
+
〈
Z w , w

〉
(t,Φ(t,x))

J(t, x) = 0 . (5.4.30)

Remark. In the conservative case, Z = 0, one recovers Corollary 5.4.9.

Proof. Using the polarization and transport equation yields

〈
Lw , w

〉
=
〈
Lπ w , π w

〉
=
〈
π Lπ w , w

〉
= 0 .

The energy identity (2.3.1) yields the conservation law

∑

µ

∂µ

〈
Aµw , w

〉
+
〈
Z w , w

〉
= 0 .

Integrate over the tube from t = 0 to t. The lateral boundaries of the tube are foliated by
rays. Therefore the conormal to the lateral boundaries are orthogonal to the transport direction.
Proposition 5.3.9 shows that the flux through the lateral boundaries vanishes. Therefore,

∫

ω(t)

〈
A0 w , w

〉
dx +

∫ t

0

∫

ω(s)

〈
Z w , w

〉
dx ds =

∫

ω(0)

〈
A0 w , w

〉
dx .

Dividing by the volume of ω(0) and shrinking ω(0) to the single point x, the tube contracts to the
ray (t,Φ(t, x)) and one finds using (5.4.27) that

〈
A0 w , w

〉
(t,Φ(t,x))

J(t, x) +

∫ t

0

〈
Z w , w

〉
(s,Φ(s,x))

J(s, x) ds =
〈
A0 w , w

〉
(0,x)

.

This is equivalent to (5.4.30).

§5.5. The Lax parametrix and propagation of singularities

The seminal paper [Lax, 1957] made several crucial advances. It systematized the formal aspects
of the high frequency asymptotic solutions in the strictly hyperbolic case and showed how to prove
their accuracy using energy estimates. Taking a very large step toward the creation of Fourier
Integral Operators, it used these solutions to solve the the Cauchy problem with distribution
initial data up to a smooth error, at least for small time. The necessity of small time comes from
the fact that the nonlinear eikonal equations are solvable only locally in time.

The locality in time was removed as a hypothesis by Ludwig [Lu] by piecing together the local
solutions and making a nonstationary phase argument which is a special case of general results of
Hörmander on the compostion of Fourier Integral Operators.

In the late sixties, Hörmander introduced the wavefront set. This refined the notion of singular
support motivated by work of Sato in the analytic category. In this section we show that using
the notion of wavefront set, the local construction of Lax gives the global result of Ludwig and
Hörmander.
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§5.5.1. The Lax parametrix

The point of departure is a representation of the solution of the initial value problem,

Lu = 0 , u(0, x) = f(x) ⊂ ∪sHs(Rd) , (5.5.1)

using the Fourier integral representation of the initial data,

f(x) = (2π)−d/2
∫
eixξ f̂(ξ) dξ . (5.5.2)

From the point of view of singularities, only large ξ are important. The solution of initial value
problems with data eixξ f̂(ξ) with |ξ| >> 1 are the key ingredients.

As in the treatment of elliptic regularity, introduce ω := ξ/|ξ| and ǫ = 1/|ξ|. The initial data of

interest are eix.ω/ǫ f̂(ξ). This is a family of short wavelength data parameterized by {|ω| = 1}.

Convention. By a linear change of dependent variable we may, without loss of generality assume
that A0 = I for the remainder of §5.5.

Hypothesis. Suppose that the smooth characteristic variety hypothesis holds at every point of
the characteristic variety. In addition, assume that the distance between the sheets of the variety
is bounded below by C|η| uniformly in y.

Remarks. i. Since there is finite speed of propagation, the uniform separation hypothesis as
|y| → ∞ is just for convenience and simplicity of statements.

ii. If one assumes the smooth variety characteristic hypothesis only along a neighborhood of a
bicharacteristic, there is an analogous construction microlocally along that curve.

This hypothesis implies that the eigenvalues λν(t, x, ξ) of −∑j ξjAj are defined and smooth in
ξ 6= 0 and are uniquely determined by the ordering λν < λν+1, and,

CharL = ∪ν
{
τ = λν(t, x, ξ)

}
.

Define
πν(t, x, ξ) := πµ(t, x, λν(t, x, ξ), ξ) , (5.5.3)

to be the projection along the range and onto the kernel of L(t, x, λν(t, x, ξ), ξ). Since A0 =
I these are also the orthogonal projections onto the eigenspace associated to λν . The rank of
πν(t, x, λν(t, x, ξ), ξ) is constant on each connected sheet of the variety. One says that L has
constant multiplicity. In addition,

∑

ν

πν(t, x, ξ) = I .

Define φν(t, t
′, x, ξ) as the solution of the eikonal equation

∂tφν = λν(t, x,∇xφµ) , φν(t, t
′, x, ξ)

∣∣
t=t′

= x.ξ . (5.5.4)

Since φν is positive homogeneous of degree one in ξ, it suffices to consider |ξ| = 1. Choose T > 0
so that for each ν, t′, |ξ| = 1 the solution of the eikonal equation (5.5.4) exists and is smooth on
]t′ − 2T, t′ + 2T [×Rd.
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Begin with the choice t′ = 0 and for ease of reading, suppress the t′ dependence of φν . Seek matrix
valued asymptotic solutions

Uν = eiφν(y,ω)/ǫ aν(ǫ, y, ω) , aν(ǫ, y, ξ) ∼
∞∑

j=0

ǫj aν,j(t, x, ω). (5.5.5)

For the matrix valued solution Uν , one either repeats the derivation of the equations for the
profiles, or reasons column by column. From either point of view it is no harder to consider matrix
valued asymptotic solutions than the vector valued case.

Seek Uν so that

LUν ∼ 0 ,
∑

ν,j

ǫj aν,j(0,x) ∼ I (5.5.6)

The Lax parametrix for the initial value problem (5.5.1) is then

uapprox :=
∑

ν

uν , uν :=

∫
aν(ǫ, y, ξ) e

iφν(t,x,ω)/ǫ χ(ξ) f̂(ξ) dξ . (5.5.7)

The expression emphasizes the parameter ǫ and the origin in the short wavelength asymptotics.

We next determine smooth initial values of πν(0, x) aν,j(0, x) to achieve the second relation in
(5.5.6). The leading symbols aν,0 must satisfy

∑

ν

aν,0 = I , πν aν,0 = aν,0 .

Multiplying the first by πν shows that these two equations uniquely determine

aν,0(0, x, ω) = πν(0, x, ω) .

Transport equations

(
∂t + v(y, ω).∂x + πν

(
B + (Lπ)

)
πν

)
aν,0 = 0 . πν = πν(y,∇xφ(y, ω))

then determine aν,0,ω. Since πν and vν are smooth and homogeneous in ξ 6= 0, it follows that the
tranport equations are solvable with uniform estimates on {|t| < 2T} × Rd × {|ω| = 1}.
The components (I − πν)aν,1 are determined from aν,0 by,

(I − πν) aν,1 = −Qν L(y, ∂y) aν,0 ,

where Qν(y) is the partial inverse of L(y, λν(y, ξ), ξ)|ξ=∇xφ(y).

To achieve (5.5.6), the symbols aν,1 must satisfy

∑

ν

aν,1
∣∣
t=0

= 0 .

Decomposing aν,1 = πνaν,1 + (I − πν)aν,1 yields

(∑

ν

πνaν,1 −
∑

ν

Qν L aν,0

)
t=0

= 0 .
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Multiplying by πν shows that this uniquely determines,

πνaν,1(0, x, ω) =
∑

ν′ 6=ν

πν Qν′ L aν,0(0, x, ω) .

Then transport equations determine πν aν,1 in {|t| ≤ 2T}. Once these are known, algebraic equa-
tions determine (I − πν)aν,2, and so on.

Choose χ(ξ) smooth with support in |ξ| > 1 with χ(ξ) = 1 for |ξ| ≥ 2 and

aν(ǫ, y, ξ) ∼
∑

j

aν,j(y, ω) ǫj in {|ξ| ≥ 1} , ǫ := |ξ|−1 .

The jth term is aν,j(y, ξ/|ξ|)|ξ|−j and is homogeneous of degree −j in ξ. Since ǫ = 1/|ξ| the ǫ
dependence in aν can be omitted and we have

aν(y, ξ) ∼
∑

j

aν,j(y, ω) |ξ|−j in {|ξ| ≥ 1} .

Since the πν and aν are bounded on [−2T, 2T ] × Rd, the integral is absolutely convergent as soon

as f̂ ∈ L1(Rd). The formula

uν(t, x) :=

∫
aν(t, x, ξ) e

i(φν(t,0,x,ξ)−w.ξ) χ(ξ) f(w) dw dξ , (5.5.8)

for of uν in terms of f is not absolutely convergent. The linear map f 7→ u has expression∫
K(t, x,w) f(w) dw with distribution kernel K(t, x,w) given by

K(t, x,w) :=

∫
aν(t, x, ξ) e

i(φν(t,0,x,ξ)−w.ξ) χ(ξ) dξ . (5.5.9)

This oscillatory integral has integrand which is not L1. The next section introduces the technique
used to analyse expressions such as (5.5.8) and (5.5.9).

§5.5.2. Oscillatory integrals and Fourier Integral Operators

In this section, the method of nonstationary phase introduced in §1.3, is used to study oscillatory
integrals. We present the key definitions and two fundamental results (For the full theory of Fourier
integral operators the I recommend [Hörmander 1971] and [Duistermaat].) The two theorems show
that (5.5.8) and (5.5.9) define well defined distribution for any f ∈ E ′(Rd) compute their wave front
sets in terms of the wavefront set of f .

The method of oscillatory integrals is a generalization of the definition of the Fourier transform of
distributions. For example, the expression

δ(x) = (2π)−d
∫

e−ix.ξ dξ

is a familiar oscillatory integral. The interpretation is that for cutoff γ ∈ C∞
0 (Rd) which is equal

to one on a neighborhood of the origin,

lim
ǫ→0

(2π)−d
∫
γ(ǫξ) e−ix.ξ dξ = δ(x) ,
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in the sense of distributions. Equivalently, for test functions ψ(x),

lim
ǫ→0

(2π)−d
∫
ψ(x) γ(ǫξ) e−ix.ξ dξ dx = ψ(0) .

In (5.5.8) one can fix t in which case the output uµ(t) is a distribution on Rdx or one can leave t
as variable in which case the output in a distribution on R1+d

t,x . In the first case the kernel is a
distribution in x,w depending on a parameter t while in the second case the kernel is a distribution
in t, x,w. In (5.5.8) the phase, amplitude, and oscillatory integral are,

φ(y, ξ) := φµ(t, 0, x, ξ) − w.ξ , a(y, ξ) = Uµ πµ χ ,

∫
a(y, ξ) eiφ(y,ξ) dξ .

The phase is homogeneous of degree 1 in ξ. Showing that uµ defines a well defined distribution
requires showing that the expression

∫
ψ(y) a(y, ξ) eiφ(y,ξ) dξ dy

is a continuous linear function of the test function ψ. As in the case of the δ function the analysis
is by cutting off in ξ and analysing the limit.

A typical symbol a behaves like a function homogeneous in ξ perhaps of positive degree. The
integrals and even worse, their y derivatives are not absolutely convergent. The integral is finite
only because of cancellations. Conditionally convergent integrals are often dangerous for analysis.
The theory of oscillatory integrals gives a notable exception.

Definition. If Ω is an open subset of RM then the symbol class Sm(Ω×RN) consists of functions
a(y, ξ) ∈ C∞(Ω × RN ) such that

∀ω ⊂⊂ Ω, ∀(α, β) ∈ NM+N , ∃C, ∀(y, ξ) ∈ ω × RN ,
∣∣∂αy ∂βξ a(y, ξ)

∣∣ ≤ C 〈ξ〉m−|β| .

Examples. 1. Functions a which are everywhere smooth and also positively homogeneous of
degree m in ξ for |ξ| ≥ 1.

2. Finite sums of functions as in 1 with degrees of homogeneity less than or equal to m.

3. The function aµ(y, ξ)χ(ξ) with

aµ ∼
∑

j

|ξ|−j aµ,j(y, ξ/|ξ|) .

belongs to S0(([0, T ] × Rd) × Rd) with symbol estimates, |∂αy ∂βξ a| ≤ C〈ξ〉m−|β| uniform on y ∈
[0, T ] × Rd.

4. The function aµ is an asymptotic sum of homogeneous terms. Such symbols are called poly-
homogeneous and are the most common examples. To avoid singularities at ξ = 0 they must be
multiplied by a cutoff like χ(ξ) to placed them in the classes Sm. For a polyhomogeneous symbol

a(y, ξ) ∼
∑

j≤m

aj(y, ξ)

156



with aj homogeneous of degree j, one has χ(ξ) a ∈ Sm.

Exercise 5.5.1. Prove the assertions in the example.

The results of the next exercise are used in defining oscillatory integrals by passing to the limit in
symbols compactly supported in ξ.

Exercise 5.5.2. Prove the following assertions. i. Sm is a Fréchet space. ii. If γ ∈ C∞
0 (Rdξ) and

γ = 1 on a neighborhood of ξ = 0, then the symbols γ(ǫξ) a, 0 < ǫ ≤ 1 are bounded in Sm. iii.
For any µ < m, γ(ǫξ) a converges to a in Sµ as ǫ→ 0.

Definition. A real valued φ(y, ξ) ∈ C∞
(
Y × (RN \ 0)

)
is a nondegenerate phase function if

it is positive homogeneous of degree one in ξ and has nowhere vanishing gradient ∇y,ξφ.

Examples. The phases −x.ξ and the phase in the Lax parametrix (5.5.8).

Proposition 5.5.1. If φ is a nondegenerate phase function then the map

C∞
0 ∋ ψ 7→

∫
ψ(y) a(y, ξ) eiφ(y,ξ) dξ dy

is well defined for smooth a with compact support in ξ. It extends uniquely by continuity to
a ∈ Sm(Ω × RN ) for any m. For such symbols, it defines a distribution of order k ∈ N provided
k < −m−N .

Proof. For a smooth χ(ξ) vanishing on a neighborhood of ξ = 0 and identically equal to one
outside a compact set, write a = χa+ (1− χ)a. The second term is compactly supported and the
associated map defines a distribution of order −∞. So, it suffices to construct the extension for
symbols which vanish on a neighborhood of ξ = 0. That is done as follows.

Since φ is nondegenerate we can introduce the first order differential operator in ξ 6= 0,

L :=
−i

|∇yφ|2 + |ξ|2 |∇ξφ|2
(
∇yφ.∂y + |ξ|2∇ξφ.∂ξ

)
, so that, Leiφ = eiφ .

The denominator is nonvanishing and homogeneous of degree 2 in ξ. Therefore the coefficient of
∂y (resp. ∂ξ) is homogeneous of degree −1 (resp. 0) in ξ. Away from ξ = 0, the coefficient of ∂y
belongs to S−1 and the coefficient of ∂ξ belongs to S0.

If a is compactly supported and vanishes on a neighborhood of ξ = 0 one has for any k,

∫
ψ(y) a(y, ξ) eiφ(y,ξ) dξ dy =

∫
ψ(y) a(y, ξ) Lk eiφ(y,ξ) dξ dy .

Denote by L† the transpose. Integrating by parts yields

∫
ψ(y) a(y, ξ) eiφ(y,ξ) dξ dy =

∫
eiφ(y,ξ) (L†)k

(
ψ(y) a(y, ξ)

)
dξ dy .

Since L = S−1∂x + S0∂ξ one has away from ξ = 0,

L† = S−1∂x + S0∂ξ + (∂xS
−1) + (∂ξS

0) = S−1∂x + S0∂ξ + S−1 .
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Each summand maps Sr to Sr−1. For a ∈ Sm vanishing on a neighborhood of ξ = 0, it follows
that (L†)k(ψ a) ∈ Sm−k. The integrand in

∫
eiφ(L†)k(ψ a)dξdy is O(〈ξ〉m−k). When k is so large

that m−k < −N it is absolutely integrable. The integral for those values of k yields the extension
by continuity for symbols a ∈ Sm vanishing on a neighborhood of ξ = 0.

For those k, the integral is bounded by C(ω, k)‖ψ‖Ck proving that the distribution has order k.

Exercise 5.5.3. Use Proposition 5.5.1 to estimate the order of δ(x) = (2π)−d
∫
e−ixξ dξ.

Remarks. 1. If γ(ξ) ∈ C∞
0 (RN) is identically equal to one on a neighborhood of ξ = 0, Proposition

5.5.1 shows that,

lim
ǫ→0

∫
γ(ǫξ) eiφ(y,ξ) a(y, ξ) dξ

exists in the topology of distributions of order k. Following the lead of Hörmander and the tradition
of the Fourier transform, the oscillatory integral is simply written as

∫
eiφ a dξ as if it were an

integral.

2. In case m is very negative, the formula yields negative values of k. This corresponds to
u ∈ C−k = C |k|. That conclusion is correct and is justified by direct differentiation under the
integral sign defining the oscillatory integral. In particular, if a ∈ ∩mSm then the distribution is
a C∞ function. Therefore, if a ∼ 0 is polyhomogeneous, the associated distribution is smooth.

Exercise 5.5.4. Prove 2.

3. The proposition allows one to manipulate oscillatory integrals as if they were integrals. For
example, the integration by parts formula

∫
ψaeiφdξdy =

∫
eiφ(L†)k(ψa)dξdy is true for all a ∈ Sm

since the two sides are continuous and are equal on symbols with compact support.

4. If the test function ψ and symbol a depend in a continuous fashion on a parameter then the
associated oscillatory integral also depends continuously on the parameter since it is the uniform
limit of the cutoff oscillatory integrals. Similarly, one justifies differentiation under the (oscillatory)
integral sign.

The next definition uses the notion of the distribution kernel of a linear map. Formally the
operator with distribution kernel A(y1, y2) is given by,

(Au)(y2) =

∫
A(y1, y2) u(y1) dy1 .

The precise version is for u ∈ C∞
0 and test function ζ(y2) ∈ C∞

0 ,

〈ζ(y2) , Au〉 :=
〈
ζ(y2)u(y1) , A

〉
.

Any distribution A defines a continous linear map A : C∞
0 (Ω1) → D′(Ω2).

†

Definition. If Ωj ∈ RNj are open subsets, a continuous linear map A : C∞
0 (Ω1) → D′(Ω2) is

a Fourier Integral Operator when it is given by a kernel, A ∈ D′(Ω1 × Ω2), defined by on
oscillatory integral. Equivalently, the operator is given by a formula

Au(y2) =

∫
a(y1, y2, ξ) e

iφ(y1,y2,ξ) u(y1) dξ dy1 , (5.5.10)

† The converse, called the Schwartz Kernel Theorem is true and is not needed below.
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with amplitude a(y, ξ) ∈ Sm for some m and nondegenerate phase φ(y, ξ).

Examples. 1. With Ω1 = Ω2 andD = 1
i ∂, the identity map and the differential operator aα(y)Dα

have kernels

δ(y2 − y1) = (2π)−d
∫
ei(y2−y1).ξ dξ , (2π)−d

∫
aα(y2) ξ

αei(y2−y1).ξ dξ ,

with φ = (y2 − y1).ξ. For a general differential operator, a(y,D), one inserts the the symbol
of a(y, ξ). Pseudodiferential operators, about which we say very little, are also Fourier Integral
Operators with this same phase. The pseudodifferential operator with symbol a(y, ξ) ∈ Sm has
kernel

(2π)−d
∫

a(y2, ξ) e
i(y2−y1).ξ dξ,

so,

a(y,D)u =

∫
a(y, ξ) eiy,ξ û(ξ) dξ.

2. The operator appearing in the Lax parametrix has the special structure

∫
a(y2, ξ) e

i(φ(y2,ξ)−y1ξ) u(y1) dy1 dξ , ∇y2,ξφ 6= 0 , (5.5.11)

The phase is Φ(y1, y2, ξ) := φ(y2, ξ) − y1.ξ.

Proposition 5.5.2. i. If A is a Fourier Integral Operator with phase φ and amplitude a, then A
maps C∞

0 (Ω1) → C∞(Ω2) when ∇y1,ξφ is nowhere zero on the {ξ 6= 0} ∩ suppa.

ii. The operator extends uniquely to a continuous linear map from E ′(Ω1) → D′(Ω2) provided that
the partial gradient ∇y2,ξφ is nowhere zero on {ξ 6= 0} ∩ supp a.

Examples. All of the preceding examples satisfy i and ii.

Proof of Propostion. i. One has

〈
Au , ψ

〉
=

∫
ψ(y2) u(y1) e

iφ(y1,y2,ξ) a(y1, y2, ξ) dξ dy1 dy2. (5.5.12)

Under the hypotheses the dξ dy1 integral is an oscillatory integral. The nondegenerate phase and
the amplitude depend smoothy on y2. Remark 4 shows that

∫
u(y1) e

iφ(y1,y2,ξ) a(y1, y2, ξ) dξ dy1 ∈ C∞(Ω2),

That this smooth function is equal to Au follows by γ(ǫξ) truncation and passage to the limit.

ii. To show that the operator extends to a continuous linear map from E ′(Ω1) → D′(Ω2) one must
show that ∫

ψ(y2) a(y1, y2, ξ) e
iφ(y1,y2,ξ) u(y1) dξ dy1 dy2 ,

is a continuous functional of ψ ∈ C∞
0 (Ω2) and u ∈ E ′(Ω1). This is so if (and only if) for every test

function ψ ∈ C∞
0 (Ω2) one has

∫
ψ(y2) a(y1, y2, ξ) e

iφ(y1,y2,ξ) dξ dy2 ∈ C∞(Ω1) . (5.5.13)
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The hypothesis of ii guarantees that the phase in (5.5.13) is nondegenerate for the dξ dy2 integra-
tion. This implies (5.5.13) and ii follows.

The next result estimates the action on wave front sets of the class of Fourier Integral Operators
(5.5.11) which arise in the Lax construction. The idea of treating only this class is inspired by
[Taylor 1981]. For more general results see [Hörmander 1971, Duistermaat, Gabor].

Proposition 5.5.3. For a Fourier Integral Operator of the form (5.5.11) with phase φ(y2, ξ)−y1.ξ,
∇y2,ξφ 6= 0, and, u ∈ E ′(Ω1),

WF (Au) ⊂
{

(y2,∇y2φ(y2, ξ)) : ∃(y2, ξ) ∈ suppa,
(
∇ξφ(y2, ξ) , ξ

)
∈WF u

}
. (5.5.14)

Examples. 1. For t fixed consider solutions of the wave equation which are superpositions of the
plane waves ei(−|ξ|t+x.ξ) := eiφ(t,x,ξ),

∫
ei(φ(t,x,ξ)−w.ξ) χ(ξ) f(w) dw dξ , φ(t, x, ξ) = −t|ξ| + x.ξ .

This has form (5.5.11). The variable w plays the role of y1 and x the role of y2. We consider t as
a parameter. One has,

φξ = x− t
ξ

|ξ| , and, φx = ξ .

A point (x − tξ/|ξ|, ξ) ∈ WF f may produce a singularity (x, ξ) in u(t). The frequency is fixed.
The position has moved t units in the direction ξ/|ξ|. Singularities associated with the plane waves
ei(−t|ξ|+x.ξ) propagate at the group velocity ξ/|ξ|. The opposite sign choice, +t|ξ, in the phase
yields the velocity −ξ/|ξ|.
2. The identity map and pseudodifferential operators are Fourier Integral operators with phase
(y2−y1).ξ. The Proposition shows that for this phase, WF (Au) ⊂WF (u) which is the pseudolocal
property pseudodifferential operators.

Remark. Statement (5.5.14) asserts that WF (Au) is contained in the set of (y2, η2) such that
there is a point (y, ξ) ∈WF (u) so that

(y2, ξ) ∈ supp a, η2 = ∇y2φ(y2, ξ), and, y = ∇ξφ(y2, ξ) . (5.5.15)

The last two equations assert that ∇y2,ξ

(
φ(y2, ξ) − y2.η2 − y1.ξ

)
= 0.

Proof of Proposition. It suffices to show that if (y
2
, η

2
) is not in the set on the right of (5.5.14)

then it does not belong to WF (Au). To show that (y
2
, η

2
) /∈WF (Au), it suffices to show that for

ζ ∈ C∞ supported near y
2

and η2 in a small conic neighborhood of η
2

∫
ζ(y2) e

−iy2.η2 a(y2, ξ) e
iφ(y2,ξ) e−iy1,ξ u(y1) dy1 dξ dy2

is rapidly decreasing as η2 → ∞.

Choose finite smooth partitions of unity ψν(y1) of suppu , and, θµ(ξ) of RN\0 with θµ homogeneous
of degree zero in ξ. It suffices to consider individual summands,

∫
ζ(y2) e

−iy2.η2 a(y2, ξ) e
iφ(y2,ξ) e−iy1,ξ ψν(y1) θµ(ξ) u(y1) dy1 dξ dy2 . (5.5.16)
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If the support of ψν θµ does not meet WF u then using Proposition 4.6.2 one finds that

b(ξ) :=

∫
e−iy1,ξ ψν(y1) θµ(ξ) u(y1) dy1

is rapidly decreasing. Then differentiation under the integral shows that

g(y2) :=

∫
a(y2, ξ) b(ξ) e

−iφ dξ ∈ C∞(Ω2) .

Then

(5.5.16) =

∫
ζ(y2) g(y2) e

−iy2η2 dy2 = F
(
ζ(y2)g(y2)

)
∈ S(RN2

η2
)

is rapidly decreasing.

Therefore, it suffices to consider µ, ν so that the support of ψν(y1) θµ(ξ) belongs to a small conic
neighborhood of a point (y

1
, ξ) ∈ WFu.

The remark after the Proposition shows that when (y
2
, η

2
) is not in the set on the right of (5.5.14),

the integral (5.5.16) for the important µ, ν has phase satisfying,

∇y2,ξΦ(y1, y2, ξ, η) := ∇y2,ξ

(
φ(y2, ξ) − y2.η2 − y1.ξ

)
6= 0

on the support of the integrand in,

∫
ζ(y2) a(y2, ξ) e

iΦ ψν(y1) θµ(ξ) dξ dy2 dy1 .

By homogenity,
|∇y2Φ|2 + |ξ|2 |∇ξΦ|2 ≥ C (|ξ|2 + |η|2) (5.5.17)

in the support of the integrand. Introduce

L :=
−i

|∇y2Φ|2 + |ξ|2 |∇ξΦ|2
(
∇y2Φ.∂y2 + |ξ|2∇ξΦ.∂ξ

)
, so, LeiΦ = eiΦ .

Then
∫
ζ(y2) a(y2, ξ) e

iΦ ψν(y1) θµ(ξ) dξ dy2 dy1 =

∫
eiΦ (L†)k

[
ζ(y2) a(y2, ξ) ψν(y1) θµ(ξ)

]
dξ dy2 dy1

since the identity is true for compactly supported a and so extends by continuity for arbitrary a.

Use a ∈ Sm and (5.5.17) to see that each application of L† gains a factor of (|ξ|2 + |η|2)−1/2. Only
one term requires a remark, namely

O(|ξ|2) ∂ξSµ
O(|ξ|2 + |η|2) ∼ O(|ξ|2) O(1/|ξ|) Sµ

O(|ξ|2 + |η|2) ≤ Sµ

O
(
(|ξ|2 + |η|2)1/2

) .

Choosing k large, it follows that the integral on the right is no larger than,

Ck

∫

|y1,y2|≤R

∫

|ξ|≥r

|ξ|m
(|ξ|2 + |η|2)k/2 dξ dy2 dy1 ,
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implying the desired rapid decrease.

§5.5.3. Small time propagation of singularities

Small Time Propagation of Singlularities Theorem 5.5.4. (Lax-Hörmander). There is
a 0 < T1 ≤ T so that uapprox =

∑
uµ from (5.5.7) satisfies,

i. If f ∈ ∪sHs(Rd) and u the solution of (5.5.1), then u− uapprox ∈ C∞[0, T1] × Rd).

ii. For t ∈ [0, T1] the wavefront set of uµ(t) in T ∗(Rdx) is the image of the wavefront set of uµ(0) by
the symplectic map on T ∗(Rdx) which is the time t flow of the hamiltonian field with time dependent
hamiltonian −λµ(t, x, ξ).
iii. The wavefront set of uµ in T ∗(R1+d) is contained in the set τ = λµ(t, x, ξ) and is invariant
under the hamiltonian flow of τ −λµ(t, x, ξ). WF uµ contains only integral curves which pass over
the wavefront set of f .

Remarks. 1. By time reversal symmetry one has an analgous result on −T1 ≤ t ≤ 0.

2. If one had started at a time T0 one would obtain an analgous result on |t − T0| ≤ T1. It is
important to note that one can find T1 independent of T0. The interval is determined by the fact
that the eikonal equation is solvable and the maps Cµ stay close to the identity. These intervals
cannot shrink because of the uniform bounds on the derivatives of the coefficients of L together
with the uniform smooth variety hypothesis at the beginning of §5.5. If one were making such
hypotheses only locally one would obtain a T1 uniformly bounded on compact sets.

Proof. i. It suffices to verify that,

L(u− uapprox) ∈ C∞
(
[0, T ] × Rd

)
, and u

∣∣
t=0

− uapprox

∣∣
t=0

∈ C∞(Rd) .

These are consequences of (5.5.6) We show how the first part of (5.5.6) yields the first of the two
conclusions.

Since Lu = 0, it is sufficient to show that Luµ ∈ C∞([0, T ]×Rd) for each µ. Differentiating under
the oscillatory integral sign in (5.5.8) shows that

Luµ :=

∫
L
(
aµ(t, x, ξ) e

i(φµ(t,0,x,ξ)−w.ξ)
)
χ(ξ) f(w) dw dξ .

This identity would be true if aµ had compact support so extends to general aµ by continuity.

By construction,

L
(
aµ(t, x, ξ) e

i(φµ(t,0,x,ξ)
)

= b(t, x, ξ) ei(φµ(t,0,x,ξ), b ∈ S−∞(([0, T ] × Rdx) × Rdξ).

Therefore

Luµ =

∫
b(t, x, ξ) ei(φµ(t,0,x,ξ)−w.ξ) χ(ξ) f(w) dw dξ .

Since the amplitude b is of order −∞, this oscillatory integral is smooth by Proposition 5.5.1.

Exercise 5.5.5. Prove that u(0, x) − uapprox(0, x) ∈ C∞(Rd).

To prove ii, analyse the oscillatory integral defining uµ(t),

∫
aµ(t, x, ξ) e

i[φµ(t,0,x,ξ)−w.ξ] χ(ξ) f(w) dw dξ . (5.5.18)
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For ease of reading, omit the subscript µ and the s = 0 argument from φ. The proposition
estimating WF (Au) implies that

WF u(t) ⊂
{(
x,∇xφ(t, x, ξ)

)
:
(
∇ξφ(t, x, ξ), ξ

)
∈WF uµ(0)

}
.

The mapping transforming the initial wave front to that at time t is given by

(
∇ξφ(t, x, ξ) , ξ

)
7→

(
x , ∇xφ(t, x, ξ)

)
. (5.5.19)

At t = 0, φ(0, x, ξ) = x.ξ. Thus at t = 0, the transformation is equal to the identity. It follows
from uniform smoothness and the implicit function theorem that there is a T 1 > 0 so that for
0 ≤ t ≤ T 1 each of the maps

(x, ξ) 7→ (x,∇ξφ(t, x, ξ)) and (x, ξ) 7→ (∇xφ(t, x, ξ), ξ) ,

is an invertible map close to the identity. It follows that for the same t, (5.5.19) defines a diffeo-
morphism of T ∗(Rd) to itself which is close to the identity.

Lemma 5.5.5. Denote by Cµ(t) the flow on T ∗(Rd×) \ 0 of the time dependent hamilton field
with hamiltonian −λµ(t, x, ξ). Then for t ∈ [0, T1], Cµ(t) is equal to the diffeomorphism defined
by (5.5.19).

Proof of Lemma. Suppress the subscripts µ. Denote by (x(t), ξ(t)) the curve traced by the
diffeomorphism (5.5.19) so that (x(0), ξ(0)) = (x0, ξ0). The formula (5.5.19) means that to compute
(x(t), ξ(t)) one must find a pair (x, ξ) so that

(
∇ξφ(t, x, ξ) , ξ

)
= (x0, ξ0) , then

(
x , ∇xφ(t, x, ξ)

)
= (x(t), ξ(t)) .

Equivalently,
(
x(t), ξ(t)

)
is determined by,

x0 = ∇ξφ(t, x(t), ξ0), ξ(t) = ∇xφ(t, x(t), ξ0) . (5.5.20)

It suffices to show that

x′ = ∇ξ(−λ(t, x(t), ξ(t))) , ξ′ = −∇x(−λ(t, x(t), ξ(t))) . (5.5.21)

Determine x′ by differentiating the first equation in (5.5.20) with respect to t to find,

0 = ∇ξ φt + ∇2
xξφ
∣∣
(t,x(t),ξ0)

x′ . (5.5.22)

Differentiating φt(t, x, ξ) = λ(y,∇xφ) with respect to ξ and evaluating at (t, x(t), ξ0) yields

0 = ∇ξ φt − ∇ξλ(t, x(t), ξ(t))∇2
ξxφ
∣∣
(t,x(t),ξ0)

. (5.5.23)

The linear equation (5.5.22) satisfied by x′(t) is identical to the equation (5.5.21) satisfied by
−∇ξλ(t, x(t), ξ(t)). By the choice of T1 the matrices ∇2

xξφ are invertible and close to the identity.
Therefore, using (5.5.20),

x′ = −∇ξλ(t, x(t), ξ(t)) ,

verifying half of (5.5.21).
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Determine ξ′ by differentiating the second equation in (5.5.20) with respect to time to find,

ξ′ = ∇xφt + ∇2
xxφ x

′ = ∇xφt − ∇2
xxφ∇ξλ , (5.5.24)

Differentiating φt = λ(y,∇xφ) with respect to x yields

∇xφt = ∇ξλ∇2
xxφ+ ∇xλ . (5.5.25)

Equations (5.5.24)-(5.5.25) imply that ξ′ = −∇xλ completing the proof of the lemma.

It follows that
WF (uµ(t)) ⊂ Cµ(t)WF (uµ(0)) .

Using this same conclusion for the Lax parametrix for the Cauchy problem with initial time at t
shows that that

WF (uµ(0)) ⊂ Cµ(−t)WF (uµ(t)) , equivalently Cµ(t)WF (uµ(0)) ⊂ WF (uµ(t)) .

Combining implies that
WF (uµ(t)) = Cµ(t)WF (uµ(0)) ,

completing the proof of ii.

The proof of iii is similar. The result on WF (Au) shows that the wavefront set of Au is a set
of points

(
t, x, φt(t, x),∇xφ(t, x)

)
. Since φt = λµ(t, x,∇xφ) it follows that the wavefront set is a

subset of τ = λµ(t, x, ξ).

The formula for WF (Au) together with the formula from ii shows that

WFR1+d uµ(t, x) ⊂
{(
t, x, λµ(t, x, ξ), ξ

)
: (x, ξ) ∈WFRd uµ(t)

}
. (5.5.26)

We next prove that there is equality in (5.5.26). If (t, x, λµ, ξ) on the right were not in the wavefront
set then for every real τ , (t, x, τ, ξ) would not be in the wavefront set. The limit point (t, x, 1, 0) is
also not in the wavefront set by the microlocal elliptic regularity theorem.

Using a finite covering by cones outsie the wavefront set, it follows that there is a ζ ∈ C∞
0 supported

near (t, x) and nonvanishing at t, x and a conic neighborhood Γ of ξ so that

∀n , ∃Cn , ∀γ ∈ Γ ,
∣∣FR1+d(ζu)

∣∣ ≤ Cn〈τ, γ〉−n .

The spatial Fourier Transform is equal to,

FRd

(
ζ(t, ·)u(t)

)
(γ) = c

∫
FR1+d(ζu)(τ, γ) eitτ dτ,

so is rapidly decreasing. Therefore, (x, ξ) /∈WF (uµ(t)).

Hence,

WFR1+d u(t, x) =
{(
t, x, λµ(t, x, ξ), ξ

)
: (x, ξ) ∈ WFRd uµ(t)

}
. (5.5.27)

To see that this is equivalent to iii. reason as follows. For an integral curve (x(s), ξ(s)) ∈ T ∗(Rd)\0
of the hamilton field with time dependent hamiltonian −λµ(t, x, ξ), there is a unique lift to an
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integral curve of the hamilton field on T ∗(R1+d) \ 0 with hamiltonian τ − λµ(t, x, ξ) along which
τ = λµ. The lift is given by

(t, x, τ, ξ)(s) =
(
s, x(s), λµ(s, x(s), ξ(s)), ξ(s)

)
.

§5.5.4. Global propagation of singularities

This subsection shows that the analysis restricted to 0 ≤ t ≤ T1 presented in §5.5.4 implies the
analogous global in time result.

First show that the approximate solution
∑

µ uµ has a natural extension to all times, that is
beyond the domain where the Lax parametrix construction applies. For each µ, choose a function
gµ ∈ C∞(R1+d) so that

gµ = Luµ for 0 ≤ t ≤ T1 . (5.5.28)

Extend uµ beyond 0 ≤ t ≤ T1 by solving

Luµ = gµ , uµ
∣∣
0<t<T1

= given uµ . (5.5.29)

If one makes a different choice, g̃µ, the resulting function ũµ satisfies uµ − ũµ ∈ C∞(R1+d) since

L(uµ − ũµ) ∈ C∞(R1+d) , and uµ − ũµ = 0 on ]0, T [×Rd .

Thus uµ and uapprox =
∑
µ uµ are well defined on R1+d modulo C∞(R1+d). One has,

u−
∑

uµ ∈ C∞(R1+d) , (5.5.30)

since L(u−∑uµ) ∈ C∞ and u−∑uµ ∈ C∞(]0, T [×Rd). To understand the singularities of u it
suffices to understand the singularities of uµ.

Global Propagation of Singularities Theorem 5.5.6 (Ludwig-Hörmander). i. The wave
front set of uµ is invariant under the hamilton flow of τ −λµ(t, x, ξ). Precisely, a µ-bichararteristic
belongs to WF uµ if and only if it does so at {t = 0}.
ii. If 0 ≤ t1 < t2, then WF uµ(t2) is the image of WF uµ(t1) by the symplectic map which is the
flow of the hamilton field with time dependent hamiltonian −λµ(t, x, ξ).

Proof. Denote by Γ(t) = (t, x(t), ξ(t), λµ(t, x(t), ξ(t)), ξ(t)) a µ bicharateristic. It suffices to show
that Γ ∈ WF uµ if and only if Γ(0) ∈ WF uµ. It suffices to prove this for times t ≤ T for arbitrary
T ∈]0,∞[.

Consider the set {
t ∈ [0, T ] : Γ(t) ∈WF uµ for 0 ≤ t ≤ t

}
.

By definition of the wavefront set, this is a closed set. It suffices to prove that this set is open,
since once that is known we know that the set is either empty or the entire interval. It is empty
when Γ(0) /∈WF uµ(0) and it is the entire interval when Γ(0) ∈WF uµ(0).

To prove Γ is open, it suffices to show that if Γ([0, t]) ⊂WF uµ and t < T , then Γ([0, t+δ) ⊂WF uµ
for small positive δ. If t = 0 this follows from the local in time result.

If 0 < t < T , Choose δ := T1/2 with T1 from the local in time result. Define t′ := t− δ. The Lax
parametrix construction yields a solution vµ defined on {|t− t′| ≤ 2δ} to

Lvµ ∈ C∞([t− 2δ, t+ 2δ] × Rd) , vµ(t
′) − uµ(t

′) ∈ C∞(Rd) .
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Then, vµ − uµ ∈ C∞([t− 2δ, t+ 2δ] × Rd).

The local in time result implies that the wavefront set of vµ for t − 2δ ≤ t ≤ t + 2δ is a union of
bicharacteristics. We know that for 0 < t < t it is a union of only µ bicharacteristics so it follows
that the wavefront set of vµ is invariant under the τ − λµ hamilton flow.

Since in t ∈]t′, t[ the wavefront set agrees with that of uµ it follows that the wavefront set of vµ
consists exactly of the continuations to t < t < t + 2δ of the µ bicharacteristics in WF (uµ) for
t < t.

Since uµ − vµ ∈ C∞ this implies that Γ([0, t+ δ] ⊂ WF uµ which completes the proof of i.

Denote by C(t2, t1) from T ∗(Rd \ 0) to itself the flow from time t1 to t2 by the flow the hamilton
field with time dependent hamiltonian −λµ(t, x, ξ). The Lax parametrix construction shows that
if 0 < t1 < t2 < t1 + T1 then

WF uµ(t2) = C(t2, t1)WF uµ(t1) .

A finite number of applications of this result proves ii.

Exercise 5.5.6. Denote by Γµ the bicharacteristics passing over (0, x, ξ). Prove that when Lu ∈
C∞, (

∪µ Γµ
)

∩ WF (u) = ∪µ
(
Γµ ∩ WF (uµ)

)
.

Exercise 5.5.7 Under the same hypotheses prove that

(x, ξ) /∈ WF (u(0)) ⇐⇒
(
∪µ Γµ

)
∩ WF (u) = φ .

The first part of the next result restates the conclusion without reference to the decomposition as∑
uµ. The second part gives an Hs version.

Theorem 5.5.7. i. If u Lu ∈ C∞(R1+d), then WF (u) is contained in the characteristic variety
of L and is invariant under the hamilton flow with hamiltonian equal to Πµ

(
τ − λµ(t, x, ξ)

)
. ii.

The same conclusion is valid with WF (u) replaced by WFs(u).

Remarks. 1. The hamilton field restricted to τ = λµ(t, x, ξ) is parallel to the field with hamilto-
nian τ − λµ(t, x, ξ).

2. It is the reduced hamiltonian and not detL(t, x, τ, ξ) which appears. On sheets in the charac-
teristic variety with multiplicity greater than one, the hamiltonian vector field associated to detL
vanishes.

3. Theorem 5.5.6 and its Corollary are global in time. They are not restricted to domains where
the eikonal equation is solvable. They go beyond caustics and focussing.

Example. Suppose that O ⊂ Rd is a smoothly bounded open subset and u(0, x) is a function
smooth on O and vanishing on Rd \O. The function and its derivatives may jump at the boundary.
Exercise 4.6.6, shows that WF (u(0)) is contained in the conormal variety N∗(∂O). Therefore the
R1+d wavefront set of uν at time t = 0 is contained in the set of points (0, x, ξ, λν(t0, x, ξ) with
(x, ξ) conormal to ∂O. $WF (uν) is then a subset of the flowout by the hamilton flow of τ − λν of
the points (0, x, λν(0, x, ξ), ξ) with (x, ξ) ∈ N∗(∂O).

This same set appears in Hamilton-Jacobi theory as follows. Choose a function g smooth on a
neighborhood of ∂O with g = 0 and dg 6= 0 at all points of ∂O. Solve the initial value problem

ψt = λ(t, x, ∂xψ), ψ|t=0 = g .
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The set containing WF (u) is exactly equal to the set of points

(
t, x, σ(ψt(t, x), ∂xψ(t, x))

)
such that ψ(t, x) = 0 .

Thus as long as the eikonal equation is smootly solvable, WF (uν) ⊂ N∗({ψ = 0}).
The propagation of singularities theorem is global in time so is not limited by the local solvability
of the eikonal equation. The result applies after caustics and focussing. On the other hand, locally
in time one can show (see the discussion of progressing waves in [Lax 2007]) that the solution
remains piecewise smooth with singularities along {ψ = 0}. For such small times, this example is
a generalisation of the piecewise smooth solutions in §1.1.

Proof of Theorem. Part i is just a restatement.

For ii compute for µ 6= ν that on τ = λµ,

τ − λν = τ − λµ + (λµ − λν) = λµ − λν 6= 0.

Therefore if Γµ is a τ−λµ bicharacteristic along which τ = λµ, one has for µ 6= ν, Γµ∩WF (uν) = φ.
Therefore, ii is equivalent to the assertion that WFs(uµ) is invariant under the hamilton flow of
τ − λµ(t, x, ξ). Must show that if Γµ(t) /∈ WFs(uµ), then Γµ ∩WFs(uµ) = φ.

Since the curve γµ and WFs are both closed it follows that

B :=
{
t : Γµ(t) /∈WFs(uµ)

}
is open and nonempty.

It suffices to show that B is closed.

Suppose that t2 belongs to the closure, B. If t2 ∈ B, there is noting to show. Otherwise choose
B ∋ t1 6= t2 with |t1 − t2| < T1 with T1 from Theorem 5.5.4. It suffices to show that Γµ(t2) /∈
WFs(uµ)). We treat the case t1 < t2 the other being similar.

Choose β(t) ∈ C∞(R) with β identically equal to one neighborhood of t2 and vanishing for t < t1.
Choose the support of dβ/dt so close to t1 so that Γ(t) /∈WFs(u(t)) when t ∈ suppdβ/dt. Then

L(βuµ) = β Luµ + [L, β]uµ = β Luµ + + A0
dβ

dt
uµ .

The first term is smooth and WFs([L, β]uµ) ⊂ WFs(uµ) ∩ suppdβ/dt by Exercise 4.6.1. The
choice of β guarantees that Γµ ∩WFs(L(βuµ)) = φ

Write [L, β]uµ = f1+f2 with supports in t ≥ t1 but very close to t1, f1 ∈ Hs
loc and Γµ∩WF (f2) = φ.

Denote by vj the solutions of Lvj = fj which vanish for t ≤ t1. Then v1 ∈ Hs
loc so Γµ(t2) /∈

WFs(v1).

We are only interested in v2 near the space time projection of Γµ(t2) so using finite speed we may
cutoff f2 to have compact support without modifying the solution v2 on a neighborhood of the
projection of Γµ(t2).

Use the Lax parametrix and Duhamel’s representation to write for t near t2, v2 =
∑
ν v2,ν + C∞

v2,ν(t, x) :=

∫
aν(t, σ, x, ξ) e

i(φν(t,σ,x,ξ)−x.ξ) χ(ξ) f1(σ, x) dx dσ dξ .

As in the proof of Theorem 5.5.4, these oscillatory integrals are analysed using Proposition 5.5.3.
First, WF (v2,ν) ⊂ {τ = λν) so Γµ(t2) /∈ WF (v2,ν) for ν 6= µ. The same proposition shows that
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the behavior of v2,µ microlocally on Γµ is determined by fµ microlocally on Γµ. By construction
we have Γµ ∩WF (f2) = φ, and it follows that Γµ ∩WF (v2,µ) = φ.

Exercise 5.5.8. Give the details of these two appllications of Proposition 5.5.3.

This completes the proof that Γµ(t2) /∈ WFs(v1) and thereby proves the Theorem.

§5.6. An application to stabilization

This section requires familiarity with Riemannian geometry, specifically with the geodesic flow.
Suppose that M is a compact connected Riemannian manifold without boundary. The metric is

gij(x) dx
i dxj . (5.6.1)

The induced metric on one forms is
gij(x) dξi dξj . (5.6.2)

The volume form is
dv(x) = (det gij(x))

1/2 dx .

The Dirichlet integral is

D(u, u) :=

∫

M

〈
du(x), du(x)

〉
dv(x) :=

∫

M

|du(x)|2 dv(x) . (5.6.3)

For functions u supported in a single coordinate patch this is equal to

∫ ∑

i,j

gij(x) ∂iu(x) ∂ju(x) (det gij(x))
1/2 dx .

The Laplace Beltrami operator, ∆ = ∆g, is defined by

〈
∆u,ψ

〉
:=

−1

2

dD(u+ sψ, u + sψ)

ds

∣∣∣∣
s=0

= −
∫

M

〈du(x), dψ(x)〉 dv . (5.6.4)

In local coordinates,

−
∫

M

〈du(x), dψ(x)〉 dv(x) = −
∫
gij(x) ∂iu(x) ∂jψ(x) (det gij(x))

1/2 dx

=

∫
(det gij(x))

−1/2 ∂j

(
gij(x) (det gij(x))

1/2 ∂iu(x)
)
ψ(x) (det gij(x))

1/2 dx ,

so,

∆u = (det gij(x))
−1/2 ∂j

(
gij(x) (det gij(x))

1/2 ∂iu(x)
)
. (5.6.5)

Consider the damped Klein Gordon equation,

Lu := utt − ∆u + u + a(x)ut = 0 , C∞(M) ∋ a ≥ 0 . (5.6.6)

One could treat the damped wave equation in the same way with the inconvenience of working
modulo the constants.
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The principal symbol of the operator L is,

h(t, x, τ, ξ) := τ2 − gij(x) ξi ξj = τ2 − 〈ξidxi, ξjdxj〉 := τ2 − |ξ|2 .

The characteristic variety lies in τ 6= 0 and consists of two smooth sheets,

τ = ±|ξ| = ±
(
gij(x) ξi ξj

)1/2

.

The roots are simple and the smooth variety hypothesis is everywhere satisfied.

The crucial energy identity is

d

dt

∫

M

|ut|2 + |du(x)2| + |u|2 dv = 2Re

∫

M

ut
(
utt − ∆u + u

)
dv .

Therefore, for solutions of Lu = 0 energy is dissipated according to,

d

dt

∫

M

|ut|2 + |du(x)2| + |u|2 dv = −
∫

M

2a(x) |ut|2(x) dv ≤ 0 . (5.6.7)

This yields the uniform a priori estimate,

∃C, ∀t ≥ 0, ‖u(t)‖H1 + ‖u(t)‖L2 ≤ C
(
‖u(0)‖H1 + ‖u(0)‖L2

)
.

If u satisfies Lu = 0 then v = (1−∆+ a(x))s/2u satisfies Lv = 0. † The elliptic regularity theorem
with elliptic operator (1 − ∆ + a(x))s/2 implies that ‖vt‖L2 and ‖v‖H1 are norms equivalent to
‖ut‖Hs and ‖u‖Hs+1 respectively. Applying the a priori estimate proves that,

∀s, ∃Cs, ∀t ≥ 0, ‖u(t)‖Hs+1 + ‖ut(t)‖Hs ≤ Cs
(
‖u(0)‖Hs+1 + ‖ut(0)‖Hs

)
.

The strategy for proving existence by replacing ∂x by symmetric difference quotients suitably
globalized using partitions of unity, yields the following.

Theorem 5.6.1. For any s ∈ R, f ∈ Hs(M), g ∈ Hs−1(M) there is a unique

u ∈ ∩jCj
(
[0,∞[ ; Hs−j(M)

)

satisfying
Lu = 0 on R ×M , u|t=0 = f , ut|t=0 = g .

Since the coefficients of L do not depend on t, it follows that if u(t, x) is a solution, then so is
u(t+ s, x) for any s. If j ∈ C∞

0 (R) with
∫
j(t) dt = 1, then

uδ(t, x) :=

∫
u(t+ δs, x) j(s) ds =

1

δ

∫
u(t+ s) j(s/δ) ds ,

satisfies Luδ = 0 since the Riemann sums which converge to the integral are solutions. In addition,
uδ → u in Cj([−T, T ] ; Hs−j) as δ → 0.

† Readers can assume that s is an even integer if they do not want to work with fractional powers.
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Proposition 5.6.2. For each δ > 0, uδ ∈ C∞(R ×M).

Proof. From the definition of uδ and the continuity of u in time it follows that uδ ∈ C∞(R ; Hs)
with

∂kt u
δ(t) =

∫
uδ(t+ δs)

dkj(s)

dtk
ds ∈ C(R ; Hs) .

This gives a Sobolev regularity for ∂kt u
δ independent of k since

C(R ; Hs) ⊂ Ccomp(R ; H−s)′ ⊂ H1
comp(R ; H−s)′ ⊂ H−s+1

comp (R ×M)′ = Hs−1
loc (R ×M) .

The operator ∂kt is microlocally elliptic on the characteristic variety of L, since CharL ⊂ τ 6= 0.
The microlocal elliptic regularity theorem applied to the equation ∂kt u ∈ Hs−1

loc (R ×M) . implies
that u is microlocally Hk+s−1 on the characterictic variety of L.

The microlocal elliptic regularity theorem applied to Lu = 0 shows that u also has this regular-
ity away from the characteristic variety of L. Therefore u is everywhere microlocally Hk+s−1.
Therefore u ∈ Hk+s−1

loc (R ×M).

Since k is arbitrary, Sobolev’s lemma completes the proof.

Denote by S(t) the operator
S(t)(f, g) :=

(
u(t), ut(t)

)
,

where u is the solution with Cauchy data equal to (f, g). For any s, S(t) is a C0 group of operators
on Hs × Hs−1. It is a contraction semigroup on H1 ×H0 for t ≥ 0. It is uniformly bounded on
Hs ×Hs−1 for t ≥ 0. †

It a is not identically equal to zero then all solutions tend to zero as t→ ∞. The argument leading
to the conservative solution v is called Lasalle’s Invariance Principal in the dynamical systems
community.

Iwasaki’s Theorem 5.6.3. If a is not identically equal to zero and the Cauchy data belong to
H1 × L2, then the solution of Theorem 5.6.1 satisfies,

lim
t→∞

∫

M

|ut|2 + |dxu|2 + |u|2 dx = 0 . (5.6.8)

Proof. Since the integral on the left in (5.6.8) is a decreasing function of time one has

∫

M

|ut|2 + |du(x)2| + |u|2 dv → E∞ ≥ 0 , (5.6.9)

monotonically as t→ ∞.

In the regularisation operator choose j ∈ C∞
0 (]0, 1[) and define uδ as above. The uniform in time

a priori estimates imply that for j = 0, 1,

lim
δ→0

sup
t≥0

∥∥∂jt uδ(t) − ∂jt u(t)
∥∥
H1−j(M)

= 0 ,

† It is contractive on a norm
(
‖(1−∆+a)s/2ut‖2

L2 +‖(1−∆+a)s/2u‖2
H1

)2
equivalent to the standard

norm.
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Thus, it suffices to prove the result for uδ. Therefore it suffices to consider solutions satisfying,

∀ j, s ∂jt u ∈ L∞
(
[0,∞[ ; Hs(M)

)
.

Let vn(t) := u(t + n). Ascoli’s theorem implies that there is a subsequence so that, vnk → v
uniformly with all derivatives on the compact subsets of [0,∞[×M . Then, (5.6.9) implies that for
all t ≥ 0, ∫

M

|vt|2 + |dv(x)2| + |v|2 dv(x) = E∞ ≥ 0 . (5.6.11)

Therefore (5.6.7) implies that for all t ≥ 0,

∫
a(x) |vt|2 dx = 0 . (5.6.12)

It follows that a(x) vt(t, x) = 0. Therefore for t ≥ 0, v satisfies the wave equation vtt − ∆ v = 0.
The idea of the next argument dates at least to Carleman.

Expand v in terms of

Introduce orthogonal eigenfunctions, φm, of ∆,

(1 − ∆)φm = λ2
m φm , 1 < λm < λm+1, ‖φm‖L2(M) = 1 . (5.6.13)

Then,

v =
∑

m,±

am,± e±itλm φm(x) ,

with rapidly decreasing fourier coefficients am,± 6= 0.

Since vt = 0 on Ω, one has for x ∈ Ω,

0 = lim
T→∞

1

T

∫ T

0

e∓itλm v(t, x) dt = am,±φm(x) .

If one had E∞ > 0, there would be a nonvanishing Fourier coefficient am,±. For that coefficient it
would follow that φm = 0 on Ω.

Apply the unique continuation principal that asserts that solutions of smooth homogeneous linear
scalar second order order elliptic equations which vanish on an open set must vanish identically.
The equation is (1− λ2

m −∆)φm = 0 and the conclusion is φm = 0. This contradicts ‖φm‖L2 = 1.

Thus one cannot have E∞ > 0 and (5.6.8) is proved.

Our application of the propagation of singularities theorem is to find necessary and sufficient
conditions on a(x) so that solutions decay exponentially in time. The next result shows the
equivalence of several notions of decay.

Proposition 5.6.4. The following are equivalent.

1. For each (f, g) ∈ H1 ×H0 there are constants m(f, g) > 0 and γ(f, g) > 0 so that

∀ t ≥ 0,
∥∥S(t)(f, g)

∥∥
H1×H0 ≤ me−γt .

2. There is are constants M > 0 and Γ > 0 so that

∀ t ≥ 0, ∀ (f, g) ∈ H1 ×H0,
∥∥S(t)(f, g)

∥∥
H1×H0 ≤ M e−Γt

∥∥(f, g)
∥∥
H1×H0 .
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3. There is a T > 0 so that ‖S(T )‖ < 1.

4. For each t > 0 the spectral radius of S(t) is strictly smaller than 1.

Proof. 1 ⇒ 2. Define

Ωn :=
{

(f, g) ∈ H1 ×H0 : ∀ t ≥ 0,
∥∥S(t)(f, g)

∥∥
H1×H0 ≤ n e−t/n

∥∥(f, g)
∥∥
H1×H0

}
.

Then Ωn is closed. By hypothesis ∪nΩn = H1 ×H0. The Baire Category Theorem implies that
there is an n so that Ωn contains a ball Br(U) with positive radius.

Therefore S(t) has uniform exponential decay on U + Br(0). By linearity there is uniform expo-
nential decay on Br(0) which is the desired conclustion.

2 ⇒ 1. Immediate

2 ⇔ 3. Immediate

3 ⇔ 4. Follows from the formula for the spectral radius, ρ,

ρ = lim
n→∞

∥∥S(t)n
∥∥1/n

= lim
n→∞

∥∥S(nt)
∥∥1/n

.

Recall that the prinicipal symbol of L is denoted h. The bicharacteristics are integral curves of of
the hamilton field of h along which h = 0. Vanishing h is the condition that the curve lies in the
characteristic variety. The projections of these curves on R ×M are exactly the geodesics of M
traversed at constant speed. Over a point (t, x, ξ) there pass two bichararcteristics, one for each
of the two roots τ = ±|ξ|. The projections of the bicharacteristics on space time are the same
geodesic traversed in opposite directions.

The next result gives a necessary and sufficient condition for the equivalent conditions of Proposi-
tion 5.6.3 to hold.

Theorem 5.6.5 [Rauch-Taylor]. The following are equivalent

1. ‖S(T )‖2
H1×H0 < 1.

2. Each geodesic of length T passes through the set {a > 0}.
In particular, solutions decay exponentially in the sense of Proposition 5.6.3 if and only if there is
a T > 0 satisfying 2.

Proof. 1 ⇒ 2. We show that if 2 is violated, then, ‖S(T )‖H1×H0 = 1.

There is a unit speed geodesic so that γ([0, T ]) does not intersect {a > 0}. We follow the strategy
of Ralston which is to construct smooth solutions on [0, T ]×M which are concentrated on a small
neighborhood of γ and therefore have little energy decay.

For each t, define ξ(t) ∈ T ∗
γ(t)(M) to be the dual vector satisfying

ξ(t)(w) = 〈γ′(t) , w〉 , ∀w ∈ Tγ(t)(M) .

Then for one of the choices of sign Γ± := (t, γ(t),±|ξ|, ξ(t)) is a bicharacteristic of our differential
operator which lies over γ. Call that bicharacteristic, Γ.

Lemma 5.6.6. There is a solution of Lu = 0 whose wavefront set coincides with the single
bicharacteristic Γ.
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Proof of Lemma 5.6.6. Choose f ∈ D′(M) such that WF (f) = (γ(0),R+ξ(0)). Consider the
solution of Lv = 0 with v(0) = f , vt(0) = 0.

Over the point (0, γ(0), ξ(0)) there are two points in the characteritic variety, (0, γ(0),±|ξ|, ξ(0)).
Denote by Γ±(t) the corresponding bicharacteristics . They pass over the geodesic γ traversed in
opposite directions.

The Global Propagation of Singularities Theorem expresses

v = v+ + v− + C∞ , L v± ∈ C∞ WF v± ⊂ Γ± .

Suppose that Γ+ is the bicharacteristic passing over the geodesic γ. Define w ∈ C∞ to be the
solution of

Lw = −Lv+ , w|t=0 = 0 , wt|t=0 = 0 .

Then u := v+ + w satisifies the conditions of the Lemma. If Γ− passes over γ, simply change the
plus to a minus in this argument.

To complete the proof that 1 ⇒ 2, it is sufficient to prove the following lemma.

Lemma 5.6.7. If 2 is violated, then for any ǫ > 0 there is a smooth solution with initial energy
equal to one and with ∫ T

0

∫

M

a(x) |ut|2(t, x) dx dt < ǫ . (5.6.14)

Proof of Lemma 5.6.7. Since the solution of Lemma 5.6.6 is not smooth, using the fact that the
points of CharL are noncharacteristic for ∂jt as in the proof of Proposition 2.6.2, it follows that
there is a j ≥ 0 so that,

∂jt u /∈ H1(]0, T [×M) .

Thus replacing u by ∂jt u we may suppose that

u /∈ H1(]0, T [×M) . (5.6.15)

Define

vδ :=
uδ∫

|uδt (0, x)|2 + |dxuδ(0, x)|2 + |uδ(0, x)|2 dv(x) .

Then vδ is a solution with initial energy equal to one so integrating over points where a ≤ ǫ/2T
yields, ∫

[0,T ]×{a≤ǫ/2T}

a(x) |vδt |2 dv(x) dt ≤ ǫ/2 . (5.6.16)

Thanks to (5.6.15), it follows that

lim
δ→0

‖uδ‖H1(]0,T [×M) = ∞ .

The basic energy estimate shows that

‖uδ‖H1(]0,T [×M) ≤ C

∫
|uδt (0, x)|2 + |dxuδ(0, x)|2 + |uδ |2 dv(x) ,
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so

lim
δ→0

∫
|uδt (0, x)|2 + |dxuδ(0, x)|2 + |uδ|2 dv(x) = ∞ . (5.5.17)

The solution u is smooth on the complement of the geodesic which is the projection, π(Γ), of Γ on
space time. It follows from (5.6.17) that for all α, ∂αt,xv

δ converges uniformly to zero on compact
subsets of (R ×M) \ π(Γ). Therefore, for δ small,

∫

[0,T ]×{a≥ǫ/2T}

a(x) |vδt |2 dv(x) dt ≤ ǫ/2 . (5.6.18)

Combining (5.6.16) and (5.6.18) shows that vδ satisfies the conditions of the Lemma for δ sufficiently
small.

This completes the proof that 1 ⇒ 2. To prove that 2 ⇒ 1, the key step is the following Lemma.

Lemma 5.6.8. Suppose that every geodesic of length T passes through the set {a > 0}. Then if
u ∈ L2

loc(R ×M) satisfies Lu = 0 and

ut ∈ L2
loc

(
]0, T [×{a > 0}

)
, (5.6.19)

then u ∈ H1 on a neighborhood of {t = T/2} ×M .

Proof of Lemma 5.6.8. It suffices to show that for all (T/2, x, τ, ξ) that u belongs to H1

microlocally at (T/2, x, τ, ξ).

Since Lu = 0, the microlocal elliptic regularity Theorem 4.6.1 implies that for all s, u is microlocally
Hs on the complement of CharL. Thus it suffices to consider (T/2, x,±|ξ|, ξ) ∈ CharL.

The Global Propagation of Singularities Theorem expresses

u = u+ + u− + C∞ , WF u± ⊂ {τ = ±|ξ|} .

It suffices to show that for all x, ξ,±,

u± ∈ H1(T/2, x,±|ξ|, ξ) . (5.6.20)

We treat the case +, the other being analogous.

Fix x, ξ and denote by t 7→ Γ(t) the bicharacteristic with Γ(T/2) = (T/2, x, |ξ|, ξ). By 2, there is
a t ∈]0, T [ so that Γ(t) = (t, x, |ξ|, ξ) and a(x) > 0.

Since
∫
[0,T ]×M

a(x) |ut|2 dt dv(x) < ∞, we know that ∂tu is square integrable on a neighborhood

of (t, x). Since ∂t is elliptic at (t, x, |ξ|, ξ), the Microlocal Elliptic Regularity Theorem implies that

u ∈ H1(t, x, |ξ|, ξ). Since (t, x, |ξ|, ξ) /∈WF (u−) it follows that u+ ∈ H1(t, x, |ξ|, ξ).
Theorem 5.5.7ii. implies that WF1(u+) is invariant under the hamilton flow with hamiltonian
τ − |ξ|. The image of the point (t, x, |ξ|, ξ) at time T/2 is the point (T/2, x, |ξ|, ξ). Therefore,

u+ ∈ H1(T/2, x, |ξ|, ξ). This completes the proof of Lemma 5.6.8.

Lemma 5.6.9. If Lu = 0 and there is a time t so that u is H1 on a neighborhood of {t = t} ×M
then for j = 0, 1, u ∈ Cj

(
R ; H1−j

)
.

Proof of Lemma 5.6.9. It is given that there is a δ > 0 so that u ∈ H1([t− δ, t+ δ] ×M). The
energy decay law show that for all t > t+ δ, s ∈]t− δ, t+ δ[ and smooth solutions v to Lv = 0,

∫

M

|vt(t)|2 + |dxv(t)|2 + |v(t)|2 dv(x) ≤
∫

M

|vt(s)|2 + |dxv(s)|2 + |v(s)|2 dv(x) .
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Therefore

sup
t≥t+δ

∫

M

|vt(t)|2 + |dxv(t)|2 + |v(t)|2 dv(x)

≤ 1

4δ

∫ t+δ/2

t−δ/2

∫

M

|vt(s)|2 + |dxv(s)|2 + |v(s)|2 dv(x) ds ≤ C
∥∥v
∥∥
H1([t−δ/2,t+δ/2]×M)

,

with C independent of v.

This inequality applied to the time regularizations uδ shows that uδ is a Cauchy sequence in
Cj([t+ δ,∞[ ; H1−j(M)) for j = 0, 1. Since the limit of the uδ in the sense of distributions is u, it
follows that u ∈ Cj([t+ δ,∞[ ; H1−j(M)) for j = 0, 1. This suffices to prove the Lemma.

This lemma completes the proof of Lemma 5.6.8. At the same time it can be applied to strengthen
the conclusion of Lemma 5.6.8 to u ∈ Cj(R ; H1−j(M)) for j = 0, 1.

Denote by B the set of L2([0, T ]×M) solutions to Lu = 0 satisfying (5.6.19). It is a Hilbert space
with norm squared equal to

∫

[0,t]×M

|u|2 + a(x) |ut|2 dt dv(x) .

The strengthening of Lemma 5.6.8 shows that if T satisfies 2, then

B ⊂ ∩j=0,1 C
j([0, T ] ; H1−j(M)) .

The graph of the inclusion map is closed. Therefore, the Closed Graph Theorem implies that the
inclusion is continuous. Thus, there is a constant C so that

∀u ∈ B,
∫

M

|ut(0)|2 + |dxu(0)|2 + |u(0)|2 dv(x) ≤ C

∫

[0,T ]×M

|u|2 + a(x) |ut|2 dt dv(x) .

(5.6.21)

Lemma 5.6.10. Suppose that 2 is satisfied. Define

K(T ) =
{
u ∈ L2([0, T ] ×M) : Lu = 0 , and a(x)ut = 0

}
.

Then, K is finite dimensional subspace of finite energy solutions. K(T ) = {0} if and only if there
is a constant C so that

∀u ∈ B,
∫

M

|ut(0)|2 + |dxu(0)|2 + |u(0)|2 dv(x) ≤ C

∫

[0,T ]×M

a(x) |ut|2 dt dv(x) . (5.6.22)

Proof. On the space K, (5.6.21) implies the inequality

∫

M

|ut(0)|2 + |dxu(0)|2 + |u(0)|2 dv(x) ≤ C

∫

[0,T ]×M

|u|2 dt dv(x) .

Thus the unit ball in K is precompact proving that K is finite dimensional. At the same time one
sees that the solutions have finite energy.
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If K is not trivial then (5.6.22) can not hold for the nonzero elements of K, no matter how large
C is chosen.

On the other hand, if (5.6.22) does not hold for any C then there is a sequence un with

∫

[0,T ]×M

|un|2 + a(x) |unt |2 dt dv(x) = 1 , and

∫

[0,T ]×M

a(x) |unt |2 dt dv(x) → 0 .

By (5.6.21) the sequence is compact in L2([0, T ] ×M). Passing to a convergent subsequence we
may assume that un → u in L2([0, T ] ×M). The limit satisfies

‖u‖L2([0,T ]×M) = 1 , Lu = 0 , a(x)ut = 0 .

That is, u is a nontrivial element of K.

The last, step in the proof of sufficiency is to show that K(T ) = {0} as soon as T satisfies the
geometric condition. The Lemma shows that the elements of K have finite energy. It then follows
from the definition of K that v ∈ K ⇒ ∂tv ∈ K. Since ∂t ∈ Hom(K(T )) and K(T ) is finite
dimensional space, it follows that if K(T ) 6= {0} then there is a v ∈ K \ {0} and λ ∈ C so that
∂tv = λv.

Thus, v = eλtφ(x) with φ 6= 0, satisfies Lv = 0 and a(x)vt = 0 for t ∈]0, T [ and therefore for
all t ∈ R. Thus v has constant energy violating Theorem 5.6.3. This contradiction shows that
K(T ) = {0}.
Therefore inequality (5.6.22) holds. That inequality is equivalent to

‖S(T )‖2
H1×H0 ≤ 1

1 + C
< 1 .

This proves 1.

Exercise 5.6.1. Show that when 2 of Theorem 5.6.5 is violated, then for any N and ǫ there is a
linear space V of finite energy Cauchy data so that dimV ≥ N and for all (f, g) ∈ V ,

‖S(T )(f, g)‖H1×H0 ≥ (1 − ǫ)‖f, g‖ .

Hint. Find N nearby but distinct geodesics which nearly miss {a > 0}. Discussion. This exercise
shows that {|z| = 1} meets the essential spectrum of S(T ).
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Appendix 5.I. Hamilton-Jacobi Theory for the Eikonal Equation

§5.I.1. Introduction

In this section the scalar real nonlinear first order partial differential equation

F (y, dφ) = 0 (5.I.1)

is solved by reducing to the solution of ordinary differential equations. The function F (y, η) is
assumed to be a smooth real valued function of its arguments on an open subset of Rny × Rnη .
Written out the equation takes the form

F
(
y1, . . . , yn,

∂φ(y)

∂y1
, . . . ,

∂φ(y)

∂yn

)
= 0 . (5.I.2)

In applications, the function φ is usually either a phase function or a function one of whose level
sets represents a wave front.

Examples. Three classical examples from optics are the equations

|∇xψ|2 = 1 , F (x, ξ) = |ξ|2 − 1 , (5.I.3)

φ2
t − |∇xφ|2 = 0 , F (t, x, τ, ξ) = τ2 − |ξ|2 (5.I.4)

and
φ2
t − c(x)2 |∇xφ|2 = 0 , F (t, x, τ, ξ) = τ2 − c(t, x)2 |ξ|2 , c > 0 . (5.I.5)

The first describes solutions of the second which have the special form φ(t, x) = t ± ψ(x). For
equation (5.I.5) the rays

bend or refract in a medium of variable speed of propagation c(t, x). When c(t, x) is independent
of t, Solutions of (5.I.5) which are of the form t± ψ(x) lead to a generalization of (5.I.3),

|∇xψ|2 = 1/c(x)2 := n2(x) , F (x, ξ) = |ξ|2 − n2(x) . (5.I.6)

The next three examples exhibit explicit solutions.

Example. Seek solutions of (5.I.4) which are linear functions of the coordinates, φ(t, x) = τt+ξ.x.
It is a solution if and only if τ = ±|ξ|. Thus, for any linear initial function g(x) = ξ.x with ξ 6= 0,
this yields two solutions of (5.I.4) with φ(0, x) = g. The solutions come from two determinations
of φt from φx. There is one solution for each of

φt = ± |∇xφ| . (5.I.7)

Example. The linear solutions of (5.I.3) are precisely the functions ξ.x with |ξ| = 1. If one
imposes initial data ψ(0, x2, . . . , xn) = ξ2x2 + . . .+ξnxn then if |ξ2, . . . , ξn| < 1 there are two linear
solutions given by ξ1 = ±(1 − |ξ2, . . . , ξn|2)1/2. If |ξ2, . . . , ξn| > 1 there are no solutions, since the
equation (5.I.1) cannot be solved even at a single point of the initial surface.

Example. The solutions of (5.I.3) which depend only on r := |x| are of the form c ± r with
constant c. These functions measure signed distance to the sphere |x| = c. More generally, if M is
a piece of hypersurface in Rn and ψ(x) is the signed distance to M then ψ is well defined locally
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and solves (5.I.3). The case where M is a sphere shows that the solution need not exist globally
as there is a singularity at x = 0.

Example. The spherically symmetric solutions φ(t, r) of (5.I.4) are functions f(t ± |x|) defined
for x 6= 0. The level surfaces of φ are either outgoing or incoming spheres. The incoming (resp.
ouotgoing) solutions degenerate to a point in finite positive (resp. negative) time.

Example. If c = c(r) the spherically symmetric solutions φ(t, r) of (5.I.5) are the solutions of the
equations (

∂t ± c(r) ∂r
)
φ = 0 .

The level surfaces of φ are spheres which move outward for the plus sign and inward with the minus
sign. The speed c(r) depends on the position. The integral curves of the vector fields ∂t ± c(r)∂r
describe refractive effects.

§5.I.2. Determining the germ of φ at the initial manifold

Consider the initial value problem defined by equation (1) with initial data

φ|M = g . (5.I.8)

Here M is a hypersurface in Rn and g is smooth onM . Differentiating (8) tangent to M determines
n−1 components of dφ. Equivalently, knowing φ|M determines the restriction of dφ to the tangent
space of M ,

dφ
∣∣
TM

= dg . (5.I.9)

The differential equation (5.I.1) must be used to determine the remaining component of dφ. The
next example is a generalisation of (5.I.7).

Example. Consider equation (5.I.4) with the initial condition

φ
∣∣
t=0

= g(x) , dg 6= 0 . (5.I.10)

In this case M = {t = 0}. At t = 0, ∂φ/∂xj = ∂g/∂xj are known functions of x. The time
derivative must be found by solving (5.I.4) for φt yielding

∂φ

∂t
= ± |∇xφ| = ± |∇xg| . (5.I.11)

If dg = 0 then the equation F (t, x, φt, φx) = 0 need not be smoothly solvable for φt as a function
of the other variables. This is the case for example near x = 0 ∈ Rn with g(x) = |x|2.

More generally, consider equation (5.I.1) and M = {y1 = 0} ⊂ Rn. The initial data (5.I.8)
determine ∂φ/∂y2, . . . , ∂φ/∂yn along M . The missing derivative ∂φ/∂y1 must be determined by
solving the equation (5.I.1). The preceding examples show that there may be multiple solutions
or no solution at all. In favorable cases, picking a solution ∂φ/∂y1 at one point x ∈ M uniquely
determines dφ locally on M .

Infinitesimal Determination Lemma 5.I.1. Suppose that g ∈ C∞(M), y ∈ M , and η ∈
T ∗
x (Rn) satisfy

F (y, η) = 0 , and η|TyM = dg(y) . (5.I.12)
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Suppose in addition that ∇ξF (y, η) is not tangent to M at y. Then on a neighborhood ω ⊂M of
y in M , there is one and only one smooth function ω ∋ y 7→ η(y) which satisfies

F (y, η(y)) = 0 on M , η|TM = dg , and η(y) = η . (5.I.13)

In particular, a C1 solution of the initial value problem (5.I.1),(5.I.8) which satisfies dφ(y) = η
must satisfy dφ(y) = η(y) for all y ∈ ω.

Proof. Introduce coordinates near y so that M is locally given by y1 = 0. Then

η = (η
1
, ∂g(y)/∂y2, . . . , ∂g(y)/∂yn) .

Let with y′ := (y2, . . . , yn). Then,

η(y′) =
(
η1(y

′),
∂g(y′)

∂y2
, . . . ,

∂g(y′)

∂yn

)

must satisfy,

F
(
0, y′, η1,

∂g(y′)

∂y2
, . . . ,

∂g(y′)

∂yn

)
= 0 , η1(x) = η

1
. (5.I.14)

The implicit function theorem shows that this uniquely determines η1(y
′) on a neighborhood of y

provided that 0 6= ∂F/∂η1. This is equivalent to ∇ηF not being tangent to M .

Remark. If M is connected and ∇ηF is nowhere tangent to M , then connecting y to an arbitrary
point of M by an arc of a continuous curve, then covering the arc by overlapping neighborhoods
ω extends the determination lemma to all of M .

Remark. The linearization of the equation (5.I.1) at a solution φ is the partial differential operator

∑

µ

∂F

∂ηµ

∂

∂yµ
. (5.I.15)

When ∇ηF is not tangent to M , the surface M is noncharacteristic for the linearized operator.
That is equivalent to the surface M being noncharacteristic along the solution φ of (5.I.1) (see
[Rauch,Partial Differential Equations, §1.5]). In that case, not only is dφ determined on M , but
so are all the partial derivatives of φ.

§5.I.3. Propagation laws for φ, dφ

To analyse equation (5.I.1), differentiate with respect to yν . This is an example of a general strategy
whereby differentiating a fully nonlinear equation yields a quasilinear equation for its derivatives.
In the case of a first order real scalar equation, this simple idea solves the problem. Differentiating
(5.I.1) with respect to yν for 1 ≤ ν ≤ n yields the n equations,

∂F

∂yν
(y, dφ(y)) +

∑

µ

∂F

∂ηµ
(y, dφ(y))

∂2φ(y)

∂yν∂yµ
= 0 , 1 ≤ ν ≤ n . (5.I.16)

Identity (5.I.16) shows that the derivative of dφ in the direction ∇ηF is equal to −∇yF . One
recognizes the y and η parts of the Hamilton vector field

VF :=
∑

µ

∂F (y, η)

∂ηµ

∂

∂yµ
− ∂F (y, η)

∂yµ

∂

∂ηµ
. (5.I.17)
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associated to the hamiltonian F .

Propagation Lemma 5.I.2. Suppose that φ is a solution of (1) and that (y(s), η(s)) is an integral
curve of the vector field VF , that is

dy(s)

ds
=
∂F

∂η
(y(s), η(s)) ,

dη(s)

ds
= −∂F

∂y
(y(s), η(s)) . (5.I.18)

If η(0) = dφ(y(0)), then η(s) = dφ(y(s)) so long as y([0, s]) belongs to the domain on which φ
satisfies (1). If the system (18) is expanded to include

dρ(s)

ds
=
∑

µ

ηµ(s)
∂F

∂ηµ
(y(s), η(s)) , ρ(0) = φ(y(0)) , (5.I.19)

then ρ(s) = φ(y(s)) on the same interval of s.

Proof. Define Y (s) as the solution of dY/ds = −∇ηF (Y (s), dφ(Y (s)) with Y (0) = y(0). Define
Ξ(s) := dφ(Y (s)). Then equation (5.I.16) is equivalent to dΞ/ds = −∇yF (Y (s),Ξ(s)). Thus
(Y (s),Ξ(s)) solves the same initial value problem as (y(s), η(s)). By uniqueness, (y(s), η(s)) =
(Y (s),Ξ(s)).

Similarly,
dφ(y(s))

ds
=
∑

µ

∂φ(y(s))

∂yµ

∂yµ(s)

ds
=
∑

µ

ηµ(s)
∂F

∂ηµ
(y(s), η(s)) ,

so (y(s), η(s), φ(y(s)) solves the y, η, ρ system of ordinary differential equations and the last asser-
tion of the proposition follows from uniqueness.

Example. The integral curves of V in the case of equation (5.I.5) are solutions of the system of
ordinary differential equations

dt

ds
= 2τ ,

dx

ds
= −2c2ξ ,

dτ

ds
= 0 ,

dξ

ds
= 2ξ2c

∂c(x)

∂x
. (5.I.20)

The velocity
dx

dt
=

dx/ds

dt/ds
=

−2c2ξ

2 τ
=

−2c2ξ

±c|ξ| = ∓c |ξ|.

This is equal to the group velocity associated to the root τ = ±c|ξ|. This gives three very distinct
ways to arrive at the group velocity, stationary phase as in §1.3, the purely geometric construction
in §2.4, and Hamilton-Jacobi Theory.

If you know the values of dφ(0, x), then the Proposition tells you that dφ(t(s), x(s)) = (τ(s), ξ(s))
where (t(s), x(s), τ(s), ξ(s)) is a solution of (5.I.20). This allows you to compute dφ in t > 0 from
its values at t = 0. The curves (t(s), x(s), τ(s), ξ(s)) are called bicharachteristic strips or simply
bicharachteristics, and their projections on (t, x) space are called rays. The bicharacteristics
describe how the values of dφ are propagated along rays. The speed of the rays are equal to the
local group velocity.

There are two intuitive ways to think of the integral curves (y(s), η(s)) The first is to note that
η(s) = dφ(y(s)) determines the tangent plane to the graph of φ at y(s). One has a curve of tangent
planes to the solution surface. I like to think of the level surfaces to φ as defining surfaces of constant
phase and therefore dφ(y(s)) describes how the surfaces of constant phase are positioned at y(s) It
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can be viewed as giving an infinitesimal element of an oscillatory solution. Then the Proposition
can viewed as a propagation law for infinitesimal oscillations. The example F = τ2 − ξ21 − 4ξ22
shows that the direction of propagation dx/dt need not be parallel to ξ (see Exercise 2.4.9).

Covering Lemma 5.I.3. Suppose that the restriction of dφ toM is known and that ∇ηF (y, dφ(y))
is not tangent toM at y. For q ∈M denote by (y(s, q), η(s, q)) the solution of (5.I.18) with y(0) = q,
η(0) = dφ(q). Then the map s, q 7→ y(s, q) is a diffeomorphism of a neighborhood of (0, y) in R×M
to a neighborhood of x in Rn. Equivalently the family of rays y(·, q) parametrized by q ∈M simply
covers a neighborhood of y.

Proof. Introduce local coordinates on M and consider the Jacobian matrix of the mapping y at
(s, q) = (0, y). The last n − 1 columns of J span the tangent space of M . The first column is
parallel to dy/ds|(0,q) = ∇ηF (y, η) which is not tangent to M . Thus the columns span Rn and the
result follows from the Inverse Function Theorem.

Main Theorem 5.I.4. Suppose that data are given satisfying the following conditions.
(i.) M is a hypersurface in Rn.
(ii.) g ∈ C∞(M) .
(iii.) (y, η) satisfies F (y, η) = 0 and (

∑
µ ηµ dyµ)|Ty(M) = dg(y) .

(iv.) ∇ηF (y, η) is not tangent to M at y.

Then, there is a smooth solution φ of (5.I.1) satisfying (5.I.17) on a neighborhood of y in M and
dφ(y) = η. Any two such solutions must coincide on a neighborhood of y.

Proof. The previous results combine to prove uniqueness as follows. The Infinitesimal Determi-
nation Lemma determines dφ along M . Let y(s, q), η(s, q), ρ(s, q) be the solutions of the system
(5.I.18),(5.I.19). They are parametrized by q ∈M . The Propagation Lemma implies that

φ(y(s, q)) = ρ(s, q) . (5.I.21)

The Covering Lemma shows that (5.I.21) uniquely determines φ on a neighborhood of y.

To prove existence we show that the function defined by (5.I.21) on a neighborhood of y in Rn

furnishes a solution.

The initial conditions (5.I.19) for ρ, show that φ defined by (5.I.21) satisfies φ|M = g.

The initial values y(0, q), η(0, q) determined in the Infinitesimal Determination Lemma, satisfy
F (y, η) = 0. The classic computation of conservation of energy shows that F is constant along
solution curves of (5.I.18), which proves that F (y(s, q), η(s, q)) = 0. Thus, to prove that φ solves
(1) it suffices to prove that

∂φ

∂yµ
(y(s, q)) = ηµ(s, q) . (5.I.22)

Define ζ(y) = (ζ1(y) . . . , ζn(y)) on a neighborhood of y by

ζµ(x(s, q)) = ηµ(s, q) . (5.I.23)

The desired relation (5.I.22) reads

∂φ

∂yµ
= ζµ , 1 ≤ µ ≤ n . (5.I.24)
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That is, the predicted value of the differential is the same as what one obtains by differentiating
the predicted value of the function. Define a vector field on a neighborhood of x by

W :=
∑

µ

∂F

∂ηµ
(y, ζ(y))

∂

∂yµ
.

The defining relations for φ and ζ yield

W φ =
∑

µ

ζµ(y)
∂F

∂ηµ
(y, ζ(y)) , (5.I.25)

W ζµ = − ∂F

∂yµ
(y, ζ(y)) , 1 ≤ µ ≤ n . (5.I.26)

Differentiating (5.I.25) yields

W
∂φ

∂yµ
+
( ∑

µ,ν

∂2F

∂ηµ∂yν
+

∂2F

∂ηµ∂ην

∂ζν
∂yµ

) ∂φ

∂yµ

=
∑

µ

(
∂ζµ
∂yν

∂F

∂ηµ
+ ζµ

∑

ν

( ∂2F

∂ηµ∂yν
+

∂2F

∂ηµ∂ην

∂ζν
∂yµ

))
.

The first sum on the right is equal to Wηµ so,

W
( ∂φ

∂yµ
− ηµ

)
+
( ∑

µ,ν

∂2F

∂ηµ∂yν
+

∂2F

∂ηµ∂ην

∂ζν
∂yµ

)( ∂φ
∂yµ

− ζµ

)
= 0 . (5.I.27)

This homogeneous linear ordinary differential equation shows that ∂φ/∂yµ − ζµ vanishes on a ray
as soon as it vanishes at the foot of that ray on M . Thus it suffices to show that (5.I.24) is satisfied
on M .

To verify (5.I.24) along M it suffices to find n linearly independent vectors v so that v.dφ = v.ζ.
The Infinitesimal Determination Lemma gives ζ(x) = η(x) on M so in particular for v tangent
to M , v.ζ = v.η = v.dg = v.dφ. For v equal to the field W , equation (5.I.25) yields v.dφ =
ζ.∇ηF (y, ζ) = ζ.v. Hypothesis (iv.) shows that W is not tangent to M near y so the fields just
checked span and the proof is complete.

Remark. The reality of F and the hypothesis that ∇ηF is not tangent to M , shows that (5.I.1) is
a strictly hyperbolic partial differential equation at y with timelike direction given by the conormal
to M . One generalization of the Main Theorem is a local solvability result for strictly hyperbolic
nonlinear initial value problems. From that perspective, the proof just presented is the method
of characteristics from §1.1 for fully nonlinear scalar equations.

§5.I.4. The symplectic approach

The appearance of the hamilton field VF shows that the construction has a link with symplec-
tic geometry. The connection offers an alternative way to prove the Main Theorem. Begin by
reinterpreting the Propagation Lemma. Introduce the graph of the differential dφ

Λ :=
{

(y, η) : η = dφ(y)
}
.
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This is a smooth n dimensional surface in the 2n dimensional space of (y, η). It is defined by the
n equations

ηµ =
∂φ(y)

∂yµ
, 1 ≤ µ ≤ n . (5.I.28)

Instead of looking for φ we look for Λ. Identify the space of (x, η) as the cotangent bundle of Rn

with its symplectic form

σ :=

n∑

µ=1

dηµ ∧ dyµ .

The equality of mixed partials shows that Λ is Lagrangian in the sense that it is an n-manifold
such that σ(v,w) = 0 whenever v and w are tangent to Λ. Equation (5.I.1) is thus turned into the
search for a Lagrangian manifold which lies in the set {(y, η) : F (y, η) = 0 }.

Tangency Lemma 5.I.5. If φ is a solution of (5.I.1), then the vector field VF is tangent to the
surface Λ. Equivalently, an integral curve of VF which touches Λ lies in Λ.

Proof. Since the surface Λ lies in the level set {F = 0}, one has 〈dF, v〉 = 0 for all tangent vectors
v to Λ. The definition of hamilton field then shows that σ(VF , v) = 〈dF, v〉 = 0 for all such v. Thus
VF belongs to the σ annihilator of the tangent space of Λ. Since Λ is Lagrangrian, this annihilator
is the tangent space to Λ so VF is tangent to Λ.

An n− 1 dimensional piece Λ0 of Λ is given in the Infinitesimal Determination Lemma. Precisely

Λ0 :=
{

(y, dφ(y)) : y ∈M
}

(5.I.29)

is known from the initial data. Then one takes the union of the bicharacteristics through Λ0 to
define Λ. The next result follows from the Inverse Function Theorem.

Flow Out Lemma 5.I.6. If Λ0 is a smooth embedded n−1 dimensional surface in 2n dimensional
(y, η) space which is nowhere tangent to the the vector field VF , then locally the union of integral
curves of VF starting in Λ0 defines a smooth n dimensional manifold.

The next question to resolve is whether Λ so defined is a graph, that is whether there are smooth
functions ζµ so that Λ = {(y, ζ1(y), . . . , ζn(y))}. Denote by π(x, ξ) := x the natural projection
from (x, ξ) space to x space.

Clean Projection Lemma 5.I.7. Suppose that Λ0 is defined as in (5.I.29), y ∈ M and that Λ
is constructed by the Flow Out Lemma. Then Λ is a graph on a neighborhood of (y, dφ(y)) if and
only if ∇ηF (y, dφ(y)) is not tangent to M at y.

Proof. The variety Λ is a smooth graph if and only if π is a diffeomorphism from a neighborhood
of (y, dφ(y)) in Λ to a neighborhood of y in Rn. The Inverse Function Theorem implies that the
necessary and sufficient condition is that the differential of π is an invertible map of tangent spaces.
At a point (y, η) ∈ Λ0 the tangent space is equal to Ty,η(Λ0) ⊕ VF (y, η). This implies that

dπ
(
T(y,dφ(y))Λ

)
= TyM ⊕ R

∂F

∂η
(y, dφ(y)) . (5.I.30)

The right hand side of (30) is all of Rn if and only if ∂F/∂η is not tangent to M at y, proving the
Lemma.
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Alternate proof of the Main Theorem. To prove existence, it suffices to find a function φ
defined on an Rn neighborhood of y so that

∂φ

∂yµ
(y) = ζµ(y) , 1 ≤ µ ≤ n , φ(y) = g(y) . (5.I.31)

That such a function satisfies (5.I.8) follows from dφ|TM = dg. A necessary and sufficient condition
for the existence of such a φ is the equality of mixed partials,

∂ζµ
∂yν

=
∂ζν
∂yµ

∀ µ 6= ν . (5.I.32)

It is not hard to show that (5.I.32) is equivalent to σ|TΛ = 0.

Turn next to the proof that σ|TΛ = 0. Since Λ is the flowout of Λ0 and the flow by a hamiltonian
vector field preserves the two form σ, it suffices to verify that σ(v,w) = 0 whenever v and w are
tangent to Λ over a point of M .

The tangent space at such a point is the direct sum of the tangent space to Λ0 and RVF . Thus it
suffices to consider

v = v0 + aVF , w = w0 + b VF ,

with v0 and w0 tangent to Λ0 and real a, b. Use bilinearity to express σ(v,w) as a sum of four
terms. One has σ(v0, , w0) = 0 since this is the symplectic form of T ∗(M) evaluated at a pair of
tangent vectors to the Lagrangian submanifold {graphdg}. The term ab σ(VF , VF ) vanishes since σ
is antisymmetric. Finally, the cross terms are evaluated using the definition of hamiltonian vector
fields,

σ(v0, VF ) = 〈dF, v0〉 , σ(VF , w0) = −〈dF,w0〉 . (5.I.33)

Since Λ0 lies in the set {F = 0}, the tangent vectors v0 and w0 are annihilated by dF , so the terms
(5.I.33) vanish. This completes the proof.
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Chapter 6. The Nonlinear Cauchy Problem

§6.1. Introduction.

Nonlinear equations are classified according to the strength of the nonlinearity. The key criterion
is what order terms in the equation are nonlinear.

A secondary condition is the growth of the nonlinear terms at infinity. When the functions which
enter the nonlinear terms are uniformly bounded in absolute value, the behavior at infinity is not
important.

Among the nonlinear equations in applications two sorts are most common. Semilinear equations
are linear in their principal part. First order semilinear symmetric hyperbolic systems take the
form

L(y, ∂y)u+ F (y, u) = f(y) , F (y, 0) = 0 (6.1.1)

where L is a symmetric hyperbolic operator, and the nonlinear function is a smooth map from
R1+d × CN → CN whose partial derivatives of all orders are uniformly bounded on sets of the
form R1+d × K, with compact K ⊂ CN . The derivatives are standard partial derivatives and
not derivatives in the sense of complex analysis. A translation invariant semilinear equation with
principal part equal to the d’alembertian is of the form

u+ F (u, ut,∇xu) = 0 F (0, 0, 0) = 0 .

More strongly nonlinear, and typical of compressible inviscid fluid dynamics, are the quasilinear
systems,

L(y, u, ∂y)u = f(y) , (6.1.2)

where

L(y, u, ∂y) =
d∑

j=0

Aj(y, u) ∂j (6.1.3)

has coefficients which are smooth hermitian symmetric matrix valued functions with derivatives
bounded on R1+d ×K as above. A0 is assumed uniformly positive on such sets.

For semilinear equations there is a natural local existence theorem requiring data in Hs(Rd) for
some s > d/2. The theorem gives solutions which are continuous functions of time with values in
Hs(Rd). This shows that the spaces Hs(Rd) with s > d/2, are natural configuration spaces for the
dynamics. Once a solution belongs to such a space, it is bounded and continuous so that F (y, u)
is well defined, bounded, and continuous. Nonlinear ordinary differential equations are a special
case, so for general problems one expects at most a local existence theorem.

For quasilinear equations, the local existence theorem requires an extra derivative, that is initial
data in Hs(Rd) with s > 1 + d/2. Again the solution is a continuous functions of time with values
in Hs(Rd). The classic example is Burgers’ equation

ut + uux = 0 .

We treat first the semilinear case. The quasilinear case is treated in §6.6. The key step in the
proof uses Schauder’s Lemma, which shows that u 7→ F (y, u) takes Hs(Rd) to itself.

§6.2. Schauder’s Lemma and Sobolev embedding.
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The fact that Hs is invariant under nonlinear maps is closely connected to the Sobolev Embedding
Theorems which assert that elements of the spacesHs are in Lp for approriate p(s, d). The simplest
such Lp estimate for Sobolev spaces is the following.

Theorem 6.2.1 Sobolev. If s > d/2, Hs(Rd) ⊂ L∞(Rd) and

‖w‖L∞(Rd) ≤ C(s, d) ‖w‖Hs(Rd) . (6.2.1)

Proof. Inequality (6.2.1) for elements of the Schwartz space S(Rd) is an immediate consequence
of the Fourier Inversion Formula,

w(x) = (2π)−d/2
∫

Rd

e−ix.ξ ŵ(ξ) dξ = (2π)−d/2
∫

Rd

e−ix.ξ

< ξ >s
< ξ >s ŵ(ξ) dξ .

The Schwarz inequality yields

|w(x)| ≤
∣∣∣
∣∣∣ 1

< ξ >s

∣∣∣
∣∣∣
L2(Rd)

‖w‖Hs(Rd).

The first factor on the right is finite if and only if s > d/2.

For w ∈ Hs, choose wn ∈ S with

wn → w in Hs , ‖wn‖Hs(Rd) ≤ ‖w‖Hs(Rd) .

Inequality (6.2.1), yields ‖wn − wm‖L∞(Rd) ≤ C ‖wn − wm‖Hs(Rd). Therefore the wn converge

uniformly on Rd to a continuous limit γ. Therefore wn → γ in D′(Rd) with ‖γ‖L∞ ≤ C ‖w‖Hs

However, wn → w in Hs and therefore in D′, so w = γ. This proves the continuity of w and the
estimate (6.2.1).

Consider the proof that u ∈ H2(R2) implies that u2 ∈ H2(R2). One must show that u2, ∂(u2),
and, ∂2(u2) are square integrable.

The function u2 and its first derivative ∂(u2) = 2u∂u, are both the product of a bounded function
and a square integrable function and so are in L2. Compute the second derivative,

∂2(u2) = u∂2u+ 2(∂u)2 .

The first is a product L∞ × L2 so is L2. For the second, one needs to know that ∂u ∈ L4. The
fact that H2 is invariant is equivalent to that Sobolev embedding.

Theorem 6.2.2 Schauder’s Lemma. Suppose that G(x, u) ∈ C∞(Rd × CN ; CN ) such that
G(x, 0) = 0, and for all |α| ≤ s + 1 and compact K ⊂ CN , ∂αx,uG ∈ L∞(Rd × K). Then the

map w 7→ G(x,w) sends Hs(Rd) to itself provided s > d/2. The map is uniformly lipschitzian on
bounded subsets of Hs(Rd).

Proof of Schauder’s Lemma for integer s. Consider G = G(w). The case of G depending
on x is uglier but requires no additional ideas. The key step is to estimate the Hs norm of G(w)
assuming that w ∈ S, We prove that

∀R, ∃C = C(R), ∀w ∈ S(Rd), ‖w‖Hs(Rd) ≤ R =⇒ ‖G(w)‖Hs(Rd) ≤ C(R) .
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This suffices to prove the first assertion of the theorem since for w ∈ Hs, choose wn ∈ S with

wn → w in Hs , ‖wn‖Hs(Rd) ≤ ‖w‖Hs(Rd) .

Then Sobolev’s Theorem implies that wn converges uniformly on Rd to w, so G(wn) converges
uniformly to G(w). In particular, G(wn) → G(w) in D′(Rd).

However, G(wn) is bounded in Hs so passing to a subsequence we may suppose that G(wn) → v
weakly in Hs. Therefore G(wn) → v in D′(Rd). Equating the D′ limits proves that G(w) ∈ Hs.

For ‖w‖Hs ≤ R there is a constant so that ‖w‖L∞ ≤ C. Choose Γ > 0 so that,

‖wj | ≤ C =⇒ |G(w1) −G(x2)| ≤ Γ |w1 − w2| .

Apply with w2 = G(w2) = 0 to show that ‖G(w1)‖L2 ≤ C.

It remains to estimate the derivatives of G(w). For w ∈ S, Leibniz’ rule implies that ∂βxG(w(x))
with |β| ≤ s is a finite sum of terms of the form

G(γ)(w) ΠJ
j=1 ∂

αj
x w , |γ| = J ≤ |β| , α1 + · · · + αJ = β . (6.2.2)

This is proved by induction on |β|. Increasing the order by one, the additional derivative either
falls on the G term yielding an expression of the desired form with |γ| = J increased by one, or on
one of the factors in Π∂

αj
x w yielding an expression of the desired form with the same value of γ.

Sobolev’s Theorem implies that

‖G(γ)(w) ΠJ
j=1 ∂

αj
x w‖L2 ≤ ‖G(γ)(w)‖L∞‖ΠJ

j=1 ∂
αj
x w‖L2 ≤ C(R) ‖ΠJ

j=1 ∂
αj
x w‖L2 . (6.2.3)

Following [Rauch 1983] we use the Fourier transform to prove the key estimate.

Lemma 6.2.3. If s > d/2 there is a constant C = C(s, d) so that for all wj ∈ S(Rd) and all
multiindices αj with s′ :=

∑ |αj | ≤ s,

‖ΠJ
j=1∂

αj
x wj ‖L2(Rd) ≤ C ΠJ

j=1 ‖wj‖Hs(Rd) .

Example. For u ∈ H2(R2), (∂u∂u) ∈ L2 so ∂u ∈ L4.

Proof. By Plancherel’s theorem, it suffices to estimate the L2 norm of the Fourier transform of
the product. Set

gi := < ξ >s−|αi| F
(
∂αi
x wi

)
, < ξ > := (1 + |ξ|2)1/2 , so, ‖gi‖L2 ≤ c‖wi‖Hs .

Compute,

F
(
ΠJ
j=1∂

αj
x wlj

)
(ξ1) =

g1
< ξ >s−|α1|

∗ g2
< ξ >s−|α2|

∗ · · · ∗ gJ
< ξ >s−|αJ |

(ξ1)

=

∫

Rd(J−1)

g1(ξ1 − ξ2)

< ξ1 − ξ2 >s−|α1|

g2(ξ2 − ξ3)

< ξ2 − ξ3 >s−|α2|
· · · gJ(ξJ)

< ξj >s−|αJ |
dξ2 . . . dξJ .

(6.2.4)

For each ξ, at least one of the J numbers < ξ1 − ξ2 >, . . . ,< ξJ−1 − ξJ >,< ξJ > is maximal.
Suppose it’s the bth number < ξb − ξb+1 > with the convention that ξJ+1 ≡ 0. Then since∑ |αi| ≤ s,

〈ξb − ξb+1〉s−|αb| ≥ 〈ξb − ξb+1〉
∑

j 6=b
|αj | ≥ Πj 6=b〈 ξj − ξj+1〉|αj | ,
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which implies that,

ΠJ
j=1〈ξj − ξj+1〉s−|αj | = 〈ξb − ξb+1〉s−|αb| Πj 6=b 〈ξj − ξj+1〉s−|αj | ≥ Πj 6=b〈ξj − ξj+1〉s .

Thus the integrand on the right side of (6.2.4) is dominated by

∣∣∣ gb(ξb − ξb+1) Πj 6=b
gj(ξj − ξj+1)

〈ξj − ξj+1〉s
∣∣∣ . (6.2.5)

Thus for any ξ1 ∈ Rd, the integrand in (6.2.4) is dominated by the sum over b of the terms (6.2.5).
Hence

‖F
(
ΠJ
j=1∂

αj
x wlj

)
‖L2(Rd) ≤

∥∥∥
J∑

b=1

|g1|
< ξ >s

∗ · · · ∗ |gb| ∗
|gb+1|
< ξ >s

∗ · · · ∗ |gJ |
< ξ >s

∥∥∥
L2

≤
J∑

b=1

∥∥∥ g1
< ξ >s

∥∥∥
L1

· · ·
∥∥∥ gb−1

< ξ >s

∥∥∥
L1

∥∥gb
∥∥
L2

∥∥∥ gb+1

< ξ >s

∥∥∥
L1

· · ·
∥∥∥ gJ
< ξ >s

∥∥∥
L1

where the last step uses Young’s inequality.

As in Sobolev’s Theorem, s > d/2 ⇒< ξ >−s∈ L2(Rd) and the Schwarz inequality yields

∥∥ gj
< ξ >s

∥∥
L1 ≤ C1 ‖gj‖L2 ≤ C2 ‖wj‖Hs .

Using this in the previous estimate proves the lemma.

To prove the Lipschitz continuity asserted in Schauder’s Lemma it suffices to show that for all R
there is a constant C(R) so that

wj ∈ S(Rd) for j = 1, 2 and ‖wj‖Hs(Rd) ≤ R

imply
‖G(w1) −G(w2)‖Hs(Rd) ≤ C ‖w1 − w2‖Hs(Rd) .

Taylor’s Theorem expresses

G(w1) −G(w2) =

∫ 1

0

G′(w2 + θ(w1 − w2)) dθ (w1 − w2) .

The estimates of the first part show that the family of functions G′(w2 + θ(w1 −w2)) parametrized
by θ is bounded in Hs(Rd). Thus

∣∣∣
∣∣∣
∫ 1

0

G′(w2 + θ(w1 − w2)) dθ
∣∣∣
∣∣∣
Hs(Rd)

≤ C(R) .

Applying the Lemma to the expression for G(w1) − G(w2) as a product of two terms completes
the proof.

The standard proof of Schauder’s Lemma for integer s uses the Lp version of the Sobolev Embedding
Theorem.
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Sobolev Embedding Theorem 6.2.4. If 1 ≤ s ∈ R and α ∈ Nd is a multiindex with 0 <
s− |α| < d/2, there is a constant C = C(α, s, d) independent of u ∈ Hs(Rd) so that

‖ ∂αy u ‖Lp(α) ≤ C ‖ |ξ|s û(ξ) ‖L2(Rd) , (6.2.6)

where

p(α) :=
2d

d− 2s+ 2|α| . (6.2.7)

For s− |α| > d/2, ∂αy u is bounded and continuous and

‖∂αy u‖L∞ ≤ C‖u‖Hs(Rd) .

For s− |α| = d/2, one has
‖∂αy u‖Lp(Rd) ≤ C(p, s, α) ‖u‖Hs(Rd)

for all 2 ≤ p <∞.

Proofs can be found in [Hörmander I.4.5, Taylor III.13.6.4]. When p(α) is an integer the estimate
can be proved using Lemma 6.2.3. The formula for p(α) is forced by dimensional analysis. For
a fixed nonzero ψ ∈ C∞

0 , consider uλ(x) := ψ(λx). The left hand side of (6.2.6) then is of the
form cλa for some a. Similarly the right hand side is of the form c′λb for some b. In order for the
inequality to hold, one must have λa ≤ c′′λb for all positive λ so it is necessary that a = b.

Exercise 6.2.1. Show that a = b if and only if p is given by (6.2.7).

Another way to look at the scaling argument is that for dimensionless u the left hand side of
(6.2.6) has dimensions length(d−p|α|)/p while the right hand side has dimensions length(d−2s)/2.
The formula for p results from equating these two expressions.

Standard proof of Schauder’s Lemma. The usual proof for integer s uses the Sobolev esti-
mates. together with Hölder’s inequality. Hölder’s inequality yields

J∑

k=1

1

pk
=

1

2
=⇒

∥∥ ∂α1
x wl1 · · · ∂αJ

x wlJ
∥∥
L2 ≤ ΠJ

k=1

∥∥∂αk
x wlk

∥∥
Lpk

.

Since each factor ∂αk
x wlk belongs to L2 it suffices to find qk so that

∂αk
x wlk ∈ Lqk and

∑ 1

qk
≤ 1

2
.

Let B denote the set of k ∈ {1, . . . , J} so that s− |αk| > d/2. For these indices the factor in our
product is bounded, and so for k ∈ B set qk := ∞.

Let A ⊂ {1, . . . , J} denote those indices i for which s − |αi| < d
2
. For k ∈ A, qk is chosen as in

Sobolev’s Theorem,

qk :=
2d

d− 2s+ 2|αk|
.

If s− |αk| = d
2
, the factor in the product belongs to Lp for all 2 ≤ p < ∞ and the choice of qk in

this range is postponed.
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With these choices, the Sobolev embedding theorem estimates

‖∂αk
x wlk‖Lqk ≤ C‖w‖Hs(Rd) .

Then since
∑ |αi| ≤ s, and s > d/2,

∑

i∈A∪B

1

qi
=
∑

i∈A

1

qi
=
∑

i∈A

d− 2s+ 2|αi|
2d

≤ Jd− 2Js+ 2s

2d

=
Jd− 2(J − 1)s

2d
<

Jd− (J − 1)d

2d
=

1

2
.

This shows there is room to pick large qk corresponding to the case s − |αk| = d/2 so that∑
1/qk < 1/2, and the proof is complete.

Another nice proof of Schauder’s Lemma can be found in [Beals, pp 11-12]. Other arguments
can be built on Littlewood-Paley decomposition of G(w) as in [Bony, Meyer] and presented in
[Alinhac-Gerard, Taylor III.13.10], or, on the representation

G(u) =

∫
Ĝ(ξ) (eiuξ − 1) dξ .

The latter requires that one prove a bound on the norm of eiuξ − 1 (see [Rauch-Reed 1982]) which
grows at most polynomially in ξ. The last two arguments have the advantage of working when s
is not an integer.

§6.3. Basic existence theorem.

The basic local existence theorem follows from Schauder’s Lemma and the linear existence theorem.
Schauder proved a quasilinear second order scalar version, but his argument, which is recalled in
[Courant, §VI.10], works without essential modification once you add the linear energy inequalities
of Friedrichs. The following existence proof is inspired by Picard’s argument for ordinary differential
equations. As in §1.1, Picard’s bounds (6.3.8) replace the standard and less precise contraction
argument.

Theorem 6.3.1. If s > d/2 and f ∈ L1
loc

(
[0,∞[ ; Hs(Rd)

)
, then there is a T ∈]0, 1] and a

unique solution u ∈ C([0, T ] ; Hs(Rd)) to the semilinear initial value problem defined by the partial
differential equation (6.2) together with the initial condition

u(0, x) = g(x) ∈ Hs(Rd). (6.3.1)

The time T can be chosen uniformly for f and g from bounded subsets of L1([0, 1] ; Hs(Rd))
and Hs(Rd) respectively. Consequently, there is a T ∗ ∈]0,∞] and a maximal solution u ∈
C
(
[0, T ∗[ ; Hs(R)d)

)
. If T ∗ <∞ then

lim
t→T∗

‖u(t)‖Hs(Rd) = ∞ . (6.3.2)

Proof. The solution is constructed as the limit of Picard iterates. The first approximation is not
really important. Set

∀ t, x , u1(t, x) := g(x) .

190



For ν > 1, the basic linear existence theorem implies that the Picard iterates defined as solutions
of the linear initial value problems

L(y, ∂y)u
ν+1 + F (y, uν) = f(y) , uν+1(0) = g

are well defined elements of C([0,∞[ ; Hs(Rd) ) .

Let C denote the constant in the linear energy estimate (2.2.2). Choose a real number

R > 2C ‖g‖Hs(Rd) . (6.3.3)

Schauder’s lemma implies that there is a constant B(R) > 0 so that

‖w(t, ·)‖Hs(Rd) ≤ R =⇒ ‖F (t, ·, w(·))‖Hs(Rd) ≤ B .

Thanks to (6.3.3) one can choose T > 0 so that

C
(
eCT ‖g‖Hs(Rd) +

∫ T

0

eC(T−σ)
(
B + ‖f(σ)‖Hs(Rd)

)
dσ
)

≤ R . (6.3.4)

Using (2.2.2) shows that for all ν ≥ 1 and all 0 ≤ t ≤ T

‖uν(t)‖Hs(Rd) ≤ R . (6.3.5)

Schauder’s Lemma implies that there is a constant Λ so that for all t,

‖wj‖Hs(Rd) ≤ R ⇒ ‖F (t, x,w1(x)) − F (t, x,w2(x))‖Hs(Rd
x) ≤ Λ‖w1 − w2‖Hs(Rd

x) . (6.3.6)

Then for ν ≥ 2, (2.2.2) applied to the difference uν+1 − uν implies that

‖uν+1(t) − uν(t)‖Hs(Rd) ≤ C Λ

∫ t

0

eC(t−σ) ‖uν(σ) − uν−1(σ)‖Hs(Rd) dσ . (6.3.7)

Define
M1 := sup

0≤t≤T
‖u1(t) − u2(t)‖Hs(Rd) and M2 := C Λ eCT .

An induction on ν using (6.3.7) shows that for all ν ≥ 2

‖uν+1(t) − uν(t)‖Hs(Rd) ≤ M1
(M2t)

ν−1

(ν − 1)!
. (6.3.8)

Exercise 6.3.1. Prove (6.3.8).

Estimate (6.3.8) shows that the sequence {uν} is Cauchy in C([0, T ] ; Hs(Rd)). Denote by u the
limit. Passing to the limit in the initial value problem defining uν+1 shows that u satisfies the
initial value problem (6.1.1), (6.3.1). This completes the proof of existence.

Uniqueness is a consequence of the inequality

‖u1(t) − u2(t)‖Hs(Rd) ≤ C1

∫ t

0

eC(t−σ) ‖u1(σ) − u2(σ)‖Hs(Rd) dσ , (6.3.9)

191



which is proved exactly as (6.3.7). Gronwall’s inequality implies that ‖u1 − u2‖ ≡ 0.

Remarks. Similar estimates show that there is continuous dependence of the solutions when the
data f and g converge in L1

loc(R ; Hs(Rd)) and Hs(Rd) respectively.

Exercise 6.3.2. Prove this. Discussion. Concerning the first, more precise results are presented
in §6.6.

Exercise 6.3.3. Show that if the source term f satisfies ∂kt f ∈ L1
loc([0, T

∗[ ; Hs−k(Rd)) for
k = 1, 2, . . . ,m as in Theorem 2.2.2, then u ∈ ∩k Ck

(
[0, T ∗[ ; Hs−k(Rd)

)
for the same k.

Finite speed of propagation for nonlinear equations is usually proved by writing a linear equation
for the difference of two solutions. When Luj +G(y, uj) = 0, denote by

w := u1 − u2, B(y) :=

∫ 1

0

G′(y, u2 + θ(u2(y) − u1(y))) dθ .

Taylor’s theorem implies that

G(y, u2) −G(y, u1 = B(y)(u2 − u1), so, Lw + B(y)w = 0 .

This is a linear equation with coefficient B ∈ C(Hs) which need not be smooth. For the L2

estimates that are used to prove finite speed it is sufficient to know that B ∈ L∞.

The finite speed of propagation is determined entirely by the linear operator L(y, ∂). Sharp esti-
mates were proved in §2.5.

§6.4. Moser’s inequality and the nature of the breakdown.

The breakdown (6.3.2) could in principal occur in a variety of ways. For example, the function
might stay bounded and become more and more rapidly oscillatory. In fact this does not occur.
Where the domain of existence ends the maximal amplitude of the solution must diverge to infinity.
To prove this requires more refined inequalities than those of Sobolev and Schauder.

The proofs of Schauder’s Lemma show that

‖G(y,w)‖Hs(Rd
x) ≤ h(‖w‖Hs(Rd

x)) ,

with a nonlinear function h which depends on G. There is a sharper estimate which grows only
linearly in ‖w‖Hs when one has L∞ bounds.

Theorem 6.4.1 Moser’s Inequality. With the same hypotheses as Schauder’s Lemma, there is
a smooth function h : [0,∞[→ [0,∞[ so that for all w ∈ Hs(Rd) and t,

‖G(x,w)‖Hs(Rd
x) ≤ h(‖w‖L∞(Rd

x)) ‖w‖Hs(Rd
x) . (6.4.1)

This is proved by using Leibniz’ rule and Hölder’s inequality as in the standard proof of Schauder’s
Lemma. However in place of the Sobolev inequalities one uses the Gagliardo-Nirenberg interpola-
tion inequalities.

Theorem 6.4.2 Gagliardo-Nirenberg Inequalities. If w ∈ Hs(Rd)∩L∞(Rd) and 0 < |α| < s
then

∂αx w ∈ L2s/|α|(Rd)
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In addition, there is a constant C = C(|α|, s, d) so that

‖∂αw‖L2s/|α|(Rd) ≤ C ‖w‖1−|α|/s

L∞(Rd)

( ∑

|β|=s

‖∂βw‖L2(Rd)

)|α|/s
. (6.4.2)

Remarks. 1. The second factor on the right in (6.4.2) is equivalent to the L2 norm of the operator
|∂x|s applied to u where |∂x|s is defined to be the Fourier multiplier by |ξ|s. This gives the correct
extension to non integer s.

2. The indices in (6.4.2) are nearly forced. Consider which inequalities

‖∂αw‖Lp(Rd) ≤ C ‖w‖1−θ
L∞(Rd)

( ∑

|β|=s

‖∂βw‖L2(Rd)

)θ

homogeneous of degree one in w might be true. The test functions w = eix.ξ/ǫψ(x) with ǫ → 0
show that a necessary condition is |α| ≤ sθ. The idea is to use the L∞ norm as much as possible
and the s-norm as little as possible, which yields |α| = sθ. Considering w = ψ(ǫx), or equivalently
comparing the dimensions of the two sides forces p = 2s/α.

3. Evans, Hörmander (nonlinear hyperbolic), Chemin et.al. and [Taylor III.10.3] are convenient
references.

Proof of Moser’s Inequality. For w ∈ S(Rd), G independent of x, and σ := |α| ≤ s, the
quantity ∂αx (G(w)) is a sum of terms of the form

G(γ)(w) ΠJ
j=1 ∂

αj
x w (6.4.3)

where |γ| = J , and α1+ · · ·+αJ = α. The first factor in (6.4.3) is bounded with L∞ norm bounded
by a nonlinear function of the L∞ norm of w.

For the second factor, Hölder’s inequality yields

‖ ∂α1
x w · · · ∂αJ

x w ‖L2 ≤ ΠJ
k=1 ‖∂αk

x w‖L2/λk

provided the nonnegative λk satisfy
∑
λk = 1.

The Gagliardo-Nirenberg inequalities yield

‖∂αk
x w‖L2σ/|αk| ≤ C ‖w‖(σ−|αk|)/σ

L∞ ‖|∂|σw‖|αk|/σ
L2 .

With these choices ∑
λk =

∑ |αk|
σ

= 1 ,

and one has
‖ ∂α1

x w · · · ∂αJ
x w ‖L2 ≤ C ‖w‖Hs .

Exercise 6.4.1. Carry out the proof for G which depend on x.

Theorem 6.4.3. If T ∗ <∞ in Theorem 6.3.1, then

lim sup
t→T∗

‖u(t)‖L∞ = ∞ . (6.4.4)
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Proof. It suffices to show that it is impossible to have T ∗ < ∞ and |u| ≤ R < ∞ on [0, T ∗[×Rd.
The strategy is to show that if |u(t, x)| ≤ R <∞ on [0, T ∗[×Rd, then (6.3.2) is violated.

Use the linear inequality for 0 ≤ t < T ,

‖u(t)‖Hs(Rd) ≤ C
(
‖u(0)‖Hs(Rd) +

∫ t

0

‖(Lu)(σ)‖Hs(Rd) dσ
)
. (6.4.5)

Then use Moser’s inequality to give

‖(Lu)(σ)‖Hs(Rd) = ‖F (σ, x, u(σ, x)) − f(σ, x)‖Hs(Rd) ≤ C(R)
(
‖u(σ)‖Hs(Rd) + 1

)
. (6.4.6)

Insert (6.4.5) in (6.4.6) to find

‖u(t)‖Hs(Rd) ≤ C

(
‖u(0)‖Hs(Rd) +

∫ t

0

(
‖u(σ)‖Hs(Rd) + 1

)
dσ

)
. (6.4.7)

Gronwall’s inequality shows that there is a constant C ′′ <∞ so that for t ∈ [0, T ∗[

‖u(t)‖Hs(Rd) ≤ C ′′ . (6.4.8)

This violates (6.3.2), and the proof is complete.

A mild sharpening of this argument (following [Yudovich]) shows that weaker norms than L∞, for
example the BMO norm, must also blow up at T ∗.

Corollary 6.4.4. If the data f and g in Theorem 6.4 belong to L1
loc

(
[0,∞[ ; Hs(Rd)

)
and Hs(Rd)

respectively, then they belong for all d/2 < s̃ ≤ s. The blowup time T ∗(s̃) is independent of s̃. In
particular, if the data belong for all s then the solution belongs to C

(
[0, T ∗[ ; Hs(Rd)

)
for all s.

Proof. For s ≥ s̃ > d/2 denote by us̃(t, x) the corresponding maximal solution. Since us is
a C(H s̃) solution it follows that if us is defined on [0, T ] then us = us̃ on this this interval so
T ∗(s̃) ≥ T . Therefore, T ∗(s̃) ≥ T ∗(s).

On the other hand if T ∗(s̃) > T ∗(s), it follows that us̃ ∈ L∞([0, T ∗(s)] × Rd). By uniqueness of
H s̃ valued solutions one has

us = us̃ for 0 ≤ t < T ∗(s) .

So
‖us̃‖L∞([0,T∗(s)[×Rd) = ‖us̃‖L∞([0,T∗(s)[×Rd) < ∞ ,

violating the blowup criterion of Theorem 6.4.1

§6.5. Perturbation theory and smooth dependence.

In this section the dependence of solutions on data is investigated. The first result yields two
versions of lipschitz dependence.

Theorem 6.5.1. i. If u and v are two solution in C([0, T ] ; Hs(Rd)), then there is a constant C
depending only on sup[0,T ] max{‖u(t)‖s, ‖v(t)‖s} so that

∀ 0 ≤ t ≤ T, ‖u(t) − v(t)‖s ≤ C ‖u(0) − v(0)‖s . (6.5.1)
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ii. If u ∈ C([0, T ] ; Hs(Rd)) is a solution then there are constants C, δ > 0 so that if ‖u(0)−h‖s < δ
then the solution v with v(0) = h belongs to C([0, T ] ; Hs(Rd)) and sup0≤t]≤T ‖v(t)−u(t)‖s < C δ.

Proof. i. Choose Λ so that for w1 and w2 in Hs with

‖wj‖s ≤ sup
[0,T ]

max{‖u(t)‖s, ‖v(t)‖s} ,

and 0 ≤ t ≤ T
‖F (t, x,w1(x)) − F (t, x,w2(x))‖Hs(Rd

x) ≤ Λ‖w1 − w2‖Hs(Rd
x) .

Then subtracting the equations for u and v yields

‖u(t) − v(t)‖Hs(Rd) ≤ ‖u(0)− v(0)‖s + Λ

∫ t

0

eC(t−σ) ‖u(σ) − v(σ)‖Hs(Rd) dσ .

Gronwall’s inequality completes the proof of i..

To prove ii it suffices to consder δ < 1. Write v = u+ w so the initial value problem is equivalent
to

Lw + F (u+ w) − F (u) = 0 , w(0) = h .

So long as
sup
[0,t]

‖w(s)‖ ≤ 2 ,

one estimates ‖F (w + u) − F (u)‖s ≤ K‖w‖s to find

‖w(t)‖s ≤ ‖h‖s +

∫ t

0

K ‖w(σ)‖s dσ .

Gronwall implies that
‖w(t)‖s ≤ ‖h‖s eKt .

Choose C := eKT and consider only δ so small that δC < 2. It follows that a local solution
w ∈ C([0, t] , Hs) with t < T satisfies

sup
[0,t]

‖w(t)‖s < min
{
Cδ , 2

}
.

Therefore the maximal solution is defined at least on [0, T ], and on that interval satisfies ‖w(t)‖s ≤
2 ‖h‖s which completes the proof of ii.

Given a solution u we compute a perturbation expansion for the solution with initial data u(0)+ g
with small g. To simplify the notation, consider the semilinear equation

L(y, ∂)u + F (u) = 0 , F (0) = 0, F ′(0) = 0 .

Consider the map, N : u(0) 7→ u from Hs to C([0, T ] ; Hs(Rd)). At the end we will show that this
map is smooth. For the moment we simply compute the Taylor expansion, assuming that it exists.
Assuming smoothness, the solution with data u(0) + g has expansion

N (u(0) + g) ∼ u+M1(g) +M2(g) + . . . ∼
∞∑

j=1

Mj(g) , (6.5.1)

195



where the Mj are continuous symmetric j-linear operators from Hs to C([0, T ] ; Hs(Rd)).

To compute them, fix g and consider the initial data equal to u(0)+ δg. The resulting solution has
an expansion in δ

N (u+ δg) ∼ u+ δu1 + δ2u2 + · · · . (6.5.2)

However,

N (u+ δg) ∼ u+M1(δg) +M2(δg) + . . . ∼ u+

∞∑

j=1

δjMj(g) .

Comparing with (6.5.2) one sees that

uj = Mj(g, g, · · · , g) , j copies of g .

To compute uj plug the expansion (6.5.2) into the equation

L(y, ∂)
(
u+

∑

j≥1

δjuj

)
+ F

(
u+

∑

j≥1

δjuj

)
∼ 0 .

The initial condition yields

u1(0) = g , uj(0) = 0 , j ≥ 2 . (6.5.3)

Expanding the left hand side in powers of δ, the terms uj are determined by setting the coefficients
of the successive powers of δ equal to zero. Introduce the compact notation for the Taylor expansion

F (v + h) ∼ F (v) + F1(v;h) + F2(v;h, h) + . . . ,

where for v ∈ CN , Fj(v ; ·) is a symmetric j linear map from (CN )j → CN .

Setting the coefficients of δj equal to zero for j = 1, 2, 3 yields the initial value problems

Lu1 = 0 , u1(0, x) = g , (6.5.4)

Lu2 + F2(u;u1, u1) = 0 , u2(0, x) = 0 , (6.5.5)

Lu3 + F2(u;u2, u1) + F2(u;u1, u2) + F3(u;u1, u1, u1) = 0 , u3(0, x) = 0 , (6.5.6)

which determine uj for j = 1, 2, 3. The pattern is clear. The initial value problem determining uj
is linear in uj with source terms which are nonlinear functions of u1, . . . , uj−1.

Exercise 6.5.1. Suppose that the uj are determined by solving these initial value problems. Then
define uapprox(δ) using Borel’s theorem so that

uapprox(δ) ∼
∑

j≥1

δj uj , in C([0, T ] ; Hs(Rd)) .

Prove that for δ sufficiently small the exact solution of the initial value problem exists on [0, T ]
and uexact)(δ)− uapprox(δ) ∼ 0 in C([0, T ] ; Hs(Rd)). Hint. Compute a nonlinear equation for the
error which has source terms O(δ∞). Use the method of Theorem 6.5.1.ii. Discussion. The key
element is the stability argument at the end which shows that a nonlinear problem with infinitely
small sources has a solution which is infinitely small. In science texts it is routine to overlook the
need for such stability arguments.
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The next result is stronger than that of the exercise.

Theorem 6.5.2. If u ∈ C([0, T ] ; Hs(Rd)) is a solution then the map N from initial data to
solution is smooth from a neighborhood of u(0) to C([0, T ] ; Hs(Rd)). The derivative is given by
N1(u(0), g) = u1 from (6.5.4). Derivatives of each order are uniformly bounded on the neighbor-
hood.

Proof. The preceding computations show that if N is differentiable then N1(u(0), g) = u1 from
(6.5.4). It suffices to show that this is the derivative of N and that the map from u(0) to N1(u(0), ·)
is locally bounded and smooth with values in the linear maps from Hs(Rd) to C([0, T ] ; Hs(Rd)).

To prove differentiability let u := N (u(0)) be the base solution and v := u + u1 be the first
approximation. Then

Lu+ F (u) = 0 , L v + F (v) = F (u+ u1) − F1(u, u1) .

Schauder’s lemma together with Taylor’s theorem shows that

∥∥F (u+ u1) − F1(u, u1)
∥∥
C([0,T ] ;Hs)

≤ C
∥∥u1

∥∥2

C([0,T ] ;Hs)

Since the initial values of u and v are equal, the basic linear energy estimate proves that

∥∥u− v
∥∥
C([0,T ] ;Hs)

≤ C
∥∥u1

∥∥2

C([0,T ] ;Hs)
.

This proves that N is differentiable and the formula for the derivative. The formula implies that
the derivative is locally bounded.

The derivative is computed by solving (6.5.4). Since u is a differentiable function of u(0) with
locally bounded derivative. Then F1(u, ·) is differentiable with locally bounded derivative. As in
the proof of differentiability, it follows that N1(u(0), ·) is a differentiable function of u(0) with
locally bounded derivative. The higher differentiability follows by an inductive argument.

§6.6 The Cauchy problem for quasilinear symmetric hyperbolic systems.

For ease of reading we present only the case of real solutions of real equations. This includes most
quasilinear examples from applications. The equations have the form

L(u, ∂)u :=
d∑

µ=0

Aµ(u) ∂µu = f , (6.6.1)

where the coefficient matrices Aµ are smooth symmetric matrix valued functions of u defined on an
open subset of Rd. The leading coefficient, A0(u), is assumed to be strictly positive. The leading
coefficient, A0(u), is assumed to be strictly positive. One can almost as easily treat coefficients
which are function of y and u.

The existence theorem is local in time, and for small times the values of u are close to values of
the initial data. Thus for convenience we can modify the coefficients outside a neighborhood of
the values taken by the initial data to arrive at a system with everywhere defined smooth matrix
valued coefficients. Even more we may suppose that the coefficients take constant values outside
a compact subset of u space.

In contrast to the linear case, one cannot reduce to the case A0 = I. However, if one is interested
only in solutions which take values near a constant value u, changing variable to v := A0(u)

1/2u
one can reduce to the case A0(u) = I. This is useful for quasilinear geometric optics.
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§6.6.1. Existence of solutions.

Local existence is analogous to Theorem 6.4, except that it is important that the coefficients
Aµ(u(x)) be lipschitz continuous functions of y. For this reason we work in Sobolev spaces Hs(Rd)
with s > 1 + d/2. The importance of the Lipschitz condition is seen from the basic L2(Rd) energy
law when f = 0,

d

dt

(
A0(u)u(t) , u(t)

)
=
((∑

µ

∂µ(Aµ(u))
)
u(t) , u(t)

)
, divA :=

∑

µ

∂µ(Aµ(u)). (6.6.2)

To control the growth of the L2 norm uses the lipschitz bound. It is not obvious but is true, that
the same bound suffices to control the growth of higher derivatives. The existence part of the
following Theorem is essentially due to Schauder [Sch].

Theorem 6.6.1. If N ∋ s > 1 + d/2, f ∈ Cj
(
[0,∞[ ; Hs−j(Rd)

)
, and g ∈ Hs(Rd), then there is a

T > 0 and a unique solution

u ∈ ∩sj=0 C
j([0, T ] ; Hs−j(Rd))

to the initial value problem

L(u, ∂)u = f , u(0, x) = g(x) . (6.6.3)

The time T can be chosen uniformly for f, g belonging to bounded subsets of L1
loc

(
[0,∞[ ;

Hs(Rd)
)

and Hs(Rd) respectively. Therefore, there is a T∗ ∈]0,∞] and a maximal solution in
∩jCj([0, T∗[ ; Hs−j(Rd)). If T∗ <∞ then limtրT∗ ‖u(t)‖Hs(Rd) = ∞. A more precise result is

lim sup
tրT∗

‖u(t),∇yu(t)‖L∞(Rd) = ∞ . (6.6.4)

Remark. If we had not modified the coefficients to be everwhere defined and smooth, the blow
up criterion would be that either (6.6.4) occurs or, the values of u approach the boundary of the
domain where the coefficients are defined.

This is so since if one has a solution of the original system whose values are taken in a compact
subset K of the domain of definition of the coefficients, one can modify the coefficients outside
a compact neighborhood of K. Theorem 6.6.2 implies that there is a solution on a larger time
interval.

The standard proof of Theorem 6.6.1 proceeds by considering the sequence of approximate solutions
satisfying

L(uν , ∂)uν+1 = f , uν+1
∣∣
t=0

= g .

The linear equation satisfied by uν+1 has coefficients Aµ(u
ν) depending on uν for which one has

only Hs control. The key to the proof is to derive a priori estimates for solutions of linear
symmetric hyperbolic intitial value problems with coefficient matrices having only Hs regularity
(see [Metivier, Lax]).

Schauder’s approach was to approximate the functions Aµ by polynomials in u and the data f, g
by real analytic functions and to use the Cauchy-Kowalsekaya Theorem (see [Courant-Hilbert]).
A priori estimates are used to control the approximate solutions on an fixed, possibly small, time
interval. We solve the equation by the method of finite differences. A disadvantage of this method
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is that it reproves the linear existence theorem. An advantage is that the basic a priori estimate
for the difference scheme allows one to prove existence and the sharp blowup criterion at the same
time.

Proof. For ease of reading, we present the case f = 0. The approximate solution uh is the unique
local solution of the ordinary differential equation in Hs(Rd)

A0(u)∂tu
h +

∑

j

Aj(u
h) δhj u

h = 0 , uh(0, x) = g(x) . (6.6.5)

For each fixed h > 0, the map

w 7→ A0(u)
−1
∑

j

Aj(u
h) δhj w

h

from Hs(Rd) to itself is uniformly lipschitzean on bounded subsets. It follows that there is a unique
maximal solution

uh ∈ C1([0, Th∗ [ ; Hs(Rd)) , Th∗ ∈]0,∞] .

If Th∗ <∞, then limtրTh
∗
‖uh(t)‖Hs(Rd) = ∞.

The heart of the existence proof are uniform estimates for uh on an h independent interval. The
starting point is an L2(Rd) estimate,

d

dt

(
A0(u

h)uh(t) , uh(t)
)

=
((
∂t(A0(u

h)
)
uh , uh

)
+
∑

j

((
Ajδ

h
j + (Ajδ

h
j )

∗
)
uh , uh

)
.

Thanks to the symmetry of Aj and the antisymmetry of δhj ,

Ajδ
h
j + (Ajδ

h
j )

∗ = [Aj(u
h) , δhj ] .

There is a constant, C = C(Aµ), so that

‖∂tA0(u
h)‖Hom(L2(Rd)) + ‖Ajδhj + (Ajδ

h
j )

∗‖Hom(L2(Rd)) ≤ C ‖∇yu
h(t)‖L∞(Rd) . (6.6.6)

For |α| ≤ s and ∂ = ∂x, compute

d

dt

(
A0(u

h)∂αuh(t) , ∂αuh(t)
)

=
(
A0(u

h)∂α∂tu
h , ∂αuh

)
+

(
A0(u

h)∂αuh , ∂α∂tu
h
)

+
((
∂tA0(u

h)
)
∂αuh , ∂αuh

)

:=
(
A0(u

h)∂α∂tu
h , ∂αuh

)
+
(
A0(u

h)∂αuh , ∂α∂tu
h
)

+ E1 ,

(6.6.7)

beginning the collection of terms which we will prove are acceptably large.

The first term on the right of (6.6.7) is equal to

(
∂αA0(u

h)∂tu
h , ∂αuh

)
+
(
[A0(u

h), ∂α]∂tu
h, ∂αuh

)
:=

(
∂αA0(u

h)∂tu
h , ∂αuh

)
+E2 . (6.6.8)
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Analogously, the symmetry of A0 shows that the second term in (6.6.7) is equal to

(
∂αuh , A0(u

h)∂α∂tu
h
)

=
(
∂αuh , ∂αA0(u

h)∂tu
h
)

+
(
∂αuh, [A0(u

h), ∂α]∂tu
h
)

:=
(
∂αuh , ∂αA0(u

h)∂tu
h
)

+ E3 .
(6.6.9)

Using the differential equation, the sum of the nonerror terms in (6.6.8-9) is equal to the sum on
j of (

∂αuh , ∂αAj(u
h) δhj u

h
)

+
(
∂αAj(u

h) δhj u
h , ∂αuh

)

=
(
∂αuh , Aj(u

h) δhj ∂
αuh

)
+
(
Aj(u

h) δhj ∂
αuh , ∂αuh

)
+ E4

=
((
Aj(u

h) δhj + (Aj(u
h)δhj )

∗
)
∂αuh , ∂αuh

)
+ E4

:= E5 + E4 ,

(6.6.10)

where
E4 :=

(
∂αuh , [∂α, Aj(u

h)] δhj u
h
)

+
(
[∂α, Aj(u

h)] δhj u
h , ∂αuh

)
.

Denote by

E(w) :=
∑

|α|≤s

(
A0(w)∂αxw , ∂

α
xw
)
.

Since A0 is strictly positive, there is a constant C independent of w so that

1

C

∑

|α|≤s

‖∂αxw(t)‖2
L2(Rd) ≤ E(w) ≤ C

∑

|α|≤s

‖∂αxw‖2
L2(Rd) . (6.6.11)

Summing over all |α| ≤ s yields

dE(uh(t))

dt
=

5∑

j=1

Ej . (6.6.12)

Lemma 6.6.2. For all R > 0, 1 ≤ j ≤ 5, and 0 < h < 1, there is a constant C(R) depending only
on L and R so that

∥∥uh(t),∇yu
h(t)

∥∥
L∞(Rd)

≤ R =⇒ |Ej | ≤ C(R)
∑

|α|≤s

‖∂αx uh(t)‖2
Hs(Rd) .

Proof of Lemma. The cases j = 1 and j = 5 follow from (6.6.6). The remaining three cases are
similar and we present only j = 3 which is the worst. It suffices to show that

‖[∂α, Aj(uh)] ∂tuh‖2
L2(Rd) ≤ C(R)

∑

|α|≤s

‖∂αxuh(t)‖2
Hs(Rd) . (6.6.13)

The quantity on the left of (6.6.13) is a linear combination of terms

∂β(Aj(u
h)) ∂γ

(
(A−1

0 Aj)(u
h)δhj u

h
)
, β + γ = α, β 6= 0 .
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Since β 6= 0 this is equal to

(∂βAj(u
h) −Aj(0)) ∂γ

(
(A−1

0 Aj(u
h) −A−1

0 Aj(0))δhj u
h
)

+ ∂β(Aj(u
h) −Aj(0)) (A−1

0 Aj)(0)∂γδhj u
h .

Estimate
‖Aj(uh) −Aj(0)‖L∞ + ‖(A−1

0 Aj)(u
h) − (A−1

0 Aj)(0)‖L∞ ≤ C(R) ,

and from Moser’s inequality,

‖Aj(uh) −Aj(0)‖Hs + ‖(A−1
0 Aj)(u

h) − (A−1
0 Aj)(0)‖Hs ≤ C(R) ‖uh‖1/2

Hs .

The Gagliardo-Nirenberg estimates then imply (6.6.13).

The local solution is constructed so as to take values in the set

W :=
{
w ∈ Hs(Rd) ; E(w) ≤ E(g) + 1

}
.

Choose R > 0 so that

w ∈ W =⇒ ‖w‖L∞ + ‖∇xw‖L∞ + ‖
∑

j

Aj(w)δhj w‖L∞ < R .

So long as uh(t) stays in W , one has

dE(uh(t))

dt
≤ C(R)C E(uh(t)) ≤ C(R)C

(
E(g) + 1

)
.

with C from (6.6.11) Therefore,

E(uh(t)) − E(g) ≤ T C(R)C
(
E(g) + 1

)
.

Define T by

T C(R)C
(
E(g) + 1

)
=

1

2
.

If follows that for all h, uh takes values in W for 0 ≤ t ≤ T .

This uniform bound implies a subsequence which converges weak star in L∞([0, T ] ; Hs(Rd)) and
stongly in Cj([0, T ] ; Hs−j(Rd)) for 1 ≤ j ≤ s.

The limit satisfies the initial value problem and also

dE(u(t))

dt
≤ C(R) E(u(t)) . (6.6.14)

This together with the uniform continuity of u implies that ‖u(t)‖H(Rd) is continuous. It follows

that u ∈ C([0, T ] ; Hs(Rd)). That ∂jt u ∈ C([0, T ] ; Hs−j(Rd)) follows by using the differential
equation to express these derivatives in terms of spatial derivatives as in the semilinear case.

Uniqueness is proved by deriving a linear equation for the difference w := u− v of two solutions u
and v. Toward that end compute

Aµ(u)∂µu−Aµ(v)∂µv = Aµ(u)∂µ(u− v) + (Aµ(u) −Aµ(v))∂µv .
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Write Aµ(u) −Aµ(v) = Gµ(u, v) (u− v) , to find

Aµ(u)∂µu−Aµ(v)∂µv = Aµ∂w + Bµw,

Aµ(y) := Aµ(u(y)), Bµ(y) := Gµ(u(y), v(y)) ∂µv(y).
Therefore

L(y, ∂)w = 0 , L(y, ∂y) :=
∑(

Aµ∂µ + Bµ
)
. (6.6.15)

The energy method yields

d

dt

(
A0 w(t), w(t)

)
≤ C

(
A0 w(t) , w(t)

)
, (6.6.16)

Since w|t=0 = 0, it follows that w = 0 which is the desired uniqueness.

All that remains is the proof of the precise blow up criterion (6.6.4). This is immediate since if the
lipschitz norm does not blow up, then (6.6.14) implies that the Hs(Rd) norm does not blow up.
This completes the proof of Theorem 6.6.1.

Example. In addition to the numerous examples from mathematical physics we point out the ele-
gant proof of Garabedian reducing the Cauchy-Kowaleskaya Theorem to the solution of quasilinear
symmetric hyperbolic initial value problems, [Garabedian, Taylor III].

§6.6.2. Examples of breakdown.

In this section we exhibit a simple mechanism, wave breaking, for the breakdown of solutions with
u bounded and ∇xu diverging to infinity as t ր T ∗. The method of proof leads to two Liouville
type theorems.

The classic example is Burgers’ equation

ut + uux = 0 . (6.6.17)

For a smooth solution on [0, T ] × Rd the equation shows that u is constant on the integral curves
of ∂t + u∂x. Therefore those integral curves are straight lines.

For the solution of the initial value problem with

u(0, x) = g(x) ∈ C∞
0 (R) , (6.6.18)

the value of u on the line (t, x+ g(x)t) must be equal to g(x). This is an implicit equation,

u(t, x+ tg(x)) = g(x) , (6.6.19)

uniquely determining a smooth solutions for t small.

However, if g is not monotone increasing, consider the lines starting from two points x1 < x2 where
g(x1) > g(x2). The lines intersect in t > 0 at which point the conditions that u take value g(x1)
and g(x2) contradict. Thus the solution must break down before this time. While the solution is
smooth, u(t) is a rearrangement of u(0) so the sup norm of u does not blow up. The existence
theorem shows that the gradient must explode.

That the gradient explodes can also be proved by differentiating the equation to show that v := ∂xu
satisfies

vt + u∂xv + v2 = 0 .
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This equation is exactly solvable since

d

dt
v(t, x+ g(x)t) = vt + u∂xv = − v2 .

Therefore,

v(t, x+ g(x)t) =
g′(x)

1 − g′(x)t
.

Proposition 6.6.2. The maximal solution of the initial value problem (6.6.4-5) satisfies

T∗ =
1

−min g′(x)
. (6.6.20)

Proof. The preceding computations shows that T∗ can be no larger than the right hand side of
(6.6.20). On the other hand, the implicit function theorem provides a smooth solution of (6.6.18)
so long as the map x 7→ x + tg(x) is a diffeomorphism from R to itself. This holds exactly for t
smaller than the right hand side of (6.6.20).

The method of proof yields the following results of Liouville type.

Theorem 6.6.3. i. The only global solutions u ∈ C1(R1+d) of Burgers’ equation 6.6.5 are the
constants.

ii. The only global solutions ψ(x) ∈ C3(Rd) of the eikonal equation |∇xψ| = 1 are affine functions.

Proof. i. Denote g(x) := u(0, x). If there is a point with g′(x) < 0 the above proof shows that
ux(t, x+ g(x)t) diverges as tր T ∗. If there is a point with g′(x) > 0 then an analogous argument
shows that ux(t, x+g(x)t) diverges as tց −1/g′(x). Therefore g is constant and the result follows.

ii. Denote by

V := 2
∑

∂jψ ∂j ,

a C1 vector field. Differentiating
∑

(∂jψ)2 = 1, yields for each partial derivative ∂ψ,

V ∂ψ = 0 , 0 = V ∂2ψ + 2
∑

j

(∂j∂ψ)2 ≥ V ∂2ψ + (∂2ψ)2 . (6.6.21)

The first implies that ∇xψ is constant on the integral curves of V . Therefore the integral curves
are stationary points or straight lines x+ s∇xψ(x).

If ψ is not linear, there is a point x at which the matrix of second derivatives at x is not equal
to zero. The same holds on a neiborhood of x so we can choose x so that ∇xψ(x) 6= 0. A linear
change of coordinates yields ∂2

1ψ(x) 6= 0.

Then

h(s) := ∂2
1ψ(x+ 2s∇xψ(x)) , satisfies

dh

ds
≤ −h(s)2 .

If h(0) < 0 then h diverges to −∞ at a finite positive value of s. Similarly if h(0) > 0 then h
diverges to +∞ at a finite negative value of s. Thus ψ cannot be globally C2.

§6.6.3. Dependence on initial data.
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Theorem 6.6.1 shows that the map from u(0) to u(t) maps Hs(Rd) to itself and takes bounded sets
to bounded sets. In contrast to the case of semilinear equations, this mapping is not smooth. It is
not even lipschitzean. It is lipschitzean as a mapping from Hs(Rd) to Hs−1(Rd).

Suppose that v ∈ C([0, T ] ; Hs(Rd)) with s > 1 + d/2 solves (6.6.1). Denote by N the map
u(0) 7→ u(·) from initial data to solution. It is defined on a neighborhood, U , of v(0) in Hs(Rd) to
∩jCj([0, T ] ; Hs−j(Rd)).

Theorem 6.6.4. Decreasing the neighborhood U ⊂ Hs(Rd) if necessary, the map

U ∋ u(0) 7→ u(·) ∈ ∩{j : s−j−1>d/2} C
j([0, T ] ; Hs−1−j(Rd))

is uniformly lipschitzean.

Proof. The assertion follows from the linear equation (6.6.15) for the difference of two solutions.
The coefficients Aµ belong to Cj([0, T ] : Hs−j(Rd)) for 0 ≤ j ≤ s. On the other hand, the
coefficients Bµ ∈ Cj([0, T ] : Hs−j−1(Rd)) for 0 ≤ j ≤ s−1 have one less derivative. For this linear

equation, the change of variable w̃ = A−1/2
0 w reduces to the case A0 = I.

The estimate is proved by computing

d

dt

∑

|α|≤s−1

(∂αw̃(t) , ∂αw̃) .

The restriction to s− 1 comes from the fact that B is only s− 1 times differentiable.

Exercise. Carry out this proof using the proof of Theorem 6.6.1 as model.

We next prove differentiable dependence by the perturbation theory method of §6.5. Suppose that

L(v, ∂) v = 0 ,

and consider the perturbed problem

L(u, ∂)u = 0 , u|t=0 = v(0) + g , (6.6.22)

with g small. To compute the Taylor expansion, introduce the auxiliary problems

L(ũ, ∂)ũ = 0 , ũ|t=0 = v(0) + δg , ũ ∼ u0 + δu1 + δ2u2 + · · · . (6.6.23)

Then L(ũ, ∂)ũ has expansion in powers of δ computed from the expression

0 =
∑

µ

(
Aµ(u0) + δA′

µ(u0)(u1) + δ2A′′
µ(u0)(u1, u1) + · · ·

)
∂µ

(
u0 + δu1 + δ2u2 + · · ·

)
.

The O(δ0) term yields
L(u0, ∂)u0 = 0 , u0|t=0 = u(0) , (6.6.24)

yielding, u0 = v, is the unperturbed solution.

The O(δ) term yields

∑

µ

Aµ(v)∂µu1 +
∑

µ

[
A′
µ(v)u1

]
∂µv = 0 , u1|t=0 = g . (6.6.25)
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Introduce the linearization of L at the solution v by

Lw :=
∑

µ

Aµ(v)∂µw +
∑

µ

[
A′
µ(v)(w)

]
∂µv . (6.6.26)

The equation of first order perturbation theory becomes

Lu1 = 0 , u1|t=0 = g . (6.6.27)

In the zero order term of L, the coefficient depends on ∂v so in general u1 will be one derivative
less regular than v.

The O(δ2) terms yield

Lu2 +
∑

µ

[
A′
µ(v)(u1)

]
∂µu1 +

∑

µ

[
A′′
µ(v)(u1, u1)

]
∂µv = 0 , u2|t=0 = 0 . (6.6.28)

There is a source term depending on ∂u1 so typically, u2 will be one derivative less regular than
u1 and therefore two derivatives less regular than v.

Continuing in this fashion yields initial value problems determining uj as symmetric j-multilinear
functionals of g provided that v is sufficiently smooth.

Theorem 6.6.5. Suppose that s > 1 + d/2, and v ∈ C([0, T ] : Hs(Rd)) satisfies (6.6.1). Then
the map, N , from initial data to solution is a differentiable function from a neighborhood of v(0)
in Hs(Rd) to C([0, T ] ; Hs−1(Rd)). The derivative is locally bounded. If s − j > d/2 then N is
j times differentiable as a map with values in C([0, T ] ; Hs−j(Rd)). The derivatives are locally
bounded.

Sketch of Proof. The linear equation determining u1 has coefficient which involve the first
derivative of v. As a result u1 will in general be one derivative less regular than v. That is as bad
as it gets. It is not difficult to show using an estimate as in Theorems 6.5.2, 6.6.4 that

∥∥∥N (u(0) + g) −
(
N (u(0)) + u1

)∥∥∥
C
(
[0,T ] ;Hs−1(Rd)

) ≤ C
∥∥g
∥∥2

Hs(Rd)
.

This yields differentiability, the formula for the derivative, and local boundedness.

Similarly, the calculations before the Theorem show that if N is twice differentiable then one must
have

N2(v(0), g, g) = u2 ,

where u2 is the solution of (6.6.28). It is straight forward to show that N2 so defined is a continuous
quadratic map from Hs 7→ C

(
[0, T ] ; Hs−2(Rd)

)
.

A calculation like that in Theorem 6.5.2 shows that
∥∥∥N (u(0) + g) −

(
N (u(0)) + u1 + u2

)∥∥∥
C
(
[0,T ] ;Hs−2(Rd)

) ≤ C
∥∥g
∥∥3

Hs(Rd)
.

This is not enough to conclude that N is twice differentiable. What is needed is a formula for
the variation of N1(v(0), g) when v(0) is varied. The derivative N1(v(0), g) = u1 is determined by
solving the linear Cauchy problem (6.6.27) which has the form

L(v, ∂)u1 + B(v, ∂v)u1 = 0 , u1(0) = g .
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The map from v(0) to the coefficients in (6.6.26) is differentiable and locally bounded from
Hs → C([0, T ] ; Hs−1). Provided that s − 1 > d/2 + 1 it follows from a calculation like that
used to show that N is differentiable, that the map from v(0) to u1 is differentiable from Hs to
C([0.T ] ; Hs−2(Rd)), that N is twice differentiable, and the second derivative is locally bounded.
The straight forward but notationally challenging computations are left to the reader.

The inductive argument for higher derivatives is similarly passed to the reader.

We next show by example that the loss of one derivative expressed in Theorems 6.6.4 and 6.6.5 is
sharp. Choose

0 ≤ χ ∈ C∞
0 , χ = 1 on {|x| ≤ 1/2}.

and denote x+ = max{x, 0}.. Consider Burgers’ equation, vt + v vx = 0, with initial data

v(0, x) = (x+)3/2+δχ(x) 0 < δ < 1/2,

belonging to H2(R) but not H3(R). Choose t > 0 so that v the local solution valued inH2 exists for
0 ≤ t ≤ t. That solution is compared with the solution u with initial value equal to v(0, x)+ ǫχ(x).

The solution u vanishes for x ≤ 1 + ǫt. So, The difference (u− v)(t) is equal to v on an interval of
lenght ǫt to the right of the origin. Therefore

‖(u− v)(t)‖2
H2(R) ≥

∫ ǫt

0

(vxx)
2dx ≥ C

∫ ǫt

0

x−1+2δ dx ≥ C ǫ2δ .

Since this is not O(ǫ) the example shows that the map from data to solution is not Lipschitzean
on H2. Moreover it is not Hölderian with any index α > 0. If we had taken δ > 1/2 then the data
would be H3 and consistent with the Theorems the map would be Lipschitzean with values in H2.

§6.7. Global small solutions for maximally dispersive nonlinear systems.

In dimensions greater than one, solutions of linear constant coefficient hyperbolic systems, no
lower order terms, and no hyperplanes in their characteristic variety, tend to zero as t→ ∞. The
maximally dispersive systems decay as fast as is possible, consistent with L2 conservation. Consider
a nonlinear system

L(∂)u+G(u) = 0 , G(0) = 0 , ∇uG(0) = 0 .

Solutions with small initial data, say u
∣∣
t=0

= ǫ f are approximated by solutions of the linearized
equation

L(0, ∂)u = 0 ,

with the same initial data. On bounded time intervals, the error is O(ǫ2) since the nonlinear term
is at least quadratic at the origin. When solutions of Lu = 0 decay in L∞, G(u) is even smaller.
There is a tendency to approach linear behavior for large times. For G = O(|u|p) at the origin,
the higher is p the stronger is the tendency. The higher is the dimension, the more dispersion is
possible and the stronger can be the effect.

We prove that for maximally dispersive systems in dimension d ≥ 4 and p ≥ 3, the Cauchy
problem is globally solvable for small data. This line of investigation has been the subject of much
research. The CBMS lectures of Strauss present a nice selection of topics. The important special
case of perturbations of the wave equation was the central object of a program of F. John in which
the contributions of S. Klainerman were capital. I recommend the books of Sogge, Hörmander,
Shatah-Struwe, and Strauss for more information. The analysis we present follows ideas predating
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the John-Klainerman revolution. A quasilinear version including refined estimates for scattering
operators can be found in [Satoh, Kajitani-Satoh] . The sharper result in the spirit of John-
Klainerman is that there is global existence of small solutions when (d−1)(p−1)/2 > 1. Estimates
sufficient for the sharper result are proved in the article of Georgiev, Lucente, and Ziliotti. The
sharp condition can be understood as follows. The nonlinear equation is like a linear equation with
potential ∼ up−1 ∼ t−(d−1)(p−1)/2. The Cook criterion (see Reed and Simon vol. III) suggests that
there is scattering behavior when this is integrable in time, that is (d− 1)(p− 1)/2 > 1.

The global existence result is in sharp contrast to the example

∂u

∂t
+

∂u

∂x1
− u2 = 0 , u(0, x) = ǫ φ(x) , 0 ≤ φ ∈ C∞

0 (Rd) \ 0 ,

for which solutions blow up in time O(ǫ−1) independent of dimension. The associated linear
problem is completely nondispersive.

Assumption 1. L(∂) is a maximally dispersive symmetric hyperbolic system with constant coef-
ficients as in §3.4.

Assumption 2. G(u) is a smooth nonlinear function whose leading Taylor polynomial at the
origin is homogeneous of degree p ≥ 3.

Theorem 6.7.1. Suppose that (d− 1)/2 > 1 and (d− 1)(p− 2)/2 > 1, and σ is an integer greater
than (d+ 1)/2. For each δ1 > 0, there is a δ0 > 0 so that if

‖f‖Hσ(Rd) + ‖f‖Wσ,1(Rd) ≤ δ0 ,
(
‖f‖Wσ,1(Rd) :=

∑

|α|≤σ

‖∂αx f‖L1(Rd)

)
, (6.7.1)

then the solution of the Cauchy problem

Lu + G(u) = 0 , u
∣∣
t=0

= f , (6.7.2)

exists globally and satisifes for all t ∈ R,

‖u(t)‖L∞(Rd) ≤ 〈t〉−(d−1)/2 δ1 , and ‖u(t)‖Hσ(Rd) ≤ δ1 . (6.7.3)

There is a c > 0, so that for δ1 small one can take δ0 = c δ1.

Proof. We treat the case of t ≥ 0. For simplicity we treat only the case of G equal to a
homogeneous polynomial. The modifications for the general case are outlined in an exercise after
the proof.

Decreasing δ1 makes the task more difficult. If δ1 ≤ 1 is given, choosing δ0 sufficiently small, the
solution satisfies (6.7.3) on some maximal interval [0, T [, T ∈]0,∞]. The proof relies on a priori
estimates for the solution on this maximal interval.

Denote by S(t) := e
−it
∑

j
Aj∂j the unitary operator on Hs(Rd) giving the time evolution for the

linear equation Lu = 0,
‖S(t)‖Hs(Rd) = ‖f‖Hs(Rd) . (6.7.4)

The Theorem in §3.4.2 yields the estimate

‖S(t) f‖L∞(Rd) ≤ C0 〈t〉−(d−1)/2
(
‖f‖Hs(Rd) +

∞∑

j=−∞

∥∥ |D|(d+1)/2fj
∥∥
L1

)

≤ C1〈t〉−(d−1)/2 δ0 .

(6.7.5)
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Duhamel’s formula reads

u(t) = S(t) f +

∫ t

0

S(t− s) G(u(s)) ds . (6.7.6)

For the homogeneous polynomial G we have Moser’s inequality,

‖G(u)‖Hσ(Rd) ≤ C2 ‖u‖p−1
L∞(Rd)

‖u‖Hσ(Rd) . (6.7.7)

Exercise 6.7.1. Prove (6.7.7).

Use this and (the sharp condition) (d− 1)(p− 1)/2 > 1 to estimate

‖u(t)‖Hσ ≤ δ0 +

∫ t

0

C2

(
〈t− s〉−(d−1)/2 δ1

)p−1
δ1 ds

≤ δ0 + C3 δ
p
1 , C3 := C2

∫ ∞

0

〈t〉−(p−1)(d−1)/2 dt .

(6.7.8)

The L∞ norm satisfies,

‖u(t)‖L∞ ≤ C1 〈t〉−(d−1)/2 δ0 +

∫ t

0

∥∥S(t− s) G(u(s))
∥∥
L∞ ds . (6.7.9)

Use the dispersive estimate (3.4.8-3.4.9) to find

∥∥S(t− s)G(u(s))
∥∥
L∞ ≤ C6 〈t− s〉−(d−1)/2 ‖G(u(s))‖Wσ,1 . (6.7.10)

Lemma 6.7.2. There is a constant C so that for all u one has

‖G(u)‖Wσ,1 ≤ C ‖u‖p−2
L∞ ‖u‖2

Hσ . (6.7.11)

Proof of Lemma. Leibniz’ rule shows that it suffices to show that if |α1 + . . .+αp| = s ≤ σ then

∥∥∂α1u∂α2u · · · ∂αpu
∥∥
L1 ≤ C ‖u‖p−2

L∞ ‖u‖L2‖ |D|su‖L2 .

Both sides have the dimensions ℓd−s.

Define θi := |αi|/s so
∑
θi = 1. The Gagliardo-Nirenberg estimate interpolating between u ∈ L∞

and |D|su ∈ L2 is

‖∂αiu‖Lpi ≤ C ‖u‖1−θi

L∞ ‖ |D|su‖θi

L2 ,
1

pi
=

1 − θi
∞ +

θi
2

=
θi
2
.

Define θ := 1/(p− 1) and interpolate between ∂αiu ∈ Lpi and ∂αiu ∈ L2 to find

‖∂αiu‖Lri ≤ ‖∂αiu‖1−θ
Lpi ‖∂αiu‖θL2 ,

1

r1
=

1 − θ

pi
+
θ

2
.
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Therefore,

‖∂αiu‖Lri ≤ ‖u‖(1−θi)(1−θ)
L∞ ‖u‖(1−θi)θ

L2 ‖ |D|su‖θi

L2 , 1 =
∑

1/ri .

Hölder’s inequality implies

∥∥∂α1u∂α2u · · · ∂αpu
∥∥
L1 ≤ Πp

i=1‖∂αiu‖Lri ≤ C ‖u‖p−2
L∞ ‖u‖L2 ‖ |D|su‖L2 ,

which completes the proof.

Estimates (6.7.10-11) yield,

∫ t

0

∥∥S(t− s)G(u(s))
∥∥
L∞ ds ≤ C7

∫ t

0

〈t− s〉−(d−1)/2 〈s〉−(p−2)(d−1)/2 δ21 ds .

Consider 0 ≤ s ≤ 1 to see that this integral cannot decay faster than 〈t〉−(d−1)/2. On the other
hand on s ≥ t/2 (resp. s ≤ t/2), the first (resp. second) factor in the integral is bounded above
by C〈t〉−(d−1)/2 and the other factor uniformly integrable since using the hypotheses (d− 1)/2 > 1
and (p− 2)(d− 1)/2 > 1. Therefore,

∫ t

0

∥∥S(t− s)G(u(s))
∥∥
L∞ ds ≤ C8 〈t〉−(d−1)/2 δ21 . (6.7.12)

Combining yields

‖u(t)‖L∞ ≤
(
C1 δ0 + C8 δ

2
1

)
〈t〉−(d−1)/2

Since p > 2, decreasing δ1 if necessary we may suppose that,

C3 δ
2
1 <

δ1
2
, and C8 δ

2
1 <

δ1
2
.

Then, choose δ0 > 0 so that

δ0 + C3 δ
2
1 <

δ1
2
, and C1δ0 + C8 δ

2
1 <

δ1
2
.

With these choices, the estimates show that on the maximal interval [0, T [, one has

‖u(t)‖L∞(Rd) ≤ 〈t〉−(d−1)/2 δ1
2
, and ‖u(t)‖Hs(Rd) ≤ δ1

2
. (6.7.13)

If T were finite, the solution would satisfy (6.7.3) on the interval [0, T + ǫ] for small positive ǫ
violating the maximality of T . Therefore T = ∞. The estimate (6.7.13) on [0, T [ completes the
proof.

Remark. The estimates of the L∞ norm using W σ,1 are crude compared to those obtained using
the weighted L2 estimates of John-Klainerman.

Exercise 6.7.2. For the case of G which are not homogeneous show that there are smooth
functions Hα and functions Gα homogeneous of degree p so that

G(u) =
∑

Gα(u) Hα(u) ,
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the sum being finite. Modify the Moser inequality arguments appropriately to prove the general
result.

§6.8. The subcritical nonlinear Klein-Gordon equation in the energy space.

§6.8.1. Introductory remarks.

The mass zero nonlinear Klein-Gordon equation is

1+du + F (u) = 0 . (6.8.1)

where
F ∈ C1(R) , F (0) = 0 , F ′(0) = 0 . (6.8.2)

The classic examples from quantum field theory are the equations with F (u) = up with p ≥ 3 an
odd integer. For ease of reading we consider only real solutions.

The equation (6.8.1) is Lorentz invariant and if G denotes the primitive,

G′(s) = F (s) , G(0) = 0 , (6.8.3)

then the local energy density is defined as

e(u) :=
u2
t + |∇xu|2

2
+ G(u) . (6.8.4)

Solutions u ∈ H2
loc(R

1+d) satisfy the differential energy law,

∂te− div
(
ut∇xu

)
= ut

(
u + F (u)

)
= 0 . (6.8.5)

The corresponding integral conservation law for solutions suitably small at infinity is,

∂t

∫

Rd

u2
t + |∇xu|2

2
+ G(u) dx = 0 , (6.8.6)

is one of the fundamental estimates in this section. Solutions are stationary for the Lagrangian,

∫ T

0

∫

Rd

u2
t − |∇xu|2

2
−G(u) dt dx .

When F is smooth, the methods of §6.3-6.4 yield local smooth existence.

Theorem 6.8.1. If F ∈ C∞, s > d/2, f ∈ Hs(Rd), and g ∈ Hs−1(Rd), then there is a unique
maximal solution

u ∈ C
(
[0, T∗[ ; Hs(Rd)

)
∩ C1

(
[0, T∗[ ; Hs−1(Rd)

)
.

satisfying
u(0, x) = f , ut(0, x) = g .

If T∗ <∞ then
lim sup
t→T∗

‖u(t)‖L∞(Rd) = ∞ .
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In favorable cases, the energy law (6.8.6) gives good control of the norm of u, ut ∈ H1 × L2.
Controling the norm of the difference of two solutions is, in contrast, a very difficult problem for
which many fundamental questions remain unresolved.

An easy first case is nonlinearities F which are uniformly lipschitzean. In this case, there is global
existence in the energy space.

Theorem 6.8.2. If F satisfies F ′ ∈ L∞(R) , then for all Cauchy data f, g ∈ H1 × L2 there is a
unique solution

u ∈ C
(
R ; H1(Rd)

)
∩ C1

(
R ; L2(Rd)

)
.

For any finite T , the map from data to solution is uniformly lipschitzean from H1 × L2 to
C([−T, T ; H1) ∩ C1([−T, T ] ; L2). If f, g ∈ H2 ×H1 then

u ∈ L∞
(
R ; H2(Rd)

)
, ut ∈ L∞

(
R ; H1(Rd)

)
.

If f, g ∈ Hs ×Hs−1 with 1 ≤ s < 2, then

u ∈ C
(
R ; Hs(Rd)

)
, ut ∈ C

(
R ; Hs−1(Rd)

)
.

Sketch of Proof. The key estimate is the following. If u and v are solutions then

(u− v) = F (v) − F (u), |F (u) − F (v)| ≤ C|u− v| .

Multiplying by ut − vt yields

d

dt

∫
(ut − vt)

2 + |∇x(u− v)|2dx = 2

∫
(ut − vt)

(
F (v) − F (u)

)
dx ≤ C ‖ut − vt‖2

L2 ‖u− v‖2
L2 .

It follows that for any T there is an a priori estimate

sup
|t|≤T

(
‖u(t) − v(t)‖H1 + ‖ut − vt‖L2

)
≤ C(T )

(
‖u(0) − v(0)‖H1 + ‖ut(0) − vt(0)‖L2

)
.

This estimate exactly corresponds to the asserted Lipschitz continuity of the map from data to
solutions.

Applying the estimate to v = u(x+ h) and taking the supremum over small vectors h, yields an a
priori estimate

sup
|t|≤T

(
‖u(t)‖H2 + ‖ut‖L2

)
≤ C(T )

(
‖u(0)‖H2 + ‖ut(0)‖H1

)
,

which is the estimate correponding to the H2 regularity.

Higher regularity for dimensions d ≥ 10 is an outstanding open problem. For example, for d ≥ 10,
smooth compactly supported initial data, and F ∈ C∞

0 or F = sinu, it is not known if the above
global unique solutions are smooth. For d ≤ 9 the result can be found in [Brenner-vonWahl 1982].
Smoothness would follow if one could prove that u ∈ L∞

loc. What is needed is to show that the
solutions do not get large in the pointwise sense. Compared to the analogous regularity problem for

211



Navier-Stokes this problem has the advantage that solutions are known to be unique and depend
continuously on the data.

§6.8.2. The ordinary differential equation and nonlipshitzean F.

Concerning global existence for functions F (u) which may grow more rapidly than linearly as
u→ ∞, the first considerations concern solutions which are independent of x and therefore satisfy
the ordinary differential equation,

utt + F (u) = 0 . (6.8.7)

Global solvability of the ordinary differential equation is analysed using the energy conservation
law (u2

t

2
+ G(u)

)′
= ut

(
utt + F (u)

)
= 0 .

Think of the equation as modeling a nonlinear spring. The spring force is attractive, that is pulls
the spring toward the origin when

F (u) > 0 when u > 0 and, F (u) < 0 when u < 0 .

In this case one has G(u) > 0 for all u 6= 0. Conservation of energy then gives a pointwise bound
on ut uniform in time

u2
t (t) ≤ u2

t (0) + 2G(u(0)) , |ut(t)| ≤
(
u2
t (0) + 2G(u(0))

)1/2
.

This gives a pointwise bound

|u(t)| ≤ |u(0)| + |t|
(
u2
t (0) + 2G(u(0))

)1/2
.

In particular the ordinary differential equation has global solutions.

In the extreme opposite case consider the replusive spring force F (u) = −u2 and G(u) = −u3/3.
The energy law asserts that u2

t/2 − u3/3 := E is independent of time. Consider solutions with

u(0) > 0, ut(0) > 0 so E > −u
3(0)

3
.

For all t > 0,

|ut| =
∣∣u

3

3
+E

∣∣1/2 ,

At t = 0 one has

ut(0) =
(u3(0)

3
+E

)1/2

> 0 .

Therefore u increases and u3/3 +E stays positive and one has for t ≥ 0

ut(t) =
(u3(t)

3
+E

)1/2

> 0 .

Both u and ut are strictly increasing.

Since
du

(
u3

3 + E
)1/2 = dt ,
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u(t) approaches ∞ at time

T :=

∫ ∞

u(0)

du
(
u3

3
+E

)1/2 .

Exercise 6.8.1. Show that if there is an M > 0 so that G(s) < 0 for s ≥M and

∫ ∞

M

1√
|G(s)|

ds < ∞

then there are solutions of the ordinary differential equation which blow up in finite time.

Keller’s Blowup Theorem 6.8.3. [1957]. If

a, δ > 0, d ≤ 3, E := δ2/2 − a3/3, T :=

∫ ∞

a

∣∣u
3

3
+E

∣∣−1/2
du ,

and φ,ψ ∈ C∞(Rd) satisfy

φ ≥ a and ψ ≥ δ for |x| ≤ T ,

the the smooth solution of

1+du − u2 , u(0) = φ, ut(0) = ψ

blows up on or before time T .

Proof. Denote by u the solution of the ordinary differential equation with initial data u(0) =
a, ut(0) = δ.

If u ∈ C∞
(
[0, t]×Rd

)
, then finite speed of propagation and positivity of the fundamental solution

of 1+d imply that
u ≥ u on

{
|x| ≤ T − t

}
.

Since u diverges as t→ T it follows that t ≤ T

In the case of attractive forces where G ≥ 0 one can hope that there is global smooth solvability
for smooth initial data. This question has received much attention and is very far from being
understood. For example even in the uniformly lipschitzean case where solutions H2 in x exist
globally, C∞ regularity is unknown in high dimensions.

§6.8.3. Subcritical nonlinearities.

In the remainder of this section we will study solvability in the energy space defined by u, ut ∈ H1×
L2. This regularity is suggested by the basic energy law. For uniformly lipschitzean nonlinearities
the global solvability is given by Theorem 6.8.2. The interest is in attractive nonlinearities with
superlinear growth at infinity.

A crucial role is played by the rate of growth of F at infinity. There is a critical growth rate so
that for nonlinearities which are subcritical and critical there is a good theory based on Strichartz
estimates. The analysis is valid in all dimensions.

To concentrate on essentials, we present the family of attractive (repulsive) nonlinearities F =
u|u|p−1 (F = −u|u|p−1) with potential energies given by ±

∫
|u|p+1/(p + 1)dx. Start with four
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natural notions of subcriticality. They are in increasing order of strength. One could expect to
call p subcritical when

1. H1(Rd) ⊂ Lp(Rd) so the nonlinear term makes sense for elements of H1.

2. H1(Rd) ⊂ Lp+1(Rd) so the potential energy makes sense for elements of H1.

3. H1(Rd) is compact in Lp+1
loc (Rd) so the potential energy is in a sense small compared to the

kinetic energy.

4. H1(Rd) ⊂ L2p(Rd) so the nonlinear term belongs to L2(Rd) for elements of H1.

The Sobolev embedding is

H1(Rd) ⊂ Lq(Rd) , for, q =
2d

d− 2
. (6.8.8)

The above conditions then read (with the values for d = 3 given in parentheses),

1. p ≤ 2d/(d− 2), (p ≤ 6) ,

2. p+ 1 ≤ 2d/(d− 2),
{
equiv. p ≤ (d+ 2)/(d− 2)

}
, (p ≤ 5),

3. p < (d+ 2)/(d− 2), (p < 5),

4. p ≤ d/(d− 2), (p ≤ 3).

The correct answer is 3. Much that will follow can be extended to the critical case p = (d+2)/(d−2).
The case 1 in contrast is supercritical and comparatively little is known. It is known that in the
supercritical case, solutions are very sensitive to initial data. The dependence is not lipschitzean,
and it is lipschitzean in the subcritical and critical cases. The books of Sogge, and Shatah-Struwe
and the orignal 1985 article of Ginibre and Velo are good references. The sensitive dependence is
a recent result of [Lebeau 2001, 2005].

Notation. Denote by LqtL
r
x([0, T ]) the space LqtL

r
x([0, T ] × Rd), For an open interval

LqtL
r
x([0, T [) := ∪0<T<T LqtL

r
x([0, T ]) .

Theorem 6.8.4. i. If p is subcritical for H1, that is p < (d+2)/(d− 2), then for any f ∈ H1(Rd)
and g ∈ L2(Rd) there is T∗ > 0 and a unique solution

u ∈ C([0, T∗[ H
1(Rd)) ∩ C1([0, T∗[ ; L

2(Rd)) ∩ LptL
2p
x ([0, T∗[) (6.8.9)

of the repulsive problem

u − u|u|p−1 = 0 , u(0) = f, ut(0) = g . (6.8.10)

If T∗ <∞ then
lim inf
tրT∗

‖∇t,xu‖L2(Rd) = ∞ . (6.8.11)

The energy conservation law (6.8.6) is satisfied.

ii. For the attractive problem

u + u|u|p−1 = 0 , u(0) = f, ut(0) = g . (6.8.12)
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one has the same result with T∗ = ∞ and with u ∈ LptL
2p
x (R). For any T > 0, the map from

Cauchy data to solution is uniformly lipschitzean

H1 × L2 → C([0, T ] ; H1) ∩ C([0, T ] ; L2) ∩ LptL
2p
x ([0, T ])) .

In the proof of this result and all that follows a central role is played by the linear wave equation
and its solution for which we recall the basic energy estimate

‖∇t,xu(t)‖L2(Rd) ≤ ‖∇t,xu(0)‖L2(Rd) +

∫ t

0

‖ u(t)‖L2(Rd) dt .

This is completed by the L2 estimate

‖u(t)‖L2(Rd) ≤
∫ t

0

‖ut(t)‖L2(Rd) dt .

In particular, for h ∈ L1
loc

(
R ; L2(Rd)

)
there is a unique solution

u ∈ C
(
R ; H1(Rd)

)
∩ C1

(
R ; L2(Rd)

)
,

to
u = h , u(0) = 0 , ut(0) = 0 .

This solution is denoted
−1h .

In order to take advantage of this we seek solutions so that

Fp(u) := ±u|u|p−1 ∈ L1
tL

2
x .

Compute

‖Fp(u)‖L1
tL

2
x

=

∫ T

0

(∫
|up|2 dx

)1/2

dt ,

where (∫
|u|2p dx

)1/2

=
[( ∫

|u|2p
)1/2p]p

= ‖u‖p
L2p(Rd)

,

so

‖Fp(u)‖L1
tL

2
x

=

∫ T

0

‖u‖p
L2p

t Rd
x

dt = ‖u‖p
Lp

tL
2p
x
. (6.8.13)

The above calculation proves the first part of the next lemma.

Lemma 6.8.5. The mapping u 7→ Fp(u) takes LptL
2p
x ([0, T ] to L1

tL
2
x([0, T ]). It is uniformly

Lipshitzean on bounded subsets.

Proof. Write

Fp(v) − Fp(w) = G(v,w)
(
v − w

)
, |G(v,w)| ≤ C

(
|v|p−1 + |w|p−1

)
.

215



Write ∥∥G(v,w)(v − w)
∥∥2

L2
x

=

∫
|G|2 |v − w|2 dx .

Use Hölder’s inequality for L
p/(p−1)
x × Lpx to estimate by

≤
(∫

|G(v,w)|2p/(p−1)dx
) p−1

p
(∫

|v − w|2pdx
) 1

p

.

Then
‖Fp(v) − Fp(w)‖L2 ≤ C ‖v,w‖p−1

L2p
x

‖v − w‖L2p
x
.

Finally estimate the integral in time using Hölder’s inequality for L
p/(p−1)
t × Lpt .

It is natural to seek solutions u ∈ LptL
2p
x ([0, T ]). With that as a goal we ask when it is true that

−1
(
L1
tL

2
x

)
⊂ LptL

2p
x .

This is exactly in the family of questions addressed by the Strichartz inequalities. The next Lemma
gives the inequalities adapted to the present situation.

Lemma 6.8.6. If

q > 2 , and
1

q
+

d

r
=

d

2
− 1 , (6.8.14)

then there is a constant C > 0 so that for all T > 0, h, f, g ∈ L1
t (L

2
x) ×H1 × L2 the solution of

u = h , u(0) = f , ut(0) = g ,

satisfies

∥∥u
∥∥
Lq

tL
r
x([0,T ])

≤ C
(∥∥h‖L1

tL
2
x([0,T ]) +

∥∥∇xf
∥∥
L2(Rd)

+
∥∥g
∥∥
L2(Rd)

)
. (6.8.15)

Proof. 1. Rewrite the wave equation as a symmetric hyperbolic pseudodifferential system moti-
vated by D’Alembert’s solution of the 1 − d wave equation. Factor,

∂2
t − ∆ = (∂t + i|D|) (∂t − i|D|) = (∂t + i|D|) (∂t − i|D|) .

Introduce
v± := (∂t ∓ i|D|)u , V := (v+, v−) ,

so

Vt +

(
1 0
0 −1

)
i|D|V =

(
h
h

)
.

Lemma 3.4.8 implies that for σ = d − 1, q > 2, (q, r) σ- admissible, and h, f, g with spectrum in
{R1 ≤ |ξ| ≤ R2} one has

‖u‖Lq
tL

r
x

≤ C ‖∇t,xu‖Lq
tL

r
x

≤ C ‖V ‖Lq
tL

r
x

≤ C
(
‖h‖L1

tL
2
x

+ ‖|D|f‖L2 + ‖g‖L2

)
.
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2. Denote by ℓ the dimensions of t and x. With dimensionless u , the terms on right of this
inequality have dimension ℓd/2−1.

The dimension of the term on the left is equal to

(
ℓdq/r ℓ

)1/q
= ℓ

d
r + 1

q .

The two sides have the same dimensions if and only if

d

r
+

1

q
=

d

2
− 1 . (6.8.16)

Under this hypothesis it follows that the same inequality holds, with the same constant C for data
with support in λR1 ≤ |ξ| ≤ λR2.

Comparing (6.8.16) with σ-admissibility which is equivalent to

d

r
+

1

q
≤ d

2
− 1

2
− 1

r
,

shows that (6.8.16) implies admissibility since r ≥ 2.

3. Lemma 6.8.6 follows using Littlewood-Paley theory as at the end of §3.4.3.

We now answer the question of when −1 maps L1
tL

2
x to LptL

2p
x . This is the crucial calculation. In

Lemma 6.8.6, take r = 2p to find
1

q
+

d

2p
=

d− 2

2
,

so,
1

q
=

d− 2

2
− d

2p
=

p(d− 2) − d

2p
, q = p

(
2

p(d− 2) − d

)
.

We want q ≥ p, that is

2

p(d− 2) − d
≥ 1 , ⇔ p(d− 2) − d ≤ 2 ⇔ p ≤ d+ 2

d− 2
.

The critical case is that of equality, and the subcritical case that we treat is the one with strict
inequality. For d = 3 the critical power is p = 5 and for d = 4 it is p = 3. In the subcritical case
the operator has small norm for T << 1.

The strategy of the proof is to write the solution u as a perturbation of the solution of the linear
problem, at least for small times. Define u0 to be the solution of

u0 = 0 , u0(0) = f,
∂u0

∂t
(0) = g . (6.8.17)

Write
u = u0 + v (6.8.18)

with the hope that v will be small at least for t small.

Lemma 6.8.7. If u = u0 + v with v ∈ LptL
2p
x

(
[0, T ]

)
satisfying

v = ± −1Fp(u0 + v) . (6.8.20)
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then
u ∈ C([0, T ] ; H1(Rd)) ∩ C1([0, T ] ; L2(Rd)) ∩ LptL

2p
x ([0, T ]) (6.8.21)

satisfies
u ± Fp(u) = 0 , u(0) = f, ut(0) = g , (6.8.22)

Conversely, if u satisfies (6.8.21)-(6.8.22) then v := u− u0 ∈ LptL
2p
x ([0, T ]) and satisfies (6.8.21)

Proof. The Strichartz inequality implies that u0 ∈ LptL
2p
x and by hypothesis the same is true of

v. Therefore u0 + v belongs to LptL
2p
x so Fp(u0 + v) ∈ L1

tL
2
x.

Therefore v = ± −1Fp is C(H1)∩C1(L2). The differential equation and initial condition for v are
immediate.

The converse is similar, not used below, and left to the reader.

Proof of Theorem 6.8.4. For K > 0 arbitrary but fixed, we prove unique local solvability with
continuous dependence for 0 ≤ t ≤ T with T uniform for all data f, g with

‖f‖H1 + ‖g‖L2 ≤ K .

Choose R = R(K) so that for such data,

‖u0‖Lp
tL

2p
x ([0,1]) ≤ R

2
.

Define
B = B(T ) :=

{
v ∈ LptL

2p
x ([0, T ]) : ‖v‖Lp

tL
2p
x ([0,T ]) ≤ R

}
.

We show that for T = T (K) sufficiently small, the map v 7→ −1Fp(u) is a contraction from B to
itself.

This is a consequence of three facts.

1. Lemma 6.8.5 shows that Fp is uniformly lipschitzean from B to L1
tL

2
x([0, T ]) uniformly for

0 < T ≤ 1.

2. Lemma 6.8.6 together with subcriticality shows that there is an r > p so that −1 is uniformly
lipshitzean from L1

tL
2
x to LrtL

2p
x uniformly for 0 < T < 1.

3. The injection LrtL
2p
x 7→ LptL

2p
x has norm which tends to zero as T → 0.

This is enough to carry out the existence parts of Theorem 6.8.4.

If there are two solutions u, v with the same initial data, compute

(u− v) = G(u, v)(u− v) .

Lemma 6.8.6 together with subcriticality shows that with r slightly larger than p,

‖u− v‖Lr
tL

2p
x

≤ C ‖G(u, v)(u− v)‖L1
tL

2
x

≤ C ‖u− v‖Lp
tL

2p
x
.

Use this estimate for 0 ≤ t ≤ T << 1 noting that Hölder’s inequality shows that for T → 0,

‖u− v‖Lp
tL

2p
x

≤ C T ρ ‖u− v‖Lr
tL

2p
x

≤ C T ρ‖u− v‖Lp
tL

2p
x
, ρ > 0 ,

to show that the two solutions agree for small times. Thus the set of times where the solutions
agree is open and closed proving uniqueness.
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To prove the energy law note that Fp(u) ∈ L1
tL

2
x so the linear energy law shows that

∫ |ut|2 + |∇xu|2
2

dx

∣∣∣∣
t

t=0

= ∓
∫ t

0

∫
ut Fp(u) dx dt . (6.8.23)

Now
ut ∈ L∞

t L
2
x , and Fp(u) ∈ L1

tL
2
x .

Hölder’s inequality shows that

∫
|ut Fp(u)|dx ≤ ‖ut(t)‖L2

x
‖Fp(u(t)‖L2

x
.

The latter is the product of a bounded and an integrable function so

∀T, ut Fp(u) ∈ L1([0, T ] × Rd) .

Let

w :=
|u|p+1

p+ 1
.

Since p is subcritical, one has for some 0 < ǫ,

‖w(t)‖L1
x

≤ C‖u(t)‖H1−ǫ(Rd) ∈ L∞([0, T ]) .

In particular w ∈ L1([0, T ] × Rd) and the family {w(t)}t∈[0,T ] is precompact in L1
loc.

Formally differentiating yields

wt = utFp(u) ∈ L1([0, T ] × Rd) . (6.8.24)

Using the above estimates, it is not hard to justify (6.8.24).

It then follows that w ∈ C([0, T ] ; L1(Rd)) and

∫
w(t, x) dx

∣∣∣∣∣

t=T

t=0

=

∫ T

0

∫
ut Fp(u)dx dt .

Together with (6.8.23) this proves the energy identity.

Once the energy law is known, one concludes global solvability in the attractive case since the blow
up criterion (6.8.11) is ruled out by energy conservation.
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Chapter 7. One Phase Nonlinear Geometric Optics

In this chapter we construct asymptotic expansions which are nonlinear analogues of the Lax
construction. There are two important nonlinear effects which must be understood in order to
arrive at the appropriate ansatz.

§7.1. Amplitudes and harmonics.

For linear equations, any solution may be multiplied by a constant to yield another solution. This
is not the case for nonlinear equations. If one studies short wavelength oscillatory solutions, the
propagation and interactions depend crucially on the amplitudes. The easiest case to understand,
and therefore a natural starting point, is small oscillations. For that we perform a (regular)
perturbation analysis.

Consider the semilinear equation

L(y, ∂)u + F (u) = 0 , (7.1.1)

with nonlinear function satisfying

F (0) = 0 , F ′(0) = 0 . (7.1.2)

Suppose that a(ǫ, y) eiφ(y)/ǫ is a Lax solution as in §5.4 and that a has compact support for each
t. Consider the semilinear initial value problem with the initial data

g(ǫ, x) = ǫm a(ǫ, 0, x) eiφ(0,x)/ǫ . (7.1.3)

The power m scales the amplitude as a function of the wavelength. The larger is m the smaller is
the data. The initial data is bounded in Hs(Rd) if and only if s ≤ m.

If m > d/2 then the data converges to zero in Hs(Rd) for all s ∈]d/2,m[. The perturbation theory
of §6.5, proves that solutions exist on an ǫ independent neighborhood and are given by a Taylor
series,

u(ǫ, y) ∼
∞∑

j=1

Mj(g(ǫ, x)) :=
∑

j

uj(ǫ, x),

with uj a j-linear function of g hence ‖uj‖Hs(Rd) = O(‖g‖j
Hs(Rd)

). The leading uj are determined

by equations (6.5.4) through (6.5,6).

Theorem 6.3.1 proves existence on a domain independent of ǫ. Form ≤ d/2, the theorem guarantees
existence only on a domain which shrinks with ǫ because the Hs norm of the data grows to ∞
for all s > d/2. We will see that for m ≥ 0, there is, nevertheless, existence on an ǫ independent
domain. The simple explicitly solvable example

∂tu(ǫ, y) = u(ǫ, y)2 , u(ǫ, 0, x) = ǫm eix.ξ/ǫ

shows that the domain may shrink to zero for m < 0.

Exercise 7.1.1. Verify.

Equations (6.5.4)-(6.5.5) show that the two leading terms in perturbation theory are determined
by,

Lu1 = 0 , L u2 + F2(0)
(
u1, u1

)
= 0 , (7.1.4)
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with initial conditions,

u1(ǫ, 0, x) = ǫm a(ǫ, 0, x) eiφ(0,x)/ǫ , u2(0, x) = 0 . (7.1.5)

Equations (7.1.4) and (7.1.5) show that as ǫ → 0, u1 is given asymptotically by the Lax solution
ǫm a(ǫ, y) eiφ(y)/ǫ. Once u1 is known the next term, u2 can be found. And so on.

To see the form of u2, it is crucial to consider the source term. It is a quadratic expression in
u1. The term u1 oscillates with phase φ(y)/ǫ . Squaring such a term yields a source oscillating
with phase 2φ(y)/ǫ . The square of the complex conjugate, which is a second example of a smooth
quadratic expression, yields a phase −2φ(y)/ǫ . Finally an expression in the product of u with its
conjugate yields a nonoscillatory source. The source term has the form

ǫ2m
(
c−2(y) e

−i2φ(y)/ǫ + c0(y) + c+2(y)e
i2φ(y)/ǫ

)
+ O(ǫ2m+1) . (7.1.6)

From Lax’s Theorem with oscillatory source, the oscillatory parts of this source yields terms of the
form ∑

±

ǫ2m (a±2(y) + O(ǫ) ) e±i2φ(y)/ǫ

in the solution u2(ǫ, y).

The key observation is that the Taylor expansion begins with a O(ǫm) term which is linear in the
initial data, and, is equal to the Lax solution. The next term, quadratic in the initial data, is of
order ǫ2m and has terms oscillating with the new phases ±2φ(y)/ǫ. It may also have nonoscillating
terms of order ǫ2m. The cubic and higher order terms in the Taylor expansion are of order ǫjm for
integer j and will have terms oscillating with phases including higher integer multiples of ±φ(y)/ǫ.

This generation and interaction of harmonics is one of the key signatures of nonlinear problems.
Note that the wavelength of the jth harmonic is 1/j times the original wavelength. Thus the
interaction also is an interaction between different length scales. A classical experiment from the
early sixties involved passing monochromatic red laser light through glass and observing the blue
harmonic in the output. This was the birth of Nonlinear Optics. At the energies of that experiment,
a small data perturbation theory like that just sketched is appropriate. Such an analysis can be
found in the classic text of Nobel laureat Bloembergen.

Though this computation is so far only justified for m > d/2, it is an interesting indication that
something better is true. Formally, the expansion seems to work provided only that m > 0, in
which case the supposedly higher order corrections are indeed higher order in ǫ. In fact, using local
existence results tailored to oscillatory data as in §8, the expansions can be justified for m > 0 on
an arbitrary but fixed interval of time. On the other hand, for m < 0 we know that the domain of
existence may shrink.

A fundamental lesson to be learned is that for m > 0 linear phenomena are accompanied by
creation of harmonics at higher order in ǫ. This leads to correction terms in the solution which
have amplitudes with higher powers of ǫ and phases which are integer multiples of φ(y)/ǫ. The
higher is m, the smaller is the initial data and the greater is the gap between the amplitudes of
the principal term and the harmonics. Equivalently, the smaller is m, the larger are the data, and
the more important are the nonlinear effects.

There is another important lesson. The leading nonlinear term is of order ǫ2m while the Lax solution
enters at order ǫm. As m → 0, these orders approach each other. This leads the courageous
to suspect that there may be something interesting occurring when m = 0 in which case the
harmonics should appear in the principal term. This in fact is the case. For m = 0, oscillations
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can be described on an ǫ independent domain, and the leading term in the expansion involves a
nonlinear interaction among oscillations with phases jφ(y)/ǫ for all j ∈ Z. This critical scaling of
the amplitudes is called nonlinear geometric optics, or weakly nonlinear geometric optics depending
on the author. For this scaling the nonlinear terms are not negligible for the leading order. For
this reason we say that the time of nonlinear interaction is ∼ 1. For the same amplitudes one can
show that the nonlinear terms can be neglected for times o(1) as ǫ→ 0.

Nonlinear geometric optics described here is more complicated than but descendant from earlier
work on pulses of width ǫ and height one in spatial dimension 1. A description of the pulses
and the relation to wave trains can be found in [Hunter-Majda-Rosales, Studies in Applied Math,
75(1986)] and in the survey article of [Majda]. Wave trains are blessed with interesting nonlinear
interactions which go under the name of resonance. Generation of harmonics is the simplest case.
Resonance for the m = 0 scaling of geometric optics are also described in the articles just cited.
Resonance phenomena are introduced in §9.

§7.2. More on the generation of harmonics.

Here are three ordinary differential equation calculations aimed at making you more familiar with
the creation of harmonics.

Exercise 7.2.1. Consider the solution x(ǫ, t) of the nonlinear initial value problem

d2x

dt2
+ ω2x+ x2 = 0 , x|t=0 = ǫ ,

dx

dt

∣∣∣
t=0

= 0 .

Then x is an analytic function of ǫ, t on its domain of existence. Compute the first three terms in
the Taylor expansion

x(ǫ, t) = a0(t) + ǫa1(t) + ǫ2a2(t) + · · · .
Note the presence of harmonics when they appear, and the amplitude of the harmonics.

In the last exercise, the harmonics appeared in a regular perturbation expansion of small solutions
to a nonlinear equation. An entirely equivalent problem is the expansion of solutions of fixed
amplitude with a weak nonlinearity.

Exercise 7.2.2. Consider the solution x(ǫ, t) of the weakly nonlinear initial value problem

d2x

dt2
+ ω2x+ ǫx2 = 0 , x|t=0 = 1 ,

dx

dt

∣∣∣
t=0

= 0 .

Then x is an analytic function of ǫ, t on its domain of existence. Compute the first two terms in
the Taylor expansion

x(ǫ, t) = a0(t) + ǫa1(t) + ǫ2a2(t) + · · · .
Note the presence of harmonics when they appear, and the amplitude of the harmonics.

Finally, here is an example of the generation of harmonics for forced oscillations.

Exercise 7.2.3. Consider the solution x(ǫ, t) of the nonlinear initial value problem

d2x

dt2
+ x+ x2 = ǫ cosβt , x|t=0 = 0 ,

dx

dt

∣∣∣
t=0

= 0 , β 6= 0,±1 .

Then x is an analytic function of ǫ, t on its domain of existence. Compute the first three terms in
the Taylor expansion

x(ǫ, t) = a0(t) + ǫa1(t) + ǫ2a2(t) + · · · .
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Note the presence of harmonics when they appear, and the amplitude of the harmonics.

§7.3. Formulating the ansatz.

The results of §7.1, lead us to consider semilinear initial value problems with initial data of the
form a(ǫ, 0, x) eiφ(0,x)/ǫ which are initial data of a Lax solution in the linear case. The key fact is
that the amplitude is of order ǫ0. For this amplitude one expects harmonics to be present in the
leading ǫ0 term and for these harmonics to interact. We will describe these phenomena.

The computations suggest that the solution will have oscillations with all the phases nφ(y)/ǫ. Thus
the principal term is expected to be at least as complicated as the sum of leading terms one for
each harmonic. The amplitude of the nth harmonic is denoted

a0(n, ǫ, y) ∼ a0(n, y) + ǫ a1(n, y) + · · · . (7.3.1)

It seems that the natural thing to do is to derive dynamic equations for the infinite set of amplitudes
a0(n, y) which must include both the linear hyperbolic propagation properties given by rays and
transport equations for each a0(n, y) and also nonlinear interaction terms which express at least
the idea that if one starts with a0(1, y) 6= 0 and all others vanishing then the other modes will tend
to be illuminated.

There is a very effective method for managing this infinity of unknowns. The expected form for
the leading terms is ∑

n∈Z

a(n, y) einφ(y)/ǫ .

The sum on n suggests the Fourier series

U0(y, θ) :=
∞∑

n=−∞

a0(n, y) e
inθ . (7.3.2)

The leading terms takes the elegant form U0(y, φ(y)/ǫ). The nonoscillatory terms are present from
the n = 0 term. The function U0 is periodic in θ and the amplitudes a0(n, y) are the Fourier
coefficients of U . Knowing U is equivalent to knowing the a0(n, y) for all n ∈ Z.

Adding correctors we seek asymptotic solutions of first order semilinear symmetric hyperbolic sys-
tems in the form

u(ǫ, y) = U(ǫ, y, φ(y)/ǫ) (7.3.3)

where U(ǫ, y, θ) is periodic in θ and has asymptotic expansion,

U(ǫ, y, θ) ∼
∞∑

j=0

ǫj Uj(y, θ) . (7.3.4)

The leading term, U0(y, φ(y)/ǫ) presents two scales. If U0(y, θ) and φ(y) vary on the length scale
1, then the leading term varies on the scale 1, and the scale ǫ. The expansion (7.3.3) is called a two
scale or multiscale expansion. In the case of ordinary differential equations, where there is only
one independent variable, often called time, such expansions are often called two timing, after the
presence of two time scales.

Using an ansatz containing a principal term as in (7.3.2) is a classical procedure in applied math-
ematics. Our approach here can be viewed as originating in the articles of Choquet-Bruhat and
Hunter-Keller. In this one phase problem, the only resonances are among the harmonics, and in
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this case correctors as in (7.3.2) can be constructed. The multiphase theory with resonance must
often content itself with leading order asymptotics only. In chapters 9-11, multiphase examples
with correctors of all orders are considered.

§7.4. Equations for the profiles.

Once the ansatz (7.3.3-7.3.4) is formulated, the key question is whether it is possible to find profiles
Uj(y, θ) so that

L(y, ∂y)U(ǫ, y, φ(y)/ǫ) + F (y, U(ǫ, y, φ(y)/ǫ) ) ∼ 0 . (7.4.1)

Since

∂j

(
U(ǫ, y, φ(y)/ǫ)

)
=

∂U

∂y

∣∣∣∣
ǫ,y,φ(y)/ǫ

+
∂jφ

ǫ

∂U

∂θ

∣∣∣∣
ǫ,y,φ(y)/ǫ

=

(
∂

∂y
+

∂jφ

ǫ

∂

∂θ

)
U
∣∣
θ=φ(y)/ǫ

,

one has,

L(y, ∂y)U(ǫ, y, φ(y)/ǫ) =

[
L
(
y, ∂y +

dφ(y)

ǫ

∂

∂θ

)
U(ǫ, y, θ)

]

θ=φ(y)/ǫ

.

Therefore the left hand side of (7.4.1) is equal to

W (ǫ, y, φ(y)/ǫ) = W (ǫ, y, θ)
∣∣∣
θ=φ(y)/ǫ

with

W (ǫ, y, θ) :=
1

ǫ
L(y, dφ(y))

∂

∂θ
U(ǫ, y, θ) + L(y, ∂y)U(ǫ, y, θ) + F

(
U(ǫ, y, θ)

)
.

The profile W is periodic in θ.

The middle term has asymptotic expansion,

L(y, ∂y)U(ǫ, y, θ) ∼
∑

ǫj L(y, ∂y)Uj(y, θ) .

Taylor expansion about U0 yields

F (y, U0 + ǫU1 + · · ·) ∼ F (y, U0) + ǫ Fu(y, U0)U1 + h.o.t. (7.4.2)

The linear terms in U1 are real linear and not necessarily complex linear, since F is assumed to be
smooth but not necessarily holomorphic. These two expansions show that

W (ǫ, y, θ) ∼
∞∑

j=−1

ǫjWj(y, θ) = ǫ−1W−1(y, θ) +W0(y, θ) + ǫ1W1(y, θ) + · · · . (7.4.3)

The first terms are given by

W−1(y, θ) = L1(y, dφ(y)) ∂θU0 . (7.4.4)

W0(y, θ) = L1(y, dφ(y)) ∂θ U1 + L(y, ∂y)U0 + F (y, U0(y, θ)) . (7.4.5)

W1(y, θ) = L1(y, dφ(y)) ∂θ U2 + L(y, ∂y)U1 + Fu(y, U0)U1 . (7.4.6)

W2 = L1(y, dφ(y)) ∂θ U3 + L(y, ∂y)U2 + Fu(y, U0)U2 + Fuu(U0)(U1, U1) . (7.4.7)
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The general case if of the form

Wj = L1(y, dφ(y)) ∂θ Uj−1 + L(y, ∂y)Uj + Fu(y, U0)Uj +G(U0, . . . , Uj−1) , (7.4.8)

where G(U0, . . . , Uj−1) denotes a nonlinear function of the preceding profiles. The G term and the
FuUj terms are are the O(ǫj) part of the Taylor expansion (7.4.2)

We will choose the Uj so that all the Wj vanish identically.

The W−1 is O(ǫ−1), and comes from the terms in (7.4.1) where the y derivatives fall on the φ(y)/ǫ
part.

In order for there to be nontrivial oscillations, one must have ∂θU0 6= 0 so the first constraint we
place on the expansion is that the matrix L1(y, dφ(y)) have nontrivial kernel. Equivalently, φ must
satisfy the familiar eikonal equation

det L1(y, dφ(y)) = 0 . (7.4.9)

Setting W−1 = 0 then yields the equation

U0 ∈ kerL1(y, dφ(y))
∂

∂θ
. (7.4.10)

Setting W0 = 0 yields an equation which mixes U0 and U1. As in the linear case, information
about U0 is contained in the assertion

L(y, ∂y)U0(y, θ) + F (y, U0(y, θ)) ∈ range
(
L1(y, dφ(y))

∂

∂θ

)
. (7.4.11)

Equations (7.4.10) and (7.4.11) are our first form of the profile equations of nonlinear geometric
optics. Written this way, it is not at all clear that they determine U0 from its initial data. They
are open invitations to study the action of the operator L1(y, dφ(y))∂θ on periodic functions of θ.

We suppose that (7.4.9) satisfied, and in addition that the constant rank hypothesis from §5.4 is
satisfied on Ω where Ω is open in R1+d. Denote by π(y) orthogonal projection of CN onto the
kernel and Q(y) the partial inverse. They are smooth thanks to Proposition 5.3.4.

The operator L1(y, dφ(y))∂θ maps D′(Ω×S1) to itself with the subspace C∞(Ω×S1) also mapped
to itself. The kernel and image can be computed by expanding in Fourier series in θ,

V (y, θ) =
∞∑

n=−∞

Vn(y) e
inθ . (7.4.12)

When V is a distribution, the coefficient Vn ∈ D′(Ω) is defined by

〈
Vn, ψ(y)

〉
:=

〈
V , ψ(y)

e−inθ√
2π

〉
, ψ ∈ C∞

0 (Ω) .

V0(y) is the nonoscillating contribution, and (V − V0)(y, φ/ǫ) is the oscillating part. One has

L1(y, dφ(y)) ∂θ V =
∑

L1(y, dφ(y)) in Vn(y) e
inθ . (7.4.13)
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The kernel consists of functions such that for n 6= 0, Vn takes values in the kernel of L1(y, dφ(y)).
Equivalently,

V ⊂ kerL1(y, dφ) ∂θ ⇐⇒ ∀n ≥ 1, π(y)Vn(y) = Vn(y) . (7.4.14)

Formula (7.4.13) shows that the image of L1(y, dφ(y))∂θ consists of those Fourier series whose
constant term vanishes, and whose other coefficients lie in the image of L1(y, dφ(y)). Equivalently,

V ⊂ rangeL1(y, dφ) ∂θ ⇐⇒ V0 = 0 , and, ∀n ≥ 1, (I − π(y))Vn(y) = Vn(y) . (7.4.15)

Define a projection operator E on Fourier series by

E
∞∑

n=−∞

Vn(y) e
inθ := V0 + π(y)

∑

n6=0

Vn(y) e
inθ . (7.4.16)

Then

EV = V0 + π(y)
(
V − V0) = V0 + π(y)

(
V − 1

2π

∫ 2π

0

V (y, θ) dθ
)
.

For each y, E acts as an orthogonal projection in L2(S1). It follows that E is an orthogonal
projection on L2(B × S1) for B a subset of {t = const} or a subset of R1+d.

Formulas (7.4.15) and (7.4.16) show that

V ⊂ kerL1(y, dφ) ∂θ ⇐⇒ EV = 0 , (7.4.17)

and
V ⊂ rangeL1(y, dφ) ∂θ ⇐⇒ (I −E)V = V . (7.4.18)

Thus E projects onto the kernel of L1(y, dφ)∂θ along its range. The operators satisfy

(
L1(y, dφ(y))∂θ

)
E = E

(
L1(y, dφ(y))∂θ

)
= 0 , (7.4.19)

and
(
L1(y, dφ(y))∂θ

)
(I − E) = (I −E)

(
L1(y, dφ(y))∂θ

)
= L1(y, dφ(y))∂θ . (7.4.20)

Define the partial inverse Q of the operator L1(y, dφ(y))∂θ, by

Q
(∑

Vn(y) e
inθ
)

:= Q(y)
∑

n6=0

1

in
Vn(y) e

inθ , (7.4.21)

where Q(y) is the partial inverse of L1(y, dφ(y)) defined in (5.3.8). Then

EQ = QE = 0, and Q
(
L1(y, dφ(y))∂θ

)
=
(
L1(y, dφ(y))∂θ

)
Q = I −E . (7.4.22)

Equation (7.4.10) is equivalent to
EU0 = U0 , (7.4.23)

This equation shows that the oscillating part of U0 satisfies the familiar polarization from §5.
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In the same way, equation (7.4.11) is equivalent to,

E
(
L(y, ∂y)U0(y, θ) + F (y, U0(y, θ))

)
= 0 . (7.4.24)

The pair of equations (7.4.23), (7.4.24) is analogous in form to the pair of equations (5.3.10) and
(5.3.11) which determined a0. Equations (7.4.23-24) hold if and only if

W−1 = 0 , and, EW0 = 0 . (7.4.25)

A note about our strategy here. Each equation Wj = 0 is equivalent to a pair of equations

Wj = 0 ⇐⇒ EWj = 0 , and (I −E)Wj = 0 .

The second equation if often transformed using,

(I − E)Wj = 0 ⇐⇒ QWj = 0 .

The equations for the profiles Uj are found by induction. Suppose that j ≥ 1 and that U0, . . . , Uj−1

have been determined so that

W−1 = · · · = Wj−1 = 0, and EWj = 0 . (7.4.26)

The equations determining Uj are then equivalent to,

(I − E)Wj−1 = 0, and EWj = 0 . (7.4.27)

To illustrate the procedure, we find the profile equations for U1. Equation (7.4.5) shows that
(I −E)W0 = 0 if and only if

(I − E)L1(y, dφ(y)) ∂θ U1 = −(I −E)
(
L(y, ∂y)U0 + F (u,U0)

)
:= F0(y, U0) , (7.4.28)

where the right hand side, denoted F0, is a function of the profile U0 and its derivatives which
are assumed known. The dependence on the derivatives is not indicated in the notation, since for
the sequel it is not important just how many derivatives occur in the terms Fj . This equation
determines U1 modulo the kernel of the operator (I − E)L1(y, dφ(y))∂θ, which is equal to the
kernel of L1(y, dφ(y))∂θ.

Multiplying by Q shows that equation (7.4.28) is equivalent to,

(I − E)U1 = −QF0(y, U0) . (7.4.29)

The determination of EU1 comes from setting EW1 = 0. Multiplying (7.4.6) by E eliminates the
∂θU2 term, and yields the second equation for the profile U1,

E
(
L(y, ∂y)U1(y, θ) + Fu(y, U0)U1(y, θ)

)
= 0 . (7.4.30)

The pattern is now established. Setting (I −E)W1 = 0 yields

(I − E)U2 = F1(y, U0, U1) , (7.4.31)
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and the equation EW2 = 0 yields

E
(
L(y, ∂y)U2(y, θ) + Fu(y, U0)U2(y, θ) + Fuu(U1, U1)

)
= 0 . (7.4.32)

Here Fuu is the is a order two term in (7.4.2) so is a symmetric quadratic form in in U1.

Continuing in this fashion yields for all j ≥ 1 a pair of equations

(I −E)Uj = Fj−1(y, U0, U1, . . . , Uj−1) , (7.4.33)

and
E
(
L(y, ∂y)Uj(y, θ) + Fu(y, U0)Uj(y, θ) +Gj(y, U0, . . . , Uj−1)

)
= 0 (7.4.34)

which are equivalent to (7.4.27). The right hand side of (7.4.33) is a shorthand hiding the fact that
it also depends on derivatives of the previously determined profiles U0, . . . , Uj−1.

Theorem 7.4.1. Suppose that φ ∈ C∞(Ω) satisfies the eikonal equation (7.19) with nowhere
vanishing differential and dimkerL(y, dφ(y)) independent of y. In addition suppose Uj ∈ C∞(Ω×
T1) are profiles such that the principal profile U0 satisfies (7.3.23-24) and the for j ≥ 1 the profiles
satisfy (7.4.33-34). If U(ǫ, y, θ) ∼ ∑∞

j=0 ǫ
j Uj(y, θ) in C∞(Ω × T1) and uǫ(y) := U(ǫ, y, φ(y)/ǫ),

then
L(y, ∂y)u

ǫ + F (uǫ) ∼ 0 , in C∞(Ω) .

Proof. The equations for the profiles are equivalent to solving Wj = 0 for all j. Thus if the profiles
Uj satisfy the profile equations, and, U(ǫ, y, θ) ∼ ∑∞

j=0 ǫ
j Uj(y, θ), then

L(y, ∂y)U(ǫ, y, φ(y)/ǫ) + F (y, U((ǫ, y, φ(y)/ǫ)) ) ∼ 0 .

Remarks. 1.The equation for the principal profile U0 is nonlinear in U0 whereas the equations
for the higher profiles Uj with j ≥ 1, are R-linear in Uj .

2. It is not at all obvious that the profile equation have solutions. We must prove analogues of
Theorem 5.3.5.

§7.5. Solving the profile equations.

This subsection shows that the equations derived above determine the profiles Uj from suitable
initial data. Once this is done, the asymptotic expansion is constructed yielding an approximate
solution with infinitely small residual. In Chapter 8 it is proved that the approximate solution is
asymptotic to the exact solution which has the same initial data.

To see that U0 is determined from its initial data, start with the fact that (7.4.23) and (7.4.24)
together imply that

EL(y, ∂y)EU0 + EF (y,EU0(y, θ)) = 0 . (7.5.1)

Applying (I −E)L(y, ∂y) to (7.4.23) yields

(I −E)L(y, ∂y) (I −E)U0 = 0 . (7.5.2)

Adding these two equations yields

(I −E)L(y, ∂y) (I − E)U0 + EL(y, ∂y)EU0 + EF (y,EU0(y, θ)) = 0 , (7.5.3)
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an analogue of (5.3.16).

Define the linear operator

L :=
d∑

µ=0

Aµ ∂µ + B , (7.5.4)

where the coefficients are the operators

Aµ := (I −E)Aµ(y) (I −E) + EAµ(y)E , B := (I − E)B(y) (I −E) + EB(y)E . (7.5.5)

The unknown U0 is a CN valued function of t, x, θ with θ ∈ S1. The notation is chosen so that L
looks like a differential operator. Some care must be taken since the coefficient operators are not
simple matrix multiplications. However, the idea behind the basic energy estimate for symmetric
hyperbolic operators extends nearly immediately to L.

First of all the operators Aµ are selfadjoint in L2(ω×S1) because Aµ and E are. Since E commutes
with differentiation one has

[Aµ, ∂] = (I − E) (∂Aµ(y)) (I −E) + E (∂Aµ(y))E .

This is bounded on any L2(ω × S1) with norm bounded independent of ω.

The operator A0 is strictly positive. If ω is arbitrary, and ( · , · ) denotes the L2(ω × S1) scalar
product, one has

(V,A0V ) =
(
V , (I −E)(A0(I −E)V + EA0EV

)
=
(
(I − E)V , A)(I −E)V

)
+
(
EV , A0EV

)
.

If C is a lower bound for Aµ, this is

≥ C
(
‖(I − E)V ‖2

L2 + ‖EV ‖2
L2

)
= C V ‖2

L2 ,

proving strict positivity with a bound indpependent of ω. The same argument proves that if∑
ηµAµ ≥ 0 then ∑

ηµ

(
(I −E)A0(I −E) + EA0E

)
≥ 0 .

In order to treat phases which need not be globally defined, this argument needs to be localized
to domains of the form Ω × S1 where Ω denotes a domain of determinacy for L(y, partial) as
in Corollary 2.3.7 or more generally as in §2.6. In either case the outward conormals η to the
lateral boundaries satisfy

∑
ηµAµ ≥ 0 asserting that the flux corresponding to the energy density

(A0, u, u) is outward. This is reasonable for a domain that is not influenced by what goes on
outside.

With these elements in place we can derive an L2 energy estimate for the operator L in the set
Ω × S1. By definition,

(
LV , V )L2(Ωt×S1) =

(
ELEV , V

)
+
(
(I −E)L (I − E)V , V

)
.

With ω = Ωt one finds

(
LV , V )L2(Ωt×S1) =

(
LEV , EV

)
+
(
L (I − E)V , (I −E)V

)
.
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In this last expression θ plays the role of a parameter, and one has the form (L· , ·) applied to EV
and to (I − E)V .

Using the energy flux is outward at the boundary, the energy balance identity (2.3.1) , implies that
for W ∈ C1(Ωt × S1),

2Re
(
LW , W

)
L2(Ωt×S1)

≥
(
A0W , W

)
L2(Ω(t)×S1)

∣∣∣
t

0
−
(
ZW , W

)
L2(Ωt×S1)

. (7.5.7)

Applying this with W = EV and (I−E)W and adding the results shows that for U ∈ C1(Ωt×S1),

(
U(t),A0 U(t)

)
L2(Ω(t)×S1)

∣∣∣
t

0
≤ 2Re (U(t),LU(t))L2(Ωt×S1) + C (U(t) , U(t) )L2(Ωt×S1) . (7.5.8)

Since A0 is a strictly positive operator, (7.5.7) implies

‖U(t)‖L2(Ω(t)×S1) ≤ C(L,φ)
(
‖U(0)‖L2(Ω(0)×S1) +

∫ t

0

‖
(
LU(σ)

)
‖L2(Ω(σ)×S1) dσ

)
. (7.5.9)

A commutation argument like that in §2.1 yields the more general estimate for s ∈ N

‖U(t)‖Hs(Ω(t)×S1) ≤ C(s, L, φ)
(
‖U(0)‖Hs(Ω(0)×S1) +

∫ t

0

‖
(
LU(σ)

)
‖Hs(Ω(σ)×S1) dσ

)
. (7.5.10)

Replacing derivatives by difference quotients leads then to a convergent sequence of approximating
equations which can be used to prove the following linear existence theorem.

Theorem 7.5.1. If s ∈ N, g ∈ Hs(Ω(0)× S1), and f ∈ L1(Ω × S1) satisfies

∫ T

0

( ∫

Ω(t)×S1

∑

|α|≤s

|∂αx,θf(t, x, θ)|2 dxdθ
)1/2

dt <∞ , (7.5.11)

then there is a unique U ∈ L2(Ω × S1) satisfying

LU = f , and U |t=0 = g . (7.5.12)

The solution satisfies the estimate (7.5.10). If g ∈ C∞(Ω(0) × S1) and f ∈ C∞(Ω × S1), then
U ∈ C∞(Ω × S1).

To treat nonlinear problems as in §6, note that for s > (d+ 1)/2, Schauder’s Lemma implies that
the map

U(t) 7→ EF (y,EU(t))

is a locally Lipshitzean map of Hs(Ω(t) × S1) to itself, uniformly for 0 ≤ t ≤ T .

Standard Picard iteration,

LUν+1 + EF (y,EUν) = 0 , Uν+1|t=0 = g (7.5.13)

as in §6 leads to the basic nonlinear local existence theorem. Existence is proved on ΩT ×S1 where
ΩT := Ω ∩ {0 ≤ t ≤ T} .
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Theorem 7.5.2 Local Solvability of the Principal Profile Equation. If (d+ 1)/2 < s ∈ N

and g0 ∈ Hs(Ω(0) × S1), then there is a 0 < T and unique U0 ∈ C(ΩT × S1) satisfying (7.5.3)
together with the initial condition U0(0, ·) = g. If g0 ∈ C∞(Ω(0)× S1) then U0 ∈ C∞(ΩT × S1).

It is important to note that what is solved here is equation (7.5.3) which follows from the desired
equations (7.4.23-24). Thus we have shown that the latter equations determine uniquely U0 but
we have not yet shown that there exists a U0 satisfying (7.4.23-24). Clearly if the initial data g do
not satisfy (7.4.23), then there is no chance for that equation.

Lemma 7.5.3. If in addition to the hypotheses of the Theorem 7.5.2, E g = g, then the resulting
solution U0 satisfies (7.4.23-24).

Proof. As in the analysis of §5.4 an important first step is to observe that the left hand side
of (7.5.3) is the sum of two orthogonal parts so that equation (7.5.3) implies that both vanish.
Equivalently, multiplying (7.5.3) by E shows that U0 satisfies the pair of equations

(I −E)L(y, ∂y) (I −E)U0 = 0 , and EL(y, ∂y)EU0 + E f(y,EU0(y, θ)) = 0 . (7.5.14)

It follows that EU0 also satisfies both of these equations, and therefore equation (7.5.3). Since EU0

has the same initial data as U0, it follows by uniqueness of solutions of the initial value problem
for (7.5.3) that EU0 = U0, which is equation (7.4.23).

Finally, (7.5.3) and the second equation of (7.5.14) imply (7.5.4).

Fix 0 < T as in the Existence Theorem 7.5.3. Then the higher order profiles can be found on
ΩT × S1 so as to satisfy (7.4.33-34). The argument is as follows. In (7.4.34) write

Uj = EUj + (I −E)Uj = EUj + Fj−1

where (7.4.33) is used in the last equality. This yields an equation of the form

EL(y, ∂y)EUj + linear in EUj = known .

To this equation add (I −E)L(y, ∂y) applied to (7.4.33) to find an equation for

C = EUj (7.5.15)

of the form
LC + linear in C = known . (7.5.16)

This linear equation determines C from its initial data. Imitating arguments which by now should
be familiar one shows that if the solution C satisfies EC = C at t = 0 then it does so throughout
ΩT × S1 and that Uj := C + QFj−1 satisfies the two profile equations (7.4.33-34).

Exercise 7.5.1. Flesh out the details of this argument.

Theorem 7.5.4. [Joly-Rauch]. Suppose that gj = E gj ∈ C∞(Ω(0) × S1), and that T > 0 is
chosen as Theorem 7.5.2. Then there are uniquely determined profiles Uj(y, θ) ∈ C∞(ΩT × S1)
with

EUj
∣∣
t=0

= gj on Ω(0) × S1 (7.5.17)

and satisfying the profile equations (7.4.23)-(7.4.24) and (7.4.33)-(7.4.34). If

U(ǫ, y, θ) ∼
∞∑

j=0

ǫj Uj(y, θ) in C∞(ΩT × S1) , and uǫ(y) := U(ǫ, y, φ(y)/ǫ) , (7.5.18)
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then
L(y, ∂y)u

ǫ + f(y, uǫ) ∼ 0 in C∞(ΩT ) . (7.5.19)

This completes the construction of an infinitely accurate family of approximate solutions uǫ. One
point of view toward this, and that expressed in most science texts, is that the partial differen-
tial equations involve parameters which are only known approximately so an infinitely accurate
approximation is for all practical purposes as good as an exact solution.

Hadamard offered a deeper appreciation of this remark. He observes that since there are uncer-
tainties in the equations and data, in order for the equations to lead to well defined predictions,
it is crucial that the predictions be unchanged or only very slightly changed when the equations
and data are changed within the limits of the uncertainties. This lead to his notion of well posed
problems.

In our case, the point of view of Hadamard leads to the question of showing that a pair of infinitely
accurate approximate solutions with infinitely close initial data are in fact close. This does not
follow from the basic existence theorem of section 6, because the approximate solutions tend
to infinity in the configuration space Hs with s > d/2 and the sensitivity of the equation to
perturbations grows for large data. One approach to circumventing this is to find a different
configuration space in which a good existence theory is available and in which the approximate
solutions do not grow. In the case d = 1, L∞ does the trick. For higher dimensions, the space of
bounded stratified solutions introduced by [Rauch and Reed, 1989] works and is the heart of the
proof in [Joly-Rauch, 1992]. In §8 we give a different proof borrowing ideas from [Gues, 1992] and
[Donnat, 1994].
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Chapter 8. Stability for One Phase Nonlinear Geometric Optics

In the last section profiles Uj(y, θ), periodic in θ were constructed so that if

U(ǫ, y, θ) ∼
∞∑

j=0

ǫj Uj(y, θ) , (8.0.1)

then
uǫ(y) := U(ǫ, y, φ(y)/ǫ) (8.0.2)

satisfies,
L(y, ∂)uǫ + F (y, uǫ) ∼ 0 . (8.0.3)

Denote by vǫ(y) the exact solution of

L(y, ∂) vǫ + F (y, vǫ) = 0 , vǫ
∣∣
t=0

= uǫ
∣∣
t=0

. (8.0.4)

To show that the asymptotic expansion is correct amounts to showing that

uǫ(y) ∼ vǫ(y) (8.0.5)

The difference between the equations defining the exact and approximate solutions is an infinitely
small source term on the right hand side of (8.0.4). The task is to show that this small source can
only lead to small changes in the solution. This is a stability problem. The techinical challenge is
that the stability is needed near a family of solutions uǫ which though bounded in L∞ is unbounded
in the natural Hs spaces on which the time evolution is well behaved.

An important part of the proof is that the exact solution vǫ exists on an ǫ independent time
interval. Since the Hs(Rd) norm of the initial data grows infinitely large for any s > 0 this is not
obvious. It is nearly as hard to prove this existence as to prove the asymptotic equality (8.0.5).

§8.1. The Hs
ǫ(R

d) norms.

A key to the analysis is the introduction of ǫ dependent Sobolev norms. The asymptotic solution
has the form (8.0.2). The derivatives grow as ǫ decreases, but the operator ǫ∂ applied to the
asymptotic solution is bounded independent of ǫ. This suggests that one estimates (ǫ∂)α applied
to the exact solution. This strategy was introduced by O. Gues [1993, 1992] to study the quasilinear
version of the one phase theorems. It is also a centerpiece of the semiclassical limit in quantum
mechanics where operators in h̄∂ take center stage.

Definition. For s ∈ Z, 0 < ǫ ≤ 1, and w ∈ Hs(Rd) define the Hs
ǫ (R

d) norm by

‖w‖2
Hs

ǫ (Rd) :=
∑

|α|≤s

‖ (ǫ∂x)
αw ‖2

L2(Rd) . (8.1.1)

A family wǫ is bounded in Hs
ǫ (R

d) when

sup
0<ǫ≤1

‖wǫ‖Hs
ǫ (Rd) < ∞ .

Example. For t fixed, the family uǫ(y) defined in (2) is bounded in Hs
ǫ (R

d) provided that the
support of U(ǫ, t, x, θ) is bounded in x and contained in the domain of definition of φ.
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The norm in Hs
ǫ (R

d) is equivalent to the norm whose square is equal to

∫

Rd

(1 + |ǫ ξ|2)s |û(ξ)|2 dξ , (8.1.2)

which shows how the definition is generalized to noninteger s.

The Hs
ǫ (R

d) Sobolev inequalities are immediate consequences of the following scaling identity,

v(x) := w(ǫx) =⇒ ∂xv = (ǫ∂xw)(ǫx) . (8.1.3)

Thus,
∂αx v =

(
(ǫ∂x)

αw
)
(ǫx) , (8.1.4)

so

‖∂αx v‖2
L2(Rd) =

∫ ∣∣(ǫ∂αx )w (ǫx)
∣∣2 dx .

The change of variable X := ǫx shows that this is equal to

∫
| (ǫ∂x)αw(X) |2 ǫ−d dX = ǫ−d ‖ (ǫ∂x)

αw ‖2
L2(Rd) .

Summing shows that
ǫd/2 ‖v‖Hs(Rd) = ‖w‖Hs

ǫ (Rd) . (8.1.5)

Using this one finds the following embedding of Hs
ǫ (R

d) in L∞. For s > d/2,

‖w‖L∞(Rd) = ‖v‖L∞(Rd) ≤ C(s, d) ‖v‖Hs(Rd) = ǫ−d/2 C(s, d) ‖w‖Hs
ǫ (Rd) . (8.1.6)

Similarly for smooth F (w) which vanish for w = 0 one has an Hs
ǫ (R

d) version of Schauder’s Lemma
for s > d/2. The starting point is the estimate ‖F (w) ‖Hs(Rd) ≤ H(‖v‖Hs(Rd)) with a nonlinear
function H. Then,

‖F (w) ‖Hs
ǫ (Rd) = ǫd/2 ‖F (v) ‖Hs(Rd)

≤ ǫd/2H(‖v‖Hs(Rd)) = ǫd/2H(ǫ−d/2 ‖w‖Hs
ǫ (Rd) ) .

(8.1.7)

The negative power of ǫ in the the argument of H is intolerable.

Moser’s inequality is much better behaved,

‖F (w) ‖Hs
ǫ (Rd) = ǫd/2 ‖F (v) ‖Hs(Rd)

≤ ǫd/2G(‖v‖L∞) ‖v‖Hs(Rd) = G(‖w‖L∞) ‖w‖Hs
ǫ (Rd) .

(8.1.8)

The cancellation of powers of ǫ±d/2 in the last inequality shows that the Moser inequality for
Hs
ǫ (R

d) is independent of ǫ.

In the justification of the asymptotic expansion, it is crucial to estimate the difference F (u)−F (v)
when u and v are close. In our application, the function u is our approximate solution and v is
the exact solution. In this way, more is known of u than of v. There is sup norm control of the
operators ǫ∂ applied to u which will be used to get L2 control on these operators applied to v.
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Lemma 8.1.1. For any R > 0 and s there is a constant C = C(F,R, s) so that if u satisfies

‖(ǫ∂)αu‖L∞(Rd) ≤ R for all |α| ≤ s ,

and w satisfies the weaker estimate,

‖w‖L∞(Rd) ≤ R ,

then for 0 < ǫ,
‖F (y, u+ w) − F (y, u)‖Hs

ǫ (Rd) ≤ C ‖w‖Hs
ǫ (Rd) .

Proof. To simplify the exposition suppose that F does not depend on y. It suffices to prove the
assertion with ǫ = 1 since both sides of the inequality scale as ǫd/2.

To prove the assertion for ǫ = 1 write,

F (u+ w) − F (w) =
(∫ 1

0

F ′(u+ σw) d σ
)
w := G(u,w)w . (8.1.9)

Expanding ∂ν(G(u,w)w) using Leibniz’ rule yields a finite number of terms of the form

Hα,β(u,w) (∂α1u) · · · (∂αmu) (∂β1w) · · · (∂βnw)

with
∑
αk +

∑
βl = ν. The product of the first m + 1 factors has sup norm bounded by C(R).

The proof of Moser’s inequality shows that the product of the last n has L2(Rd) norm bounded
by C(R)‖w‖Hs(Rd). This completes the poof.

Exercise 8.1.1. Prove the Lemma for F which depend on y.

For applications where the phase is only locally defined one must work locally. As in Chapter 7,
we suppose that φ is defined on a domain of determinacy, Ω, and denote,

ΩT := [0, T ] ∩ Ω, and, Ω(t) := {x : (t, x) ∈ Ω} .

The usual reflection operators construct a linear extension operators v → E(t)v from Hs(Ω(t)) to
Hs(Rd) so that Ev = v on Ω(t). To study Hs

ǫ by scaling one needs extensions from Ω(t)/ǫ to Rd

for 0 < ǫ < 1. These are domains which are increasingly regular. The standard constructions yield
extension operators with norms bounded independently of 0 < ǫ ≤ 1, 0 ≤ t ≤ T under very mild
regularity assumptions on Ω. The next exercise recalls the construction for balls. An analogous
construction works for half spaces and then via coordinate charts for regular Ω.

Exercise 8.1.2. For s = 0 extending v to vanish outside B works. For s = 1 and |x| > 1 denote by
R(x) := x/|x|2 the reflected point in the unit sphere. Choose a smooth function χ which is equal to
1 on a neighborhood of 1 and vanishes ouside ]1/2, 3/2[ . Show that setting Ev(x) := χ(|x|) v(R(x))
for |x| > 1 works for s = 1. For larger s construct an appropriate extension operator by setting

Ev :=
s∑

j=1

cj v(R(xj)) , xj :=
(
1 + 2j(|x| − 1)

) x

|x| .
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The key is the choice of the constants cj so that s− 1 derivatives match at the boundary of the
ball. This elegant idea is called Lions reflection after J.L. Lions.

Assumption. Assume that uniformly bounded extension operators from Hs
ǫ (Ω(t)) to Hs

ǫ (R
d)

exist for 0 < ǫ ≤ 1 and 0 ≤ t ≤ T .

Lemma 8.1.2. When the assumption holds, Lemma 8.1.1 holds with Rd replaced by Ω(t) with
constant independent of 0 < ǫ ≤ 1 and 0 ≤ t ≤ T .

Exercise 8.1.3. Write out the details of the proof using the extension operators..

§8.2. Hs
ǫ estimates for linear symmetric hyperbolic systems.

In addition to the estimates of the last section, the analysis relies on the fact that linear hyper-
bolic systems propagate the Hs

ǫ (R
d) norms. This fact depends on the basic linear estimate and

commutation identities between the operator L and the operators (ǫ∂)α. The argument is entirely
analogous to the commutation arguments in §1.1 and §2.1. Square brackets are used to denote the
commutator.

Introducing the new variable u := A
−1/2
0 u and multiplying the resulting system for u by A

−1/2
0

yields a semilinear equation of the same form as before with new coefficient matrices Aµ :=

A
−1/2
0 AµA

−1/2
0 . In particular, the coefficient of the time derivative is equal to the identity matrix.

Thus, without loss of generality we may suppose that A0 = I.

Lemma 8.2.1. If A0 = I, then for any α ∈ Nd there are matrix valued functions Cαβ(ǫ, y) with
uniformly bounded derivatives on ]0, 1] × R1+d so that

[L(y, ∂y) , (ǫ∂x)
α ] =

∑

|β|≤|α|

Cαβ(ǫ, y) (ǫ∂x)
β .

Remark. If A0 depended on time, there would be time derivatives in the commutators. It is to
avoid these, that we transform to the case A0 = I.

Proof. The proof is by induction on |α|. For |α| = 1 compute

[L(y, ∂y) , ǫ∂j ] = −
∑

k

(∂jAk) ǫ∂k + ǫ(∂jB)

Suppose next that m ≥ 1, and the result is true for derivatives of length less than or equal to m.
A differention of length m+ 1 is of the form ǫ∂j(ǫ∂x)

α with |α| = m. Then

Lǫ∂j (ǫ∂x)
α − ǫ∂j (ǫ∂x)

α L =[L, ǫ∂j ] (ǫ∂x)
α + ǫ∂j L (ǫ∂x)

α − ǫ∂j (ǫ∂x)
α L

=[L, ǫ∂j ] (ǫ∂x)
α + ǫ∂j [L, (ǫ∂x)

α] .

Using the inductive hypothesis to express the commutators, the result follows.

Theorem 8.2.2. If A0 = I then for any s ∈ N and T ∈]0,∞[ there is a constant C = C(s, T, L)
so that for all 0 ≤ t ≤ T , and u ∈ C([0, t] ; Hs(Rd)) with Lu ∈ L1([0, t] ; Hs(Rd)),

‖u(t)‖Hs
ǫ (Rd) ≤ C

(
‖u(0)‖Hs

ǫ (Rd) +

∫ t

0

‖(Lu)(σ)‖Hs
ǫ (Rd) dσ

)
. (8.2.1)

236



Proof. For |α| ≤ s use the commutation lemma to write

L (ǫ∂x)
αu = (ǫ∂x)

αLu+
∑

Cαβ(ǫ, y) (ǫ∂x)
βu . (8.2.2)

The basic linear estimate (2.1.18) then implies that for any 0 ≤ t ≤ t,

‖(ǫ∂x)αu(t)‖L2(Rd) ≤ C
(
‖(ǫ∂x)αu(0)‖L2(Rd)

+

∫ t

0

{
‖(ǫ∂αx )(Lu)(σ)‖L2(Rd)+‖u(σ)‖Hs

ǫ (Rd)

}
dσ
)
.

(8.2.3)

Summing over all |α| ≤ s yields with a new constant

‖u(t)‖Hs
ǫ (Rd) ≤ C

(
‖u(0)‖Hs

ǫ (Rd) +

∫ t

0

{
‖(Lu)(σ)‖Hs

ǫ (Rd) + ‖u(σ)‖Hs
ǫ (Rd)

}
dσ
)
. (8.2.4)

Gronwall’s inequality completes the proof.

The following local estimate is sufficient for our needs. The proof is exactly like the proof of the
estimate in Hs(Rd).

Theorem 8.2.3. If ΩT is defined by (8.2.5) and s ∈ N there is a constant C = C(s, L,Ω) so that
for all u ∈ C∞(ΩT ) and all t ∈ [0, T ]

‖u(t)‖Hs
ǫ (Ω(t)) ≤ C

(
‖u(0)‖Hs

ǫ (Ω(0)) +

∫ t

0

‖Lu(σ)‖Hs
ǫ (Ω(σ)) dσ

)
. (8.2.5)

§8.3. Justification of the asymptotic expansion.

Theorem 8.3.1 [Joly-Rauch, 1992]. Suppose that the phase φ and smooth profiles Uj(y, θ)
satisfy the profile equations on the domain of determinacy ΩT as above, and, the approximate
solution uǫ is defined by (8.0.2) with U(ǫ, y, θ) ∼∑ ǫj Uj(y, θ) in C∞(ΩT × S1). Then for ǫ small
the exact solution vǫ defined in (8.0.4) exists and is smooth on ΩT and

vǫ ∼ uǫ in C∞(ΩT ) .

This result has nothing to do with the form of the profile equations and the algorithm to construct
the approximate solutions. It is a special case of a stability result about families of approximate
solutions with bounded ǫ∂ derivatives.

Theorem 8.3.2. (Gues, Donnat). Suppose that uǫ ∈ C∞(ΩT ) is ǫ∂ bounded in the sense that
for all α ∈ Nd+1

sup
0<ǫ<1

∥∥(ǫ ∂
)α
uǫ
∥∥
L∞(ΩT )

<∞.

Suppose that it is an infinitely accurate family of approximate solutions in the sense that,

L(uǫ) + F (uǫ) ∼ 0 in C∞(ΩT ) .

Then for ǫ small the exact solution vǫ defined in (8.0.4) exists and is smooth on ΩT and

vǫ ∼ uǫ in C∞(ΩT ) . (8.3.1)
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Proof. Fix d/2 < s ∈ N. The local existence theorem implies either the existence of a smooth
solution vǫ on ΩT or the existence of a T ∗(ǫ) ≤ T so that vǫ is smooth on

Ω∗ := Ω ∩ {0 ≤ t < T ∗} , (8.3.2)

and vǫ blows up at T ∗(ǫ),
lim

t→T∗(ǫ)
‖vǫ(t)‖Hs

ǫ (Ω(t)) = ∞ . (8.3.3)

We show that for ǫ sufficiently small, the second alternative does not occur and that (8.3.1) holds.

The ǫ∂ boundedness of uǫ implies that there is an R > 0 so that for 0 < ǫ ≤ 1 and |α| ≤ s

sup
0≤t≤T

(
‖(ǫ∂x)αuǫ‖L∞(Ω(t))

)
≤ R/2 . (8.3.4)

Denote by rǫ(y) the residual in the equation for the approximate solution,

L(y, ∂y)u
ǫ + F (y, uǫ) := rǫ . (8.3.5)

By hypothesis,
rǫ(y) ∼ 0 in C∞(ΩT ) . (8.3.6)

Introduce the error
wǫ := vǫ − uǫ . (8.3.7)

An initial value problem for the error is derived by subtracting (8.3.5) from (8.0.4). Suppressing
the y dependence of F this yields,

Lwǫ + F (uǫ + wǫ) − F (uǫ) = −rǫ , on Ω∗ , (8.3.8)

wǫ
∣∣
t=0

= 0 . (8.3.9)

Estimate (8.2.5) gives a C independent of ǫ and t so that for 0 ≤ t < T ∗(ǫ),

‖wǫ(t)‖Hs
ǫ (Ω(t)) ≤ C

( ∫ t

0

‖F (uǫ + wǫ) − F (uǫ)‖Hs
ǫ (Ω(σ)) dσ +

∫ t

0

‖rǫ‖Hs
ǫ (Ω(σ)) dσ

)
.

So long as

sup
0≤σ≤t

(
‖wǫ‖L∞(Ω(σ))

)
≤ R/2 , (8.3.10)

Lemma 8.1.1 yields with new C,

‖wǫ(t)‖Hs
ǫ (Ω(t)) ≤ C

( ∫ t

0

‖wǫ‖Hs
ǫ (Ω(σ)) dσ +

∫ t

0

‖rǫ‖Hs
ǫ (Ω(σ)) dσ

)
. (8.3.11)

The first application of this estimate is to show that T ∗(ǫ) = T for ǫ small. If not, then since
wǫ(0) = 0 and ‖wǫ‖Hs(Ω(t)) → ∞ as tր T ∗(ǫ), there is a smallest t ∈]0, T [ so that

‖wǫ‖Hs
ǫ (Ω(t)) + ‖wǫ‖L∞(Ω(t)) = R/2 , (8.3.12)
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Then from the definition of t, (8.3.11) holds for 0 ≤ t ≤ t and Gronwall’s inequality implies that

sup
0≤t<t

‖wǫ(t)‖Hs
ǫ (Ω(t) ≤ C ′

∫ T

0

‖rǫ‖Hs
ǫ (Ω(σ)) dσ ≤ Cn,s ǫ

n . (8.3.13)

The Hs
ǫ Sobolev inequality (8.1.6) implies that for 0 ≤ t ≤ t ,

sup
0≤t<t

‖wǫ‖L∞(Ω(t)) ≤ Cn,s ǫ
n−d/2 . (8.3.14)

Equations (8.3.12-13) imply that there is an ǫ0 > 0 so that for ǫ ≤ ǫ0 ,

sup
0≤t≤t

‖wǫ‖Hs
ǫ (Ω(t)) + ‖wǫ‖L∞(Ω(t)) ≤ R/4 .

For t = t, this contracdicts (8.3.12). It follows that vǫ is smooth on ΩT and (8.3.10) holds with
t = T .

Therefore, (8.3.13-14) holds with t = T . Since n > s > d/2 are abitrary, it follows that

∀ ǫ ≤ ǫ0 ∀n, ∀0 ≤ t ≤ T, ∃C, ‖wǫ‖Hs
ǫ (Ω(t)) + ‖wǫ‖L∞(Ω(t)) ≤ C ǫn . (8.3.15)

Estimate (8.3.15) is nearly equivalent to wǫ ∼ 0. What is missing is an analogous estimate for the
time derivatives.

Express

∂tw = −
∑

Aj∂jw + G(uǫ, wǫ)wǫ − rǫ .

The Hs
ǫ Moser inequality shows that G(uǫ, wǫ) is bounded in Hs

ǫ (Ω(t)) since both uǫ and wǫ are
uniformly bounded. Therefore (8.3.15) implies the case j = 1 of

∀ j, ∀ s, ∀n, ∀ ǫ < ǫ0, sup
0≤t≤T

‖∂jtwǫ(t)‖Hs
ǫ (Ω(t)) ≤ Cn,s,j ǫ

n .

The proof is by induction on j. Write

∂j+1
t w = ∂jt

(
−
∑

Aj∂jw + G(uǫ, wǫ)wǫ − rǫ
)
. (8.3.16)

The inductive hypothesis shows that for k ≤ j, and s arbitrary

sup
0≤t≤T

‖∂kt G(uǫ, wǫ)‖Hs
ǫ (Ω(t)) = O(1) , and sup

0≤t≤T
‖∂kt wǫ‖Hs

ǫ (Ω(t)) = O(ǫ∞) .

Therefore the Hs
ǫ (Ω(t)) norm of the right hand side of (8.3.16) is O(ǫ∞) uniformly on [0, T ] com-

pleting the induction.

§8.4. Rays and nonlinear transport.

In the linear case, the equations for the leading amplitudes simplify to transport equations when
the smooth variety hypothesis is satisfied. With suitable hypotheses on F and initial data one has
a similar simplification in the nonlinear case.
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The leading profile U0 is determined from its initial data as the solution of (7.4.23) and (7.4.24)
which we repeat here suppressing the y dependence of F ,

E
(
LU0 + F (U0)

)
= 0 , EU0 = U0. (8.4.1)

Equations for periodic functions in θ are split into their oscillating and nonoscillating parts. Denote
with an underline, the average value of a periodic function of θ

g(θ) :=
1

2π

∫ 2π

0

g(θ) dθ .

The oscillatory part is denoted with an asterisk,

g∗(θ) := g − g .

Splitting the equations for U0 = U + U∗ into their oscillating and nonoscillating parts yields the
equivalent pair of equations

L(y, ∂y)U + F (y, U + U∗) = 0 , (8.4.2)

π(y)
(
LU∗ + F (U + U∗)∗

)
= 0 , π(y)U∗ = U∗ . (8.4.3)

Neither the mean U nor the oscillatory part U∗ can be found by itself. They interact.

The equations for the principal profile are an integro-differential system which is basically a hyper-
bolic problem with one more space variable, namely θ. The equation does not have θ derivatives.
To find the principal profile is a little harder than to solve a single hyperbolic Cauchy problem.
The payoff is not the solution of a single initial value problem, but the solution (asymptotically)
of a one parameter family of such problems which have short wavelength oscillations. As pointed
out in the introduction, these small structures make such a family particularly difficult to solve by
numerical methods. If rankπ(y) = k then the unknown function U0 takes values in a k dimensional
space. The number of unknown functions is reduced from N to k. The equation for the profile is
usually simpler that solving a single initial value problem for the original problem.

The pair of equations becomes significantly simpler when one can guarantee that U = 0. The next
result gives two such situations.

Proposition 8.4.1 i. If the nonlinear map U 7→ F (U) is odd, that is F (−U) = −F (U) and the
initial value U

∣∣
t=0

is odd in θ, then the solution U is odd in θ.

ii. If F (U) is a linear combination of polynomials of odd degree in U and its complex conjugate U ,
and, U

∣∣
t=0

has spectrum contained in the odd integers, then the solution U has spectrum contained
in the odd integers.

In both cases U = 0.

Proof. i. The assumptions imply that the function −U(y,−θ) is a solution with the same initial
data. By uniqueness, U(y, θ) = −U(y,−θ).
ii. Denote the initial data g(x, θ) = U

∣∣
t=0

. The Picard iterates converging to the solution are

defined by U1(t, x, θ) = g(x, θ) and

E
(
LUν+1 + F (Uν)

)
= 0 , EUν+1 = Uν+1, Uν+1

∣∣
t=0

= g .

By induction, the Uν have spectrum contained in the odd integers.
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For profiles which satisfy U = 0, the profile equation becomes

π Lπ U + π(y)F (U) = 0 , π(y)U = U .

Next suppose that the smooth characteristic variety hypothesis is satisfied at (y, dφ(y)) with y ∈ ΩT .
In this case using (5.4.4), the profile equation simplifies to the nonlinear transport equation,

(
∂t + v.∂x + γ

)
U + π(y)F (U) = 0 , π(y)U = U .

For each fixed θ this is a semilinear ordinary differential equation for U0 along the integral curves of
∂t + v.∂x. Solving such a family of equations is radically simpler than solving a multidimensional
hyperbolic system. When the smooth variety hypothesis is satisfied as well as U = 0 (e.g. as
in Proposition 8.4.1), the construction of the approximate solutions reduces to solving nonlinear
ordinary differential equations along the rays.

In special cases there are explicit solutions which give insight into the underlying dynamics defined
by the nonlinear hyperbolic equation. It is in this way that the subject is often used in the applied
scientific community. The reader is encouraged to browse the references given in the bibliography
to find interesting applications both mathematical and physical. In the applied literature the
method often goes under the name slowly varying envelope approximation.

Example. A striking example is the analysis of self phase modulation when a laser beam passes
through glass. We will not introduce the appropriate nonlinear Maxwell equations but content
ourselves with a cartoon which shares the key features. Consider the semilinear system

∂u

∂t
+

(
1 0
0 −1

)
∂u

∂x1
+

(
0 1
1 0

)
∂u

∂x2
+ F (u) = 0 , F = (F1, F2) .

The characteristic equation is τ2 − |ξ|2 = 0. Consider the phase φ(t, x) = t − x1 for which the
group velocity is equal to (1, 0). The associated spectral projection and polarization are given by

π =

(
1 0
0 0

)
, U0(t, x, θ) = (a0(t, x, θ), 0) .

When the hypotheses of Propostion 8.4.1 are satisfied the principal profile equation is

∂a0

∂t
+
∂a0

∂x1
+ F1(a0, 0) = 0 . a0(0, x1, x2, θ) = g(x1, x2, θ) (8.4.4)

For the special case where F = i|u|2u and a0 has spectrum in the odd integers, Proposition 8.4.1ii
applies and the profile equation is

∂a0

∂t
+
∂a0

∂x1
+ i|a0|2a0 = 0 . a0(0, x1, x2, θ) = g(x1, x2, θ) (8.4.5)

Exercise 8.4.1. Prove that if a0 ∈ C1(R ; H1(Rd × S1)) satisfies (8.4.5), then
∫
|a0|2 dx dθ is

independent of t. Hint. Differentiate the quantity with respect to time. Discussion. Conclude
that one arrives at the conclusion by multiplying by a0, taking real part, and integrating.
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Corresponding to this conservation one has the ray by ray conservation law proved by considering
small tubes of rays (see §5.4.3). Precisely, solutions of (8.4.2) satisfy(

∂t + v.∂x
)
|a0|2 = 0 .

Exercise 8.4.2 Prove this by taking the real part of the product of (8.4.2) with a0 as suggested
in the discussion of Exercise 8.4.1.

Thus |a0| is constant on rays and equation (8.4.5) becomes a linear equation exactly solved by,

a0(t, x1, x2, θ) = e−i|g(x1−t,x2,θ)|
2t g(x1 − t, x2, θ) . (8.4.6)

The leading term in the approximation soution is

uapprox = e−i|g(x1−t,x2,(t−x1)/ǫ)|
2t g(x1 − t, x2, (t− x1)/ǫ) .

A particularly simple case is when g is monochromatic, g = g(x) eiθ in which case the solution
simplies to

uapprox = ei(t−x1)/ǫ e−i|g(x1−t,x2,(t−x1)/ǫ)|
2t b(x1 − t, x2) . (8.4.7)

An interesting special case is when g(0, x, θ) = b(x) eiθ. The approximate solution in the linear
case, F = 0, would be

uapprox = ei(t−x1)/ǫ b(x1 − t, x2) .

In the nonlinear case one finds

uapprox = ei(t−x1)/ǫ e−i|b(x1−t,x2)|
2t b(x1 − t, x2) .

Compared to linear case, what has happened is that the phase has been modified. Along rays there
is a phase lag which grows linearly in time and is proportional to the square of the amplitude. In
optics, this is called self phase modulation.

If the nonlinearity were mulitplied by −1, the phase lag would be converted to a phase advance.
The linear solution is moving with speed exactly equal to one. Such phase advance should not be
confused with movement faster than light. Such confusion is common in the science literature. For
this problem, no information moves faster than one, as we proved in §2.3.

Example. We describe a second nonlinear optical phenomenon revealed by the nonlinear transport
equation. For the Maxwell equations, the projectors π have rank two and the smooth variety hy-
pothesis is satisfied, so the nonlinear transport equation governs the dynamics of a two dimensional
vector. In the important case of the commonly occuring cubic Kerr nonlinearity, the equations are
explicitly solvable almost as in the above example.

If the electric field of the initial value of the profile is parallel a fixed direction, for example
(0, 1, 0), the light is polarized. The solution of the transport equation preserves this polarization.
For propagation in the x1 direction this polarization is possible as is polarization parallel to any
vector orthogonal to (1, 0, 0). A linear combination, for example,

E(0, x) = ei(t−x1)/ǫ a(x) (0, 2, 1) ,

is called elliptically polarized and the axis of polarization is (0, 1, 0) corresponding to the stronger
direction.

For the linear Maxwell equations the elliptical polarization is preserved simply by superposition.
For nonlinear optical models with the most common Kerr nonlinearity, the solutions of the transport
with elliptically polarized data, the axis of polarization rotates at a constant speed in the plane
perpendicular to (1, 0, 0). This explanation of an observed physical phenomenon is a second striking
succeses of the nonlinear geometric optics approximations. The successes were made about thirty
years before the approximations were proved to be accurate in the 1990’s.
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Chapter 9. Resonant Interaction and Quasilinear Systems

This chapter describes two extensions. First, we describe the resonant interaction of wave trains
with distinct phases. This is multiphase nonlinear geometric optics. Second, the semilinear analysis
is extended to the quasilinear case with the goal of discussing compressible inviscid fluid dynamics.

§9.1. Introduction to resonance

Even at the level of formal asymptotic expansions, resonance poses a challenge. It was [Majda and
Rosales, 1986] who got it right. The approach presented in this chapter is that of [Joly, Métivier,
and Rauch, Duke, 1994]. The essence of the phenomenon is illustrated by a simple example.

Example. Consider the oscillatory semilinear initial value problem

(∂t + ∂x)u1 = 0

∂tu2 = u1u3

(∂t − ∂x)u3 = 0

u1

∣∣
t=0

= a1(x) e
ix/ǫ

u2

∣∣
t=0

= 0

u3

∣∣
t=0

= a3(x) e
ix/ǫ

(9.1.1)

with initial amplitudes aj ∈ C∞
0 (R). The exact solution is given by

u1(t, x) = a1(x− t) ei(x−t)/ǫ , u3(t, x) = a3(x+ t) ei(x+t)/ǫ , u2 =

∫ t

0

u1(t, x)u3(t, x) dt .

The phases, (x± t)/ǫ, that appear in the integrand for u2 sum to 2ix/ǫ which is independent of t.
The formula for u2 is,

u2 = ei2x/ǫ
∫ t

0

a1(x− t) a3(x+ t) dt . (9.1.2)

u1 and u3 are wave trains with phases

φ1 := (x− t)/ǫ, and, φ2 := (x+ t)/ǫ .

They interact to generate a the wave train u2 with phase

φ3 := 2x/ǫ.

The phases satisfy the resonance relation

φ1 + φ2 = φ3 .

The amplitude of the new wave is of the same order, ǫ0, as the waves from which it is formed.

The linear operator

L(∂t, ∂x) :=




1 0 0
0 1 0
0 0 1


 ∂t +




1 0 0
0 0 0
0 0 −1


 ∂x,

in the background has principal symbol,

L(iτ, iξ) := i



τ + ξ 0 0

0 τ 0
0 0 τ − ξ


 .
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The characteristic variety of L has equation 0 = detL(τ, ξ) = τ(τ + ξ)(τ − ξ). The three phases
satisfy the eikonal equation

φt(φt + φx)(φt − φx) = 0 .

For the solutions with ∇t,xφ 6= 0, this is equivalent to exactly one of the equations

φt = 0, φt + φx = 0, or φt − φx = 0,

at all points, assuming the domain of definition is connected.

Variants of this example illustrate two properties of resonance.

Example. Suppose that the initial condition for u3 is changed to u3

∣∣
t=0

= a3(x)e
iψ(x) with

dψ(x)/dx nowhere equal to 1. Then u3 = a3(x + t) eiψ(x+t)/ǫ and the integral defining u2 is an
oscillatory integral in time with phase (x − t + ψ(x + t))/ǫ. The time derivative of the phase is
O(1/ǫ) so the method of nonstationary phase shows that u2 = O(ǫ). The resonant interaction is
destroyed.

Exercise 9.1.1. Prove that more generally, if {x : ψ′(x) = 1} has measure zero, then u2 = o(1)
as ǫ→ 0. Again, the offspring wave is smaller than the parents.

For those who know about Young measures, it is interesting to note that the Young measures of
the intitial data are independent of the function ψ so long as ψ′ 6= 0. Thus data with the same
Young measures yield solutions with different Young measures.

Introduce the symmetric form
∑
φj = 0 for resonance relations. If ψk satisfy

∑
nk ψk = 0, then the

phases φk := nkψk satisfy the symmetric form. The symmetric form is often easier to manipulate.

Example. We find all triples of resonant linear eikonal phases with pairwise independent differ-
entials for L = ∂t + diag (λ1, λ2, λ3)∂x with λj distinct real numbers. Seek such φj satisfying the
resonance relation

∑
φj = 0. The independent differentials together with the eikonal relation force

(up to permutation),

φj(t, x) = αj(x− λj t), (α1, α2, α3) ∈ R3 \ 0.

Therefore, α is determined up to scalar mulitplication by the resonance relation which is equivalent
to the pair of equations,

∑

j

αj = 0, and,
∑

j

αj λj = 0 .

Exercise 9.1.2. For (λ1, λ2, λ3) = (1, 0,−1) show that if f, g, h ∈ C∞(R) each has nonvanishing
derivative at the origin, and at least one of them has nonvanishing second derivate, then the three
phases

f(t), g(t− x), and h(t+ x)

cannot be resonant on a neighborhood of the origin. Discussion. This constant coefficient stictly
hyperpbolic operators on R1=1, linear phases are the only possibilities for resonant triples with
pairwise independent differentials.

The example and exercises show that the phenomenon of resonance is both rare and sensitive when
viewed from the perspective of perturbing the phases. On the other hand, wave trains with resonant
phases interact much more strongly, amplifying their importance.
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§9.2. The three wave interaction PDE

One can understand a rich variety of resonance phenomena by studying the following special
example. Like the examples of Chapter 1, it illustrates many important principals which are part
of a general theory discussed later.

Consider the system
(∂t + ∂x)u1 = c1 u3 u2 ,

∂tu2 = c2 u1u3 ,

(∂t − ∂x)u3 = c3 u1 u2 .

(9.2.1)

with real cj ∈ R \ 0. This equation maximizes the intermode interaction. The absence of a term
in u2

j in the jth equation has a consequence that harmonics are not generated by self interaction.

Multiplying the first equation by a1 u1, the second by a2 u2, and the third by a3 u3, shows that
if a1, a2, and a3 are real numbers so that

∑
ajcj = 0 then for solutions one has the differential

conservation laws

∂

∂t

(
a1 u

2
1 + a2 u

2
2 + a3 u

2
3

)
+

∂

∂x

(
a1 u

2
1 − a3 u

2
3

)
=
(
2
∑

j

aj cj
)
u1u2u3 = 0 ,

Integrating dx yields the integral conservation laws for solutions sufficiently smooth and sufficiently
small at ∞,

d

dt

∫
a1 u

2
1 + a2 u

2
2 + a3 u

2
3 dx = 0 .

This is a two dimensional space of conservation laws parameterized by the a.

In order to take advantage of the complex exponential function, we are interested in complex
solutions. For complex solutions, conservation laws involving |uj |2 are more interesting than those
involving u2

j as they yield L2 bounds. The complex analogue of (9.2.1) with such conservation laws
is,

(∂t + ∂x)u1 = c1 u2 u
∗
3

∂tu2 = c2 u1u3

(∂t − ∂x)u3 = c3 u
∗
1 u2 .

(9.2.2)

with cj ∈ R \ 0.

Mutiplying the jth equation by aju
∗
j and taking the real part shows that if aj ∈ R satisfy

∑
aj cj =

0, then solutions satisfy

∂t

(∑

j

aj |uj |2
)

+ ∂x

(
a1 |u1|2 − a3 |u3|2

)
= 2

(∑

j

aj cj

)
Re
(
u∗1 u2 u

∗
3

)
= 0 .

If the cj do not all have the same sign, then there are conservation laws of this type with all the
aj > 0. This yields an L2 bound on the solution. On the other hand, if the cj are all positive then
initial data with uj(0, x) real and positive yield real solutions such that for all j, uj is nondecreasing
along j characteristics. For sufficiently positive data there is finite time blow up.

Proposition 9.2.1. Suppose that cj ≥ c > 0 and the real valued initial data satisfy

∀j, ∀|x| ≤ R, uj(0, x) ≥ A > 0.
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i. If u(t, x) ∈ C∞([0, t∗[×R) is a solution, then uj(t, x) ≥ y(t) for t∗ > t ≥ 0 and |x| ≤ R− t, where
y = A/(1 − cAt) is the solution of y′ = c y2, y(0) = A.

ii. If T∗ := (cA)−1 is the blow up time for y, and R > T∗, then u blows up on or before time T∗
in the sense that one must have t∗ ≤ T∗.

Proof. The second assertion follows from the first.

Since the speed of propagation is no larger than 1, the values of u in |x| ≤ R− t are unaffected by
the values of the Cauchy data for |x| > R. Therefore, it suffices to prove that uj ≥ y(t) when the
data satisfy uj(0, x) ≥ A for all x.

Define
m(t) := min

x∈R , j
uj(t, x) .

Since the uj are nondecreasing on j-characteritics, it follows that m(t) is nondecreasing. And,
m(0) ≥ A > 0. In addition one has the lower bound obtained by integration along j characteristics,

uj(t, x) ≥ m(0) + c

∫ t

0

m(t)2 dt .

Taking the infinum on x yields

m(t) ≥ m(0) + c

∫ t

0

m(t)2 d ≥ A+ c

∫ t

0

m(t)2 dt .

The function y is characterized as the solution of

y(t) = A+ c

∫ t

0

y(t)2 dt .

For ǫ > 0 small, let yǫ be the solution of (yǫ)′ = c(yǫ)2 with yǫ(0) = A− ǫ so

yǫ(t) = A− ǫ+ c

∫ t

0

yǫ(t)2 dt .

It follows that m(t) > yǫ(t) for all 0 ≤ t < t∗. For, if this were not so there would be a smallest
t ∈]0, t[∗ where m(t) = yǫ(t). Then

yǫ(t) = m(t) ≥ A+ c

∫ t

0

m(t)2 dt > A− ǫ+ c

∫ t

0

(yǫ(t))2 dt = yǫ(t) .

This contradiction establishes m > yǫ. Passing to the limit ǫ → 0 proves m ≥ y which is the
desired conclusion.

Only the signs of the cj play a roll in the qualitative behavior of the equation (9.2.2).

Proposition 9.2.2. There is exactly one positive diagonal linear transformation

u := (d1 v1 , d2 v2 , d3 v3) , dj > 0 ,

which transform the the system to the analogous system with interaction coefficients
{
c1, c2, c3

}

replaced by {
c1
|c1|

,
c2
|c2|

,
c3
|c3|

}
.
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Proof. The change of variables yields an anlogous system for v with the interaction coefficients
replaced by {d2 d3

d1
c1 ,

d3 d1

d2
c2 ,

d1 d2

d3
c3

}
.

Need dj so that

d2 d3

d1
c1 =

c1
|c1|

,
d3 d1

d2
c2 =

c2
|c2|

,
d1 d2

d3
c3 =

c3
|c3|

.

Multiplying the jthe equation by d2
j yields the equivalent system,

d2
1

|c1|
=

d2
2

|c2|
=

d2
3

|c3|
= d1d2d3 .

The first two equalities hold if and only if,

(d2
1, d

2
2, d

2
3) = a(|c1|, |c2|, |c3|) with a > 0 .

Then, the last equation holds if and only if

a = a3 |c1c2c3| .

This uniquely determines a, and therefore d.

Remark. For general dj 6= 0, the three quantities d1d2/d3 , d2d3/d1 , d3d1/d2 have the same sign.
Using dj 6= 0 allows us to multiply the three interactiion coefficients by −1 if desired. Thus every
system is transformed to one with interaction coefficients all equal to +1 or two equal to +1. There
are four equivalence classes, the last three depending on the location of the coefficient −1.

Proposition 9.2.3. i. If the real interaction coefficients cj 6= 0 do not all have the same sign, then
the Cauchy problem for (9.4) has a unique global solution u ∈ ∩sCs([0,∞[ ; Hs(R)) for arbitrary
Caucy data in ∩sHs(R).

ii. If the cj have the same sign there are smooth compactly supported data so that the solution of
the Cauchy problem blows up in finite time.

Proof. For real data, this equation reduces to the previous one and the explosive behavior has
already been treated.

To prove i., the results of section 6.4 show that it suffices to prove for every T > 0, an a priori
bound for the L∞([0, T ] × R) norm.

From the conservation law, one has

sup
t∈[0,T ]

∫ ∑

j

|uj |2 dx ≤ K < ∞ .

The equation for u2 yields,

|u2(t, x)| ≤ |u2(0, x) | +
∫ t

0

|u1 u3(t, x)| dt . (9.2.3)
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The key idea is to estimate the integral on the right hand side using energy estimates for u1 and
u3.

For any x ∈ R integrate the identity

(
∂t + ∂x

)
|u1|2 = 2 Re

(
u∗1
(
∂t + ∂x

)
u1

)
= 2 Re c1u

∗
1u2u3 ,

over the strip [0, t]× ] −∞, x] to find that

∫ t

0

|u1(t, x)|2 dt ≤ 2K + 2|c1|
∫

[0,t]×R

|u1u2u3| dt dx .

Estimate the integral dx on the right using the L∞ × L2 × L2 Hölder inequality to find

∫ t

0

|u1(t, x)|2 dt ≤ 2K + 2|c1|
∫ t

0

K ‖u2(t)‖L∞(R) dt .

By symmetry, ∫ t

0

|u3(t, x)|2 dt ≤ 2K + 2|c3|
∫ t

0

K ‖u2(t)‖L∞(R) dt .

The Cauchy-Schwarz inequality implies that

∫ t

0

|u1(t, x))u2(t, x)| dt ≤ 2K + 2 max{|c1|, |c3|}
∫ t

0

‖u2(t)‖L∞(R) dt . (9.2.4)

Estimate the integral on the right in (9.2.3) using (9.2.4) to find

|u2(t, x)| ≤ C +

∫ t

0

C ‖u2(t)‖L∞(R) dt ,

with C independent of (t, x) ∈ [0, T ]×R. Taking the supremum of the left hand side over x yields

‖u2(t)‖L∞(R) ≤ C +

∫ t

0

C ‖u2(t)‖L∞(R) dt , 0 ≤ t ≤ T .

Gronwall’s inequality bounds the sup norm of u2 over bounded time intervals.

To estimate u1 one needs L2 estimates for u2 and u3 on the speed one characteristics x = x + t.
These are obtained by integrating ∂t|u2|2 and (∂t−∂x)|u3|3 over {(s, x) : 0 ≤ s ≤ t, and x ≥ x+s}.
A similar argument works for u3.

Exercise 9.2.1. State and prove the L∞([0, T ] × R) estimate for u3.

§9.3. The three wave interaction ODE

For the three wave PDE, (9.2.2), and phases equal to the resonant triplet, waves of each pair of
families influence, by resonant interaction, the wave of the third. The simplest examples showing
this are solutions of the special form

u1 = A1(t) e
i(t−x)/ǫ , u2 = A2(t) e

−i2x/ǫ u3 := A3(t)e
−i(t+x)/ǫ , (9.3.1)
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with amplitudes Aj independent of x. The oscillatory structure evolves in time, but is uniform
in space. Equation (9.2.2) is satisfied if and only if the amplitudes Aj satisfy the three wave
interaction equations

A′
1 = c1A2A

∗
3 , A′

2 = c2A1 A3 , A′
3 = c3A

∗
1 A2 . (9.3.2)

This is a nonlinear system of ordinary differential equation for three complex quantities Aj . The
phase space is C3, hence six dimensional as a real vector space. It is the same equation that one
would find if one sought solutions of the three wave interaction pde whch were independent of x.

The equilibria are the points where (at least) two of the three {Aj} vanish. There are three linear
subspaces of equilibria, each with real dimension equal to 2,

{
A2 = A3 = 0

}
,

{
A3 = A1 = 0

}
, and,

{
A1 = A2 = 0

}
.

Each pair of planes intersect at the origin. The system (9.3.2) is highly symmetric.

Proposition 9.3.1. i. The quantity Im
(
A1(t)A

∗
2(t)A3(t)

)
, is constant on solutions of (9.3.2).

ii. If aj are real numbers so that
∑
aj cj = 0 then the quantity

∑
j aj |Aj(t)|2 is constant on

solutions of (9.3.2).

iii. If A is a solution and θ ∈ R, then Ã obtained by each of the three gauge transformations

Ã :=
(
eiθ A1 , A2 , e

−iθ A3

)
, Ã :=

(
A1 , e

iθ A2 , e
iθ A3

)
, Ã :=

(
eiθ A1 , e

iθ A2 , A3

)
,

is also a solution. The conserved quantities in i,ii are invariant under the gauge transformations.

iv. If A is a solution and σ ∈ R \ 0, then Ã obtained by the scaling

Ãj(t) = σAj(σt) ,

is also a solution.

Proof. i. Compute

(A1A
∗
2A3)t = (A1)tA

∗
2A3 +A1(A

∗
2)tA3 +A1A

∗
2(A3)t

= c1A2A
∗
3A

∗
2A3 + c2A1A

∗
1A

∗
3A3 + c3A1A

∗
2A

∗
1A2

= c1|A2A3|2 + c1|A1A3|2 + c1|A2A1|2 ∈ R .

ii. Compute
d

dt
|A1|2 = 2ReA∗

1

d

dt
A1 = 2c1Re(A∗

1A2A
∗
3),

d

dt
|A2|2 = 2ReA∗

1

d

dt
A1 = 2c2Re(A∗

2A1A3),

d

dt
|A3|2 = 2ReA∗

1

d

dt
A1 = 2c3Re(A∗

1A2A
∗
3).

The real parts are of A1A
∗
2A3 or its complex conjugate, so are equal. Therefore one has

d

dt

(∑
aj |Aj(t)|2

)
=
(
2
∑

j

aj cj

)
Re(A∗

2A1A3) = 0 .
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The assertions iii,iv are immediate.

Remarks. 1. When the cj 6= 0 do not all have the same sign one can choose the aj > 0. In this
case, the three wave interaction system is globally solvable.

2. When the three cj have the same sign, there exist solutions which blow up in finite time. This
is proved by comparison with an explosive Ricatti equation as for the three wave interaction PDE.

Exercise 9.3.1. Suppose that the cj have the same sign and that A(t) is solution defined for
0 ≤ t < T∗ so that lim supt→T∗

‖A(t)‖ = ∞. Prove that for all j, lim supt→T∗
‖Aj(t)‖ = ∞. Hint.

Use quadratic conservation laws.

3. The gauge transformations commute. The third gauge transformation is the product of the
preceding two. The abelian group of gauge transformations is a two dimensional torus of mappings

A 7→
(
eiθ1 A1 , e

iθ2A2 , e
iθ2 e−iθ1 A3

)
.

Theorem 9.3.2. i. The equilibrium (0, 0, 0) is unstable if and only if the three cj have the same
sign.

ii. For i, j, k distinct, the equilibrium Ai = Aj = 0 , Ak 6= 0 of (9.3.2), is unstable if the interaction
coefficients ci and cj have the same sign. The stable and unstable manifolds have real dimension
equal to 2.

iii. For the same equilibrium, if ci and cj have opposite signs, orbits of the linearized equation are
bounded. For initial data starting close to the equilibrium, the solutions of the nonlinear system
exist for all time and Ai(t), Aj(t) and |Ak(t)| stay close to their initial values uniformly in time.
The equilibrium is unstable. If Ak is real then the equilibrium is stable for the restriction of the
dynamics to A ∈ R3.

Proof. i. The stability of the origin when the cj do not have the same sign follows from the
conservation of

∑
aj |Aj |2 with positive aj . The instability is proved using explosive positive (resp.

negative) solutions when the cj are positive (resp. negative).

ii. For ease of reading consider the equilibrium (0, 0, A3) 6= 0. The linearized equation at this
equilibrium is

B′ =




0 c1A
∗
3 0

c2A3 0 0
0 0 0


B .

The eigenvalues of the coefficient matrix are the solutions λ of

λ(λ2 − c1c2|A3|2) = 0 .

If c1 and c2 have the same sign, then the roots are 0,±|c1c2|1/2|A3|. The positive eigenvalue implies
that the equilibrium is unstable. The stable and unstable manifolds have complex dimension equal
to 1 and real dimension equal to 2.

If c1, c2 have opposite signs then |c2||B1|2+|c1||B2|2 is constant on orbits of the linearized equation.
It follows that each orbit of the linearized equation is uniformly bounded in time.

iii. In the case of opposite signs, the functional |c2|2|A1|2+ |c1||A2|2 is constant on orbits of (9.3.2).
For initial data which start near (0, 0, A3) the components A1(t), A2(t) stay close to zero for all
time.
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A conserved quantity a1|A1|2 + a2|A2|2 + |A3|2 together with the control of A1(t), A2(t) implies
that |A3(t)| stays close to |A3(0)|. In particular, the orbit exists for all time. For real solutions
this implies stability since in that case the sign of A3(t) does not change and

|A3(t) −A3(0)| =
∣∣∣|A3(t)| − |A3(0)|

∣∣∣ .

For complex solutions write A3 = ρ eiθ, ρ := |A3| and compute *

A′
3 = ρ′eiθ + iρeiθθ′ = ρeiθ

(
ρ′/ρ+ iθ′

)
, θ′ = Im

(
A′

3

A3

)
= Im

(
c1A

∗
1A2

A3

)
=

Im c1A
∗
1A2A

∗
3

|A3|2
.

To prove instability choose δ = |A3| > 0. For ǫ > 0 choose complex initial data (A1(0), A2(0), A3)
with |A1(0), A2(0)| < ǫ and Im A1A

∗
2A3 6= 0. In the expression for θ′, the numerator is a nonzero

constant, and the denominator is always ∼ |A3)|, so the angle θ has derivative bounded below.
There is a t > 0 so that θ(t) − θ(0) = π so |A3(t) −A3(0)| = 2|A3| > δ proving instability.

For any triple of interaction coefficients, there exists i 6= j so that ci and cj have the same sign.
Then the equilibria defined by Ai = Aj = 0 is unstable. The unstable equilibrium exists even in
the globally solvable case where the cj do not all have the same sign. For example, if c1 and c2
have the same sign and c3 the opposite, then their is a conserved Euclidean norm

∑
aj |Aj |2. On

the other hand, most orbits starting near A1 = 0, A2 = 0, A3 = 1 stray far from this state. This
situation is described as saying oscillations on the third mode generate frequency conversion to
modes one and two. The solution cannot grow, but it can wander far from its initial state. The
energy originally localized nearly entirely on mode 3, moves substantially away. An appreciable
portion of the energy passes to modes one and two.

The analysis of the interactions in the highly oscillatory family (9.2.2) reduces to the analysis of a
system of nonlinear ordinary differential equations This is a special case of a general phenomenon
for homogeneous oscillations, that is oscillations which in a sense are the same at all positiions of
space. Proving general results of this sort is one of our goals. Another is to extend our semilinear
analysis of Chapters 7 and 8 to the quasilinear case. We return to the construction of high frequency
asymptotic solutions, this time with several phases and in the quasilinear case.

§9.4. Formal asymptotic solutions for resonant quasilinear geometric optics

We give a self contained, but rapid derivation of the equations of quasilinear geometric optics.
Consider the quasilinear system of partial differential operators,

L(u, ∂)u :=
d∑

µ=0

Aµ(u) ∂µu .

Suppose that the system is symmetric in the sense of the first paragraph of §6.6. Consider solutions
whose values are close to to a constant state u. The change of independent variable u 7→ u − u
reduces to the case u = 0. Without loss of generality we study solutions close to 0.

As in the last paragraph of §6.6, the change dependent variable, u := A0(0)1/2v, yields the equiv-
alent system

d∑

µ=0

Ãµ(v) ∂µv = 0, Ãµ(v) := A0(0)−1/2 Aµ(A0(0)1/2v) A0(0)−1/2 ,

* Thanks to G. Métivier for this short proof. See [Alber et. al.] for more information on this system.
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with
Ãµ = Ã∗

µ , and, Ã0(0) = I .

We suppose that such a change has been performed and suppress the tildes.

For u ≈ 0 use the approximation

Aµ(u) ≈ Aµ(0) +A′
µ(0)u.

to show that the nonlinear terms are equal to

(
A′
µ(0)u

)
∂µu + higher order terms.

We assess the time of nonlinear interaction for solutions built from an oscillatory wave trains
ǫp eiφ(y)/ǫ. The power p will be chosen so that this time is ∼ 1.

For Burgers’ equation ut+uux = 0, with compactly supported initial data with ‖∂xu(0, x)‖L1 ∼ 1,
solutions break down at times t ∼ 1. Thus for initial data ǫpa(x) eiφ(0,x)/ǫ the lifetime is O(1) when
p = 1 and is much longer (resp. shorter) when p > 1 (resp. p < 1). This shows that nonlinear
effects are important for t ∼ 1 for the critical power p = 1.

A second estimate proceeds as follows. Assume that A′
µ(0) 6= 0 for some µ, so that the leading

nonlinear terms are quadratic. The analysis when the leading Taylor polynomial is higher order
can be carried out as in earlier sections. For the important examples from inviscid fluid dynamics,
the hypothesis of quadratic nonlinearity is usually verified. Consider solutions built from wave
trains ǫpa(y) eiφ(y)/ǫ whose amplitudes are O(ǫp) and whose derivates are O(ǫp−1). The nonlinear
terms then have amplitude O(ǫ2p−1). For phases satisfying the eikonal equation terms of this size
yield a response which is O(ǫ2p−1) for t ∼ O(1). We choose the amplitudes so that the time of
nonlinear interaction is O(1) so we want ǫ2p−1 ∼ ǫp. This yields the critical power p = 1 . When
p = 1 our analysis will show that nonlinear effects usually affect the leading order asymptotics for
times t ∼ 1.

Exercise 9.4.1 i. Perform a perturbation computation as in §6.5, to show that the solution of,

∂tu+ u∂xu = 0, u(0, x) = 1 + δg(x),

is given by
u ∼ u0 + δu1 + δ2u2 + · · · ,

where u0(t, x) = 1 is the unperturbed state, u1(t, x) = g(x− t) solves the linearized equation, and
the leading nonlinear term u2 is determined by

(∂t + ∂x)u2 + g(x− t) g′(x− t) = 0, u2(0, x) = 0 .

ii. As in §7.1 take g = ǫp a(x) eix/ǫ and δ = 1 to see that for t ∼ 1 the leading nonlinear term is
small compared to the leading when p > 1 and they become comparable as p → 1. Discussion.
This is a third motivation for the critical exponent p = 1.

Consider the interaction of waves with linear phases φj(y) which by nonlinear interaction yield
possible phases

∑
njφj with nj ∈ Z. Each of these candidate phases is a linear function α.y with

α ∈ R1+d. Thus the expression

ǫ U(y, y/ǫ) with U(y, Y ) ∼
∑

α∈Rd

Uα(y) eiα.Y
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is of the critical amplitude and includes all the anticipated terms. In a formal trigonometric sum
over α it is understood that there are at most a countable number of nonvanishing coefficients Uα.

The exact structure of the function of Y given by U(y, Y ) is left unspecified for the moment.
Equivalently, consider U(y, Y ) as a formal trigonometric series in Y with coefficients which are
smooth functions of y. To solve the profile equations and prove accuracy will require supplementary
hypotheses. These hypotheses do not play a role in the derivation of the profile equations.

Pose the ansatz

uǫ = ǫ U(ǫ, y, y/ǫ) , (9.4.1)

U(ǫ, y, Y ) ∼
∞∑

j=0

ǫj Uj(y, Y ) ∼ U0(y, Y ) + ǫ U1(y, Y ) + · · · , (9.4.2)

Uj(y, Y ) ∼
∑

α∈Rd

Uj,α(y) eiα.Y . (9.4.3)

Write
L(uǫ, ∂)uǫ = L(ǫU, ∂)

(
ǫ U(ǫ, y, y/ǫ)

)
. (9.4.4)

Expand in a Taylor series at ǫ = 0,

Aµ
(
ǫU(ǫ, y, Y )

)
∼ A(0) + ǫA′

µ(0)U0 + · · · , (9.4.5)

to find

L(ǫU(ǫ, y, Y ) , ∂y) ∼ L0 + ǫL1 + · · · =
∞∑

j=0

ǫj Lj(y, Y, ∂y) .

The Lj are operators whose coefficients are functions of y, Y involving the derivatives ∂βuAµ(0) and
the profiles Uk with k ≤ j − 1. The most important come from the leading terms in (9.4.5),

L0 = L(0, ∂y) , and, L1 =
∑

µ

A′
µ(0)U0(y, Y ) ∂µ .

The chain rule shows that

∂

∂yµ
U(ǫ, y, y/ǫ) =

( ∂

∂yµ
+

1

ǫ

∂

∂Yµ

)
U(ǫ, y, Y )ǫ

∣∣∣
Y=y/ǫ

. (9.4.6)

So
L(uǫ, ∂)uǫ = W (ǫ, y, Y )

∣∣∣
Y=y/ǫ

, (9.4.7)

where

W (ǫ, y, Y ) = L
(
ǫU(ǫ, y, Y ) ,

∂

∂yµ
+

1

ǫ

∂

∂Yµ

)
ǫ U(ǫ, y, Y )

Expand to find

W (ǫ, y, Y ) ∼
( ∞∑

j=0

ǫjLj

(
y, Y,

∂

∂yµ
+

1

ǫ

∂

∂Yµ

))(
ǫ

∞∑

k=0

ǫkUk(y, Y )
)

∼
( ∞∑

j=0

[
ǫjLj

(
y, Y,

∂

∂yµ

)
+ ǫj−1Lj

(
y, Y,

∂

∂Yµ

)])(
ǫ

∞∑

k=0

ǫkUk(y, Y )
)

∼
∞∑

j=0

ǫjWj(y, Y ) .
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In particular,
W0(y, Y ) = L(0, ∂Y )U0(y, Y ) , (9.4.8)

and
W1(y, Y ) = L(0, ∂y)U0 + L1(y, Y, ∂Y )U0 + L(0, ∂Y )U1

= L(0, ∂y)U0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0 + L(0, ∂Y )U1 .
(9.4.9)

This expression involves both U0 and U1 which is typical of multiscale methods. The quadratically
quasilinear terms A′

µ(0)U0 ∂Y U0 involve derivatives in the fast variables Y . For j ≥ 2 the formula
for Wj is

Wj =
∑

k+ℓ=j

(
Lk(y, Y, ∂y) + Lk+1(y, Y, ∂Y )

)
Uℓ

= L(0, ∂y)Uj + L1(y, Y, ∂Y )Uj + L(0, ∂Y )Uj+1 + terms in U0, U1, . . . Uj−1 .

The strategy is to choose profiles Uj so that Wj(y, Y ) = 0 for all y, Y, not just on the d + 2
dimensional subset {Y = y/ǫ} parameterized by (ǫ, y) = (ǫ, t, x).

Setting W0 = 0 in (9.4.8) shows that W0 must lie in the kernel of L(0, ∂Y ). For (9.4.9), the profile
U1 is as yet undetermined. However, in order that it is possible to choose a U1 so that (9.4.9)
holds, requires the second of the equations,

U0 ∈ KernelL(0, ∂Y ) , and, L(0, ∂y)U0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0 ∈ RangeL(0, ∂Y ) . (9.4.10)

To understand (9.4.10) requires a study of the operator L(0, ∂Y ). This is straight forward using
the Fourier representation,

L(0, ∂Y )U = L(0, ∂Y )
∑

α

Uα(y) eiα.Y = i
∑

α

L(0, α)Uα(y) eiα.Y . (9.4.11)

As an operator acting on formal trigonometric series, L(0, ∂Y ) has kernel consisting of those series
whose αth coefficient belongs to the kernel of L(0, α). Recall the definition of π(α) as the projection
onto the kernel of L(0, α) along its range. The kernel of L(0, ∂Y ) is then the set of trigonometric
series such that π(α)Uα = Uα. The image is the set of series with Uα belonging to the image of
L(0, α). Equivalently, π(α)Uα = 0.

Define an operator E from formal trigonometric series to themselves by

E
∑

α

Uα(y) eiα.Y :=
∑

α

π(α)Uα(y) eiα.Y . (9.4.12)

The previous remarks show that on formal trigonometic series the operator E projects along the
image of L(0, ∂Y ) onto its kernel. Therefore, the two conditions in (9.4.10) are equivalent to the
pair of equations

EU0 = U0 , (9.4.13)

and
E
(
L(0, ∂y)U0 +

∑

µ

A′
µ(0)U0 ∂Yµ

U0

)
= 0 . (9.4.14)
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These are the fundamental equations of resonant quasilinear geometric optics. They are analogues
of (7.4.23) and (7.4.24).

Since A(0) = I equation (9.4.14)) is equivalent to

∂tU0 + E
(∑

j

Aj(0) ∂jU0 +
∑

µ

A′
µ(0)U0 ∂Yµ

U0

)
= 0 . (9.4.15)

Written this way, the equation looks like an evolution equation for U0. Since the operator E does
not depend on t one has, at least formally,

∂t
(
I − E)U0 = 0

so the constraint (9.4.13) is satisfied as soon as it is satisfied at t = 0. It is reasonable to expect
that U0 can be determined from its initial data required to satisfy EU0(0, x, Y ) = U0(0, x, Y ).

The equation W1 = 0 is equivalent to the pair of equations EW1 = 0 and (I − E)W1 = 0. The
first, EW1 = 0, is the second equations in (9.4.14).

Define Q(α) to be the partial inverse of L(0, α) that is,

Q(α)π(α) = 0, Q(α)L(0, α) = I − π(α) .

Introduce the operator Q on trigonometric series by

Q
∑

α

Uα(y) eiα.Y :=
∑

α

Q(α)Uα(y) eiα.Y , (9.4.16)

Q is a partial inverse to L(0, ∂Y ). It is determined by

QE = 0, QL(0, ∂Y ) = I −E . (9.4.17)

Since Q(α) commutes with L(0, α), it follows that Q commutes with L(0, ∂Y ).

The second part, (I − E)W1 = 0, of the equation W1 = 0 is equivalent to QW1 = 0. Multiplying
(9.4.9) by Q shows this is equivalent to

(
I −E

)
U1 = −Q

(
L(0, ∂y)U0 +

∑

µ

A′
µ(0)U0 ∂Yµ

U0

)
. (9.4.18)

Once U0 is determined, this determines (I − E)U1.

Multiplying Wj−1 = 0 by Q and Wj = 0 by E shows that the equations (I−E)Wj−1 = 0 together
with EWj = 0 are equivalent to a pair of equations

(
I −E

)
Uj = Q

(
terms in U0, U1, . . . Uj−1

)
, (9.4.19)

and
E
(
L(0, ∂y)Uj +

∑

µ

A′
µ(0)U0 ∂Yµ

Uj

)
= E

(
terms in U0, U1, . . . Uj−1

)
. (9.4.20)

Note that once U0, . . . , Uj−1 are determined, equations (9.4.19) and (9.4.20) will serve to determine
Uj from initial values EUj(0, x, Y ).

§9.5. Existence for quaisiperiodic prinicipal profiles.
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An essential step is to pass from formal trigonometric series in Y to a more manageable class.
One class which will serve us well is to consider profiles U0(y, Y ) which are periodic in Y . Though
this suffices for the most interesting examples we construct, the general theory should and does
go further. Consider, the one dimensional problem with leading part ∂t + diag (λ1, λ2, λ3)∂x from
§9.1. One wants to treat functions oscillating with resonant trio of phases αj(x − λjt). For the
phases n.y/ǫ which appear for periodic profiles the ratio of the coefficients of t and x are rational.
Thus one could only treat the case of λ parallel to an element of Q3. Quasiperiodic functions as
in the next definition are sufficient to treat a wide variety of problems including general λ.

Notation. Suppose that the real linear functions {φj(Y )}mj=1 are linearly independent over the
rationals. To a function U(y, θ1, . . . , θm) smooth and 2π multiply periodic in θ, associate the
quasiperiodic profile U(y, Y ) := U

(
y, φ1(Y ), . . . , φm(Y )

)
. An induced operator E mapping periodic

functions to themselves is defined by

E
( ∑

n∈Zm

Un(y)ein.θ
)

:=
∑

n∈Zm

π
(∑

k

nkdφk
)
Un(y)ein.θ ,

so that (EU)(y, φ(Y )) := EU(y, Y ). Similarly define the partial inverse,

QU :=
∑

n∈Zm

Q
(∑

k

nkdφk
)
Un(y)ein.θ .

Introduce the shorthand, n.dφ :=
∑
k nkdφk.

To write (9.4.13)-(9.4.14) as an equation for U note that

∂

∂Yµ
U(y, φ1(Y ) . . . , φm(Y )) =

m∑

k=1

∂φk
∂Yµ

∂U0

∂θk
.

The profile equation for U0 are equivalent to,

E U0 = U0 , E
(
L(0, ∂y)U0 +

∑

µ

A′
µ(0)U0

∑

k

∂φk
∂Yµ

∂U0

∂θk

)
= 0 , (9.5.1)

for U0. This equation has the form

∂tU0 + G(U0, ∂y,θ)U0 = 0 ,

where

G(U , ∂y,θ) := E
( d∑

j=0

Aj(0) ∂yj
+
∑

µ

A′
µ(0)U

∑

k

∂φk
∂Yµ

∂

∂θk

)
U := EK(U , ∂y,θ)U .

The notation is chosen to suggest a quasilinear hyperbolic system. But, the operator E is nonlocal
in θ. However, E is an orthogonal projection operator in L2(Rdx × Tmθ ) which commutes with ∂y,θ.

Theorem 9.5.1. (Joly, Métivier and Rauch, Duke ’94) Suppose that H0(y, θ) ∈ ∩s(Hs(Rd×Tm)
satisfies the constraint EH0 = H0. Then there is T∗ > 0 and a unique maximal solution

U0 ∈ ∩s Cs
(
[0, T∗[ ; H

s(Rd × Tm)
)
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satisfying (9.29) together with the intitial condition U
∣∣
t=0

= H0. If T∗ <∞ then

lim sup
tրT∗

∥∥U0(t)
∥∥

Lip(Rd×Tm)
= ∞ .

Sketch of Proof. The key idea is to derive a priori estimates as in the case of quasilinear
hyperbolic systems. One differentiates the equation applying ∂βx,θ, and takes the real part of the

L2(Rd × Tm) scalar product with ∂βx,θU0 (suppressing the subscript 0) to find

d

dt

(1

2

∥∥∂βx,θU
∥∥2

L2(Rd×Tm)

)
= Re

(
∂βx,θU , ∂

β
x,θEK(U , ∂y,θ)U

)
L2(Rd×Tm)

.

Using the commutation and symmetry properties of E yields

(
∂βx,θU , ∂

β
x,θEK(U , ∂y,θ)U

)
L2(Rd×Tm)

=
(
E ∂βx,θU , ∂

β
x,θK(U , ∂y,θ)U

)
L2(Rd×Tm)

=
(
∂βx,θU , ∂

β
x,θK(U , ∂y,θ)U

)
L2(Rd×Tm)

,

the last equality using E U = U . The last is a quasilinear hyperbolic expression. Using Gagliardo-
Nirenberg estimates as in the treatment of the quasilinear Cauchy problem, one has

Re
(
∂βx,θU , ∂

β
x,θK(U , ∂y,θ)U

)
L2(Rd×Tm)

≤ C
(
‖U‖Lip(Rd×Tm

)
‖U‖2

H|β|(Rd×Tm) .

Summing on |β| ≤ s ∈ N yields

d

dt

∥∥U(t)
∥∥2

Hs(Rd×Tm)
≤ C(‖U‖Lip(Rd×Tm)‖U‖2

Hs(Rd×Tm) .

Local well-posedness in Hs for N ∋ s > 1 + (d + m)/2 so that Hs ⊂ Lip is then proved as for
quasilinear hyperbolic systems.

The principal profile is constructed as the limit of solutions Uh(t, x, θ) of difference approximations,

∂tUh + E
(
L(y, (0, δhx)Uh +

∑

µ

∑

k

A′
µ(0)Uν−1 ∂φk

∂Yµ
δhθk

Uh
)

= 0, Uh
∣∣
t=0

= g .

For either method one has the following upper bound on the spectrum of U as a function of θ

Definition. If V (θ1, . . . , θm) is a periodic distribution, then the spectrum of V is the set of
n ∈ Zm so that the nth Fourier coefficient of V is not equal to zero. The spectrum is denoted
specV .

Theorem 9.5.2. Suppose that U is as in Theorem 9.5.2. Denote by S the smallest Z-module
containing the spectrum of U(0, x, θ) for all x ∈ Rd. Then,

∀ (t, x) ∈ [0, T∗[×Rd+m, spec U(t, x, θ) ⊂ S ∩ CharL(0, ∂) .
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Proof. Since EU = U it follows that the Fourier coefficient Uα is in kerL(0, α) so is nonvanishing
only if α ∈ CharL.

The set {
t ∈ [0, T∗[ : ∀ (t, x) ∈ [0, t] × Rd+m, spec U(t, x, θ) ⊂ S

}
(9.5.2)

is closed by definition and contains {t = 0} by hypothesis. It suffices to show that it is a relatively
open subset of [0, T∗[.

If t is in the set then we first prove that there is a T > t so that for all h < h0, the difference
approximations Uh exists for t ≤ t ≤ T and have spectrum contained in S on [t, T ] × Rd+m.

To prove this, write Uh as the limit of Picard iterates V ν , defined by V 1(t, x, θ) = Uh(t, x, θ), and,

∂tV
ν + E

(
L(y, (0, δhx)V

ν−1 +
∑

µ

∑

k

A′
µ(0)V ν−1 ∂φk

∂Yµ
δhθk

V ν−1
)

= 0, V ν
∣∣
t=0

= g .

This will converge on a small interval t ≤ t ≤ t+ δ(h). Since the set of functions with spectrum in
S is an algebra it follows by induction on ν that specV ν ⊂ S on this interval. Passing to the limit
ν → ∞ shows that specV ν ⊂ S for t ≤ t ≤ t+ δ(h).

The length δ(h) depends on the size of the initial data. The existence proof yields an a priori
estimate for the difference equation for t ≤ t ≤ t+ δ with delta independent of h.

Conclude that a finite number of applications of the δ(h) result shows that for t ≤ t ≤ t + δ
specV ν ⊂ S. Passing to the limit ν → ∞ shows that for t ≤ t ≤ t+ δ specUh ⊂ S.

The proof of existence shows that there is a T ∈]t, t+ δ] so that Uh → U on [t, T ]×Rd+m. Passing
to the limit h → 0, shows that the spectrum of U is contained in S on [t, T ′] × Rd+m. This prove
that the set (9.5.2) is relatively open.

Examples. i. If the initial data has spectrum contained in Zα with α ∈ Zm, then specU ⊂ Zα
and one finds an expansion as in one phase geometric optics.

ii. In the extreme opposite case, is the Z-span of the spectrum of the initial data meets the
characteristic variety of L in a set much larger than the initial spectrum this suggests the possibility
of the creation of many new oscillatory modes. In Chapter 11, we show that such new oscillations
can be generated for the compressible inviscid Euler equations in dimensions d ≥ 2.

§9.6. Small divisors and correctors

The equations for the correctors Uj with j ≥ 1, involve the operator Q, for example (9.4.18).
Without further hypotheses, Q may be very ill behaved. The matrices Q(α) may grow very rapidly
as α grows. This has two consequence. First, Q may not even map smooth profiles in θ to
distributions in θ. In that case the equations for the higher profiles do not make sense. Second,
there are known examples where the error of approximation by the leading term is o(ǫp) but is not
O(ǫp+δ) for any δ > 0 ( [Joly, Métivier and Rauch, 1992]).

What is needed in order to get a reasonably well behaved operator Q is that the matrices Q(n.dφ)
grow no faster than polynomially in |n|. The trouble spots for Q are eigenvalues of L(0, n.dφ)
which though not equal to zero, are very close to zero.

The proof in §8.3 is short and relatively simple in part because the approximate solution constructed
is infinitely accurate. For example, the loss of d/2 powers of epsilon in passing from (8.3.13) to
(8.3.14) is absorbed by the small size of the residual. While the equations for the prinicipal profile
derived in §9.4 is robust, there are serious problems with the equations for the correctors. One
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either must make additional hypotheses or continue the analysis without or with weaker correctors.
This section presents a simple example illustrating the nature of the problem.

Begin by considering what appears to be a very special case, but which captures the essence of
the difficulty posed by small divisors. Suppose that φ = α.y is a linear phase that satisfies the
eikonal equation for L(0, ∂). Consider what happens for a nonlinear problem with initial data which
oscillate with the same phase but with different and incomensurate frequencies. For example one
can take the initial data corresponding to the Lax solution

a(ǫ, y) eiφ(y)/ǫ + a(ǫ, y) eiρ φ(y)/ǫ ,

where ρ is irrational. Then the two phases φ1 = φ and φ2 = ρφ are linearly independent over
the rationals. By resonant interaction one expects the solution to involve at least the phases
n1φ1 + n2φ2 with nj ∈ Z. The leading profile is expected to be at least as complicated as

U(y, θ) =
∑

n∈Z2

an(y) e
i(n1+ρn2)θ .

The set of numbers n1 + ρn2 is countable but dense in R. Even if the an are smooth and rapidly
decreasing we have an almost periodic function with dense set of frequencies.

The operator Q is given by

QU :=
∑

n

Q((n1 + ρn2)φ) an(y) e
i(n1+ρ n2)θ .

This is perfectly well defined on formal Trigonometric series. However since Q is the partial inverse
of L(0 , (n1 + ρn2)φ) = (n1 + ρn2)L(0 , φ),

Q((n1 + ρn2)φ) =
1

n1 + ρn2
Q(φ) .

Where n1 + ρn2 is small, these matrices are large. There are divisors n1 + ρn2 arbitrarily close to
0. The operator Q is not bounded on L2. The divisor is small when ρ ≈ −n1/n2. The mapping
properties depend on how well the irrational number ρ is approximated by rational numbers.

If ρ is algebraic, and the solution of an irreducible integer polynomial of degree d ≥ 2, then
Liouville’s theorem asserts that there is a constant c > 0 depending on ρ so that for all integers
p, q ∣∣∣ρ − p

q

∣∣∣ ≥ c

qd
.

In this case,
∣∣n1 + ρn2

∣∣ =
∣∣∣n2

(n1

n2
+ ρ
)∣∣∣ ≥ c |n2|

|n2|d
.

Therefore Q
(
(n1 +ρn2)φ) |n| can grow no faster than polynomially in n. This can be used to show

that Q is bounded Hs → L2 for s sufficiently large.

If ρ were exceptionally well approximable by rationals, (for example for the Liouville number
ρ =

∑∞
j=1 10−(j!)) then Q would not have this desirable property and the construction of correctors

hits a serious snag.

The next hypothesis describes small divisors that can be tolerated.
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Small divisor hypothesis. There is a C > 0 and an integer N so that for all n ∈ Zm \0, if λ 6= 0
is an eigenvalue of L(0,

∑
k nkdφk), then

|λ| ≥ C

|n|N . (9.6.1)

If φj = αj .y then the hypothesis is satisifed for Lebesgue almost all choices of αj . It is often not
difficult to verify this hypothesis.

Examples. In the example of §9.5 the small divisor hypothesis is satisfied for any irrational
number ρ that is not exceptionally well approximated by rationals, that is when

∃c > 0, ∃N, ∀p, q ∈ Z,
∣∣∣ρ − p

q

∣∣∣ ≥ c

|q|N .

For example, if ρ is the an algebraic number of degree d ≥ 2.

On the other hand if ρ is too well approximable by rationals, for example the Liouville number,
then the hypothesis is violated.

Proposition 9.6.1. If the small divisor hypothesis is satisfied then there is a constant C > 0 and
an integer M so that for all n ∈ Zm,

‖Q(n.dφ)‖ ≤ C 〈n〉M .

Proof. From the small divisor hypothesis, one knows that the nonzero eigenvalues of Q(n.dφ) lie
in an annulus 2c/〈n〉N ≤ |z| ≤ 〈n〉N/2. Define a larger annulus containing the eigenvalues strictly
in its interior by

D(n) :=
{
z : c/〈n〉N ≤ |z| ≤ 〈n〉N

}
.

Then

Q(n.dφ) =
1

2πi

∮

∂D(n)

1

z

(
zI − L(0, n.dφ)

)−1
dz .

For z ∈ ∂D(n), ‖zI − L(0, n.dφ)‖ ≤ C〈n〉N . The nearest eigenvalue is no closer than C〈n〉−N .
Therefore ‖(zI − L(0, n.dφ))−1‖ ≤ C〈n〉N ′

, and the Proposition follows.

The Proposition implies that when the small divisor hypothesis is satisfied, Q maps ∩sHs(Rd×Tm)
continuously to itself. The next Theorem is linear and easier than the previous one.

Theorem 9.6.2. Suppose that the small divisor hypothesis is satisfied and that U0 is as in
Theorem 9.1 and for j ≥ 1 initial profiles Hj(y, θ) ∈ ∩s(Hs(Rd × Tm) satisfy EHj = Hj . Then
higher order profiles Uj ∈ ∩sCs([0, T∗[ ; Hs(Rd × Tm)) for j ≥ 1 are uniquely determined by the
initial conditions E Uj = Hj and the transcriptions of (9.4.19) and (9.4.20) to the reduced profiles.

Suppose that the profiles Uj of all orders are determined as in Theorems 9.2 and 9.3. Borel’s
Theorem constructs

C∞
(
[0, 1] × [0, T∗[ : ∩sHs(Rd)

)
∋ U(ǫ, y, θ) ∼

∑

j

ǫj Uj(y, θ) . (9.6.2)
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Define approximate solutions

uǫ(t, x) := ǫU(ǫ, t, x, φ1(t, x)/ǫ, . . . , φm(t, x)/ǫ) ∈ ∩sCs([0, T∗[ ; Hs(Rd)) . (9.6.3)

Theorem 9.6.3. With the above definitions, the residual

rǫ := L(uǫ, ∂)uǫ (9.6.4)

is infinitely small in the sense that

∀T ∈ [0, T∗[ , γ ∈ Nd+1 , N ∈ N , ∃c > 0 , ∀ǫ ∈]0, 1], ‖∂γy rǫ‖L2([0,T ]×Rd) ≤ c ǫN (9.6.5)

The small divisor hypothesis is needed to construct correctors. Without it, the leading profile U0

still exists. And it can sometimes be proved to provide an approixmation with relative error o(1)
as ǫ→ 0, [Joly, Métiver, Rauch, Ann.Inst.Fourier, 1994].

§9.7. Stability and accuracy of the approximate solutions

The approximate solutions are of size O(ǫ) but taking a derivative costs a power of ǫ. Thus (ǫ∂y)
γ

applied to the approximate solutions which is O(ǫ). The next theorem implies that the approximate
solutions are infinitely close to the exact solutions with the same initial values.

The result differs from Theorem 8.6 in two ways. First it is on Rd rather than local in ΩT . Much
more important it is quasilinear instead of semilinear and that requires some changes in the proof.
The reader is referred to the original papers, for example [Joly, Métiver, Rauch Duke J. 1994] for
details. We present statements only. Examples are discussed in the next two chapters.

Stability Theorem 9.7.1 Suppose that T > 0 and that uǫ is a family of smooth approximate
solutions to L(u, ∂)u = 0 which are O(ǫ) in the sense that for all γ ∈ N1+d , ∃c(γ) > 0 , ∀ǫ ∈]0, 1]

‖ (ǫ∂y)
γuǫ ‖L∞([0,T ]×Rd) ≤ c(γ) ǫ . (9.7.1)

Suppose that the residuals rǫ := L(uǫ, ∂)uǫ are infinitely small in the sense that

∀γ ∈ Nd+1 , N ∈ N , ∃c > 0 , ∀ǫ ∈]0, 1], ‖∂γy rǫ‖L2([0,T ]×Rd) ≤ c ǫN . (9.7.2)

Define vǫ ∈ C∞([0, T∗(ǫ)[×Rd) to be the maximal solution of the initial value problem

L(vǫ, ∂) vǫ = 0 , vǫ(0, x) = uǫ(0, x) . (9.7.3)

Then there is an ǫ0 > 0 so that for ǫ < ǫ0, the time of existence satisfies T∗(ǫ) > T , and the
approximate solution uǫ is infinitely close to the exact solution vǫ in the sense that for all integers
s and N

‖uǫ − vǫ‖Hs([0,T ]×Rd) ≤ c(s,N) ǫN .

§9.7. Semilinear resonant nonlinear geometric optics

The simplest examples, like those in §9.2, are semilinear. The first examples in §10 are semilinear.
In this section we simply state the form of the ansatz and profile equations in the semilinear case.
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The precise theorem statements and proofs closely resemble the quasilinear case and can be found
in the references.

For a semilinear system

L(∂)u+ f(u) = 0 , L(∂) :=
d∑

µ=0

Aµ ∂µ ,

recall that π(α) is orthogonal projection on the kernel of L(α) and E is the operator on formal
trigonometric series E

∑
aα(y) eiα.θ :=

∑
π(α) aα(y) eiα.θ. The critical size for semilinear problems

is amplitudes O(ǫp) with p = 0. The approximate solutions have the form

uǫ ∼ U ǫ0(y, y/ǫ) , (9.7.1)

U0(y, Y ) ∼
∑

α∈Rd

U0,α(y) eiα.Y . (9.7.2)

The amplitudes are O(1) as ǫ→ 0 in contrast to the quasilinear case where the amplitudes where
O(ǫ) but in agreement with the one phase semilinear theory.

The profile equations for U0 are

EU0 = U0 , (9.7.3)

E
(
L(∂y)U0(y, θ) + f

(
U0(y, θ)

))
= 0 . (9.7.4)

Solutions of the profile equation of the quasiperiodic form

U(ǫ, y, Y ) = U(ǫ, y, φ1(Y ), . . . , φm(Y )) ∈ C∞([0, ǫ0] ; ∩sHs([0, T ] × Rd × Tm) ,

with

U(ǫ, y, θ1, . . . , θm) ∼
∞∑

j=0

ǫj Uj(y, θ) ,

in the sense of Taylor series exist provided the small divisor hypothesis of the preceding section
holds with L(n.dφ) in place of L(0, n.dφ). They yields approximate solutions with infinitely small
residual. The accuracy of these solutions follows from the stability Theorem 8.3.2.

The equations for U involve the nonlinear term f(U). To prove the analogue of Theorem 9.5.2 in
the semilinear context requires the following lemma.

Lemma 9.7.1 If V ∈ L∞(Tm ; CN ) and F ∈ C(CN ; CN ) then,

specF (V ) ⊂ Z − span
(
specV

)
. (9.7.5)

Proof. The Weierstrass approximation theorem allows us to choose polynomials P ν in U,U so
that P ν(W ) → F (W ) uniformly on {|W‖ ≤ ‖V ‖L∞}. Then P ν(V ) → F (V ) uniformly.

Since spec(UV ) ⊂ specU + specV it follows that,

specP ν(V ) ⊂ Z − span
(
specV

)
.

Passing to the limit ν → ∞ proves (9.7.5).
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Chapter 10. Examples of Resonance in One Dimensional Space

§10.1. Resonance relations.

The examples in this chapter share a common spectral structure. The semilinear examples have

A0 = I =




1 0 0
0 1 0
0 0 1


 , A1 = diag

{
1, 0,−1

}
=




1 0 0
0 0 0
0 0 −1


 .

The quasilinear examples have A0 = I and A′
1(0) = diag

{
1, 0,−1

}
. The operator

L := ∂t +




1 0 0
0 0 0
0 0 −1


 ∂x (10.1.1)

is equal to L(∂) in the first case and to L(0, ∂) in the second.

In this chapter we consider exclusively profiles that are 2π periodic in Y ,

U(y, Y ) =
∑

n∈Z2

an e
in.Y , (10.1.2)

so the formal trigonometric series from §9.4 are Fourier series. In the language of quasiperiodic
profiles with reduced profile U from §9.5, this corresponds to taking m = 2 and phases φµ(y) :=
yµ , µ = 0, 1. For the more general operator, ∂t + diag (λ1, λ2, λ3)∂x, the quasiperiodic setting is
required in order to capture the triad of resonant phases.

Proposition 10.1.1. For the operator (10.1.1) and phases φµ = yµ, the small divisor hypothesis
is satisfied.

Proof. The matrix

L(n.dφ) = L(n0, n1) =



n0 + n1 0 0

0 n0 0
0 0 n0 − n1




has eigenvalues n0 + n1 , n0 , n0 − n1 . For n ∈ Z2 the eigenvalues are integers.

When an eigenvalue is nonzero, it is bounded below by 1 in modulus. This proves small divisor
hypothesis (9.6.1) with N = 0 and C = 1.

Denote the standard basis elements of C3 by

r1 := (1, 0, 0) , r2 := (0, 1, 0) , r3 := (0, 0, 1) . (10.1.3)

The matrix L(0, n) is diagonal in this basis and when n1 6= 0 the eigenvalues are distinct and the
corresponding eigenprojectors are,

π1 :=




1 0 0
0 0 0
0 0 0


 , π2 :=




0 0 0
0 1 0
0 0 0


 , π3 :=




0 0 0
0 0 0
0 0 1


 .
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For n1 6= 0, π(n0, n1) is nonzero in exactly three circumstances

n0 + n1 = 0 , in which case π(n) = π1 ,
n0 = 0 , in which case π(n) = π2 ,

n0 − n1 = 0 , in which case π(n) = π3 .
(10.1.4)

When n1 = 0, π(n) = I.

Let
λ1 := +1 , λ2 := 0 , λ3 := −1 .

The characteristic variety of L is the union of the three lines

ℓj :=
{
η = (η0, η1) : η0 + λjη1 = 0

}
, j = 1, 2, 3 .

In the figure the characteristic points of Z2 are indicated by dots. The circled dots yield two
resonance relations,

(1, 1) + (1,−1) + (−2, 0) = 0, and (−1, 1) + (−1,−1) + (2, 0) = 0 .

Figure 10.1 CharL and two resonant triads.

Equation (9.4.13) shows that the profile satisfies EU0 = U0. In particular, the Fourier coefficients

Û0(y, n0, n1) vanish unless n ∈ ∪jℓj . The coefficients are polarized,

n ∈ ℓj \ 0 =⇒ π(n) = πj and πj Û0(y, n) = Û0(y, n) . (10.1.5)

Since the πj sum to I, one has

E =
3∑

1

Ej , where, Ej := πj E .

The definition of E yields,

Ej
∑

α∈Z2

aα(y) eiα.Y =
∑

α∈ℓj∩Z2

πj aα(y) eiα.Y .
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For k ∈ Z, define the scalar Fourier coefficients σ̂j encoding the spectra of Û0 from ℓj

σ̂1(y, k) :=
〈
Û0(y, (k,−k), r1

〉
,

σ̂2(y, k) :=
〈
Û0(y, (0, k), r2

〉
,

σ̂3(y, k) :=
〈
Û0(y, (k, k), r3

〉
.

The corresponding 2π periodic functions are

σj(y, φ) :=
∑

k∈Z

σ̂j(y, k) e
ikφ , j = 1, 2, 3 . (10.1.6)

Then,

U0(y, Y0, Y1) =
(
σ1(y, Y0 − Y1) , σ2(y, Y1) , σ3(y, Y0 + Y1)

)
, (10.1.7)

and,

E1 U0 = r1
∑

k∈Z

σ̂1(y, k) e
ik(Y0−Y1) ,

E2 U0 = r2
∑

k∈Z

σ̂2(y, k) e
ikY1 ,

E3 U0 = r3
∑

k∈Z

σ̂1(y, k) e
ik(Y0+Y1) ,

The next proposition shows that the projection operators E are simple integral operators. This is
a special case of a general phenomenon.

Proposition 10.1.2. For g(Y ) ∈ ∩sHs(T2), the operators Ej are given by the formulas

(E1g)(Y )
)

=

∫ 2π

0

π1g(ψ + (Y0 − Y1), ψ)
dψ

2π

(E2g)(Y ) =

∫
π2g(Y0, Y1)

dY0

2π

(E3g)(Y )
)

=

∫ 2π

0

π3g(−ψ + (Y0 − Y1), ψ)
dψ

2π
.

(10.1.8)

The expressions show that the integrals depend only on Y0 − Y1, Y1 and Y0 + Y1 respectively.

Proof. The case E2 is the easiest. One has

E2(a e
in.Y ) =




π2a e

in.Y when n0 = 0

0 when n0 6= 0.

On monomials E2 agrees with
∫
. . . dY0/2π. By linearity and density

E2g(Y0, Y1) =

∫
π2g(Y0, Y1)

dY0

2π
,

proving the middle formula.
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Consider next E1 for which the preserved monomials are of the form eik(Y0−Y1) with integer k.
These monomials are constant on the lines Y0 − Y1 = c. The general monomial is of the form
eimY0eik(Y0−Y1). To kill those with m 6= 0 it is sufficient to integrate over Y0−Y1 = c. Parameterize
{Y0 − Y1 = c} by Y1 to obtain,

E1g =

∫ 2π

0

π1g(Y1 + c, Y1)
dY1

2π
.

On the domain of integration, c = Y0 − Y1 and Y1 is a dummy variable yielding

E1g =

∫ 2π

0

g(ψ + (Y0 − Y1), ψ)
dψ

2π
.

For E3 the monomials eimY0eik(Y0+Y1) with m = 0 are the ones preserved. One singles them out
by integrating over Y0 + Y1 = c which can be parameterized by Y1 to yield

E3g =

∫ 2π

0

π3g(−Y1 + c, Y1)
dY1

2π
,

which is the third formula.

§10.2. Semilinear examples.

For initial data U0(0, x, Y ) = EU0 ∈ ∩sHs(Rd × T1+1) the leading profile equation has a unique
smooth solution locally in time. Since the small divisor hypothesis is satisfied, the corrector profiles
Uj exist and are uniquely determined from the initial values of EUj

∣∣
t=0

. The semilinear analogues
of Theorems 9.5.3-9.5.4 described in §9.7 imply that they yield infinitely accurate approximate
solutions.

The profile equation (9.4.14) is a vector equation with three components. The jth component
asserts that

πj E
(
L(∂y)U0 + f(U0)

)
= 0 .

The next computation shows that this equation yields an evolution equation for σj coupled by
lower order terms to the other components.

Use the diagonal structure of L and [E, ∂y ] = [E, πj ] = 0 to find,

π1 EL(∂y)U0 = E1 π1L(∂y)U0 = E1 (∂t + ∂x)π1 U0

= (∂t + ∂x)E1

(
σ1(y, Y0 − Y1) r1

)
= (∂t + ∂x)σj(y, Y0 − Y1) r1 .

Thus,

(∂t + ∂x)σj(y, Y0 − Y1) +
〈
E1

(
f(U0)

)
, r1

〉
= 0 .

Equivalently,

(
∂t + ∂x

)
σ1(y, Y0 − Y1) +

〈
E1

(
f1
(
σ1(y, Y0 − Y1), σ2(y, Y1), σ3(y, Y0 + Y1)

)
r1

)
, r1

〉
= 0. (10.2.1)

Similarly, the second and third equations are equivalent to

∂tσ2(y, Y1) +
〈
E2

(
f2
(
σ1(y, Y0 − Y1) , σ2(y, Y1) , σ3(y, Y0 + Y1)

)
r2

)
, r2

〉
= 0, (10.2.2)
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and,

(
∂t − ∂x

)
σ3(y, Y0 + Y1) +

〈
E3

(
f3
(
σ1(y, Y0 − Y1), σ2(y, Y1), σ3(y, Y0 + Y1)

)
r3

)
, r3

〉
= 0. (10.2.3)

Equations (10.2.1)-(10.2.3) form a coupled system of three integrodifferential equations. They are
differential in the variables t, x and integral in the variables (Y0, Y1) ∈ T2. The system is easy
to approximate numerically. For these problems with d = 1, the highly oscillatory initial value
problem is at the borderline of directcomputer simulation for times t ∼ 1 and ǫ ∼ 10−3.

Example 10.2.1. Consider the three wave interaction system (9.2.2). The transport equation for
σ2 is

∂t σ2(y, θ1) = c2

〈
E2

(
σ1(y, Y0 − Y1)σ3(y, Y0 + Y1) r2

)
, r2

〉
. (10.2.4)

The profile equations are best understood in Fourier. Exand to find

σ1(y, Y0 − Y1)σ3(y, Y0 + Y1) =
∑

µ,ν

σ̂1(y, ν) e
iν(Y0−Y1) σ̂3(y, µ) eiµ(Y0+Y1) .

The operator E2 selects the phases n.Y with n0 = 0. As the phase is equal to ν(Y0−Y1)+µ(Y0+Y1),
this yields µ = −ν, so

E2

((
σ1(y, Y0 − Y1)σ3(y, Y0 + Y1) r2

)
=
∑

ν

σ̂1(y, ν) σ̂3(y,−ν) e−2iνY1 r2 .

The profile equation (10.2.4) for σ̂2(y, ν) splits according to the parity of ν,

∂t σ̂2(y,−2ν) = c2 σ̂1(y, ν) σ̂3(y,−ν) , ∂t σ̂2(y,−2ν + 1) = 0 , ν ∈ Z . (10.2.5)

The dynamics for σ1 is given by

(
∂t + ∂x

)
σ1(y, Y0 − Y1) = c1

〈
E1

(
σ2(y, Y1)σ3(y, Y0 + Y1) r1

)
, r1

〉
. (10.2.6)

The third profile equation is,

(
∂t + ∂x

)
σ3(y, Y0 + Y1) = c3

〈
E3

(
σ2(y, Y1)σ1(y, Y0 − Y1)r3

)
, r3

〉
. (10.2.7)

For (10.2.6) use,

σ3(y, φ) =
(∑

ν

σ̂3(y, ν) e
iνφ
)∗

=
∑

ν

σ̂3(y, ν)
∗ e−iνφ ,

σ2(y, Y1)σ3(y, Y0 + Y1) =
∑

µ,ν

σ̂2(y, µ) eiµY1 σ̂3(y, ν)
∗ e−iν(Y0+Y1) .

The phase of the product of the exponentals is −νY0 + (µ − ν)Y1. The operator E1 selects only
those phases n.Y with n0 + n1 = 0. In this case,

−ν + (µ− ν) = 0, ⇐⇒ µ = 2ν.
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Therefore, (
∂t + ∂x

)
σ3(y, Y0 + Y1) = c3

∑

ν

σ̂2(y, 2ν) σ̂3(y, ν) e
−iν(Y0−Y1) .

In terms of the Fourier coefficients this is equivalent to,

(∂t + ∂x)σ̂1(y, ν) = c3 σ̂2(y,−2ν) σ̂3(y,−ν)∗ . (10.2.8)

An analgous computation shows that the third profile equation is equivalent to

(∂t − ∂x)σ̂3(y,−ν) = c3 σ̂1(y, ν)
∗ σ̂2(y,−2ν) . (10.2.9)

Exercise 10.2.1. Verify (10.2.9).

The equations (10.2.5), (10.2.8), (10.2.9) show that the nonlinear interactions are localized in the
triads {

σ̂1(y, k) , σ̂2(y,−2k) , σ̂3(y,−k)
}
. (10.2.10)

The corresponding Fourier coefficients of U0 are

Û0(y, k,−k), Û0(y, 0,−2k) Û0(y,−k,−k) .

Two such triads are indicated in Figure 10.1. The interaction comes about through the resonance
relation

−2x = (t− x) − (t+ x) , (0,−2k) = (k,−k) + (−k,−k) .
For each k, the triple (10.2.10) satisfies the three wave interaction pde decoupled from the other
Fourier coefficients. The initial data for the triad of Fourier coefficients are indpendent of ǫ and
not rapidly oscillating. The fact that the triads are isolated shows that there is no possibility of
interactions moving far in the scale of wave numbers.

Consider three special cases. For the initial value problem (9.1.1), c1 = c3 = 0, and the intial data
are

σ1(0, x, φ) = a1(x) e
iφ , σ2(0, x, φ) = 0 , σ3(0, x, φ) = a3(x) e

−iφ .

The initial data ignite the single resonant triad. The function σ(y, φ) is given by

σ1 = a1(t− x)eiφ , σ2 = e−2iφ

∫ t

0

a1(t− x) a3(t+ x) dt , σ3 = a1(t+ x)e−iφ .

In this particular case, the approximation of nonlinear geometric optics gives the exact solution.

Modify the third initial datum to

u3(0, x) = a3(x)e
inx/ǫ , n ∈ Z \ {−1} , (10.2.11)

to find σ3(t, x, φ) = a3(t+ x) einφ and,

E2(σ1(y, Y0 − Y1)σ3(y, Y0 + Y0)r2 = E2

(
a1(t− x) a3(t+ x) ei{(t+x)+n(t−x)}r2

)
= 0 .

The product inside E2 always oscillates in time so is annihilated by E2 to give ∂tσ2 = 0. The
oscillations in the second component of U0 do not change in time and there is no interaction with
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the oscillations in the other components. This agrees with the nonstationary phase analysis in
§9.1.

Consider the real initial data

σ1(0, x, φ) = a1(x) sinφ , σ2(0, x, φ) = 0 , σ3(0, x, φ) = a3(x) sin(−φ) .

In this case the initial data ignite two resonant triads

{
(0,−2n), (n, n), (−n,−n)

}
, and,

{
(0, 2n), (−n,−n), (n, n)

}
.

Each triad of coefficients,

σ̂1(t, x, 1) , σ̂1(t, x,−2) , σ̂1(t, x,−1) , and σ̂1(t, x,−1) , σ̂1(t, x, 2) , σ̂1(t, x, 1) ,

solves the three wave interaction pde. All other coefficients vanish identically.

In the last two cases, the approximate solution is not an exact solution.

Proposition 10.2.11. Consider the system of profile equations for the three wave interaction
system with cj ∈ R \ 0. The following are equivalent.

i. For arbitrary initial data σ(0, x, φ) ∈ ∩sHs(R × T) there is a unique global solution σ(t, x, φ) ∈
∩sCs

(
R ; Hs(R × T)

)
.

ii. The coefficients cj do not have the same sign.

Proof. The explosive behavior is proved by considering a single resonant triad which blows up in
finite time T∗.

For existence it suffices to observe that the L∞([0, T ] × R) bound for solutions of the three wave
system with cj not all of the same sign proves an estimate

‖σ̂(t, x, n)‖L∞([0,T ]×R) ≤ C
(
‖σ̂(0, x, n)‖L2(R) , T

) ∥∥σ̂(0, x, n)
∥∥
L∞(R)

,

with the function C(·, ·) independent of n. Summing on n, this suffices to establish an apriori
estimate

‖σ(t, x, φ)‖L∞([0,T ]×R×T) ≤ C
(
‖σ(0, x, φ)‖Hs(R×T) , s , T

)
, s > 1 .

This implies global solvability using Moser’s inequality as in §6.4.

When the profiles exist globally in time, Theorem 9.4 shows that the approximation of resonant
nonlinear geometric optics is accurate on arbitrary long time intervals 0 ≤ t ≤ T . In particular the
interval of existence of the exact solution grows infinitely long in the limit ǫ → 0. In the present
case we know more, namely that the solutions exist globally. Note that the approximation is not
justified on the infinite time interval 0 < t < ∞. One must exercise care in drawing conclusions
about the large time behavior of exact solutions from the large time behavior of the profiles.

There is similar caution for the case of explosive profiles. It is tempting to conclude from profile
blowup that there is a parallel blowup of exact solutions. This is not justified. Thoerem 9.4
justifies the approximation on arbitrary intervals of smoothness, 0 < T < T∗. One can draw some
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conclusions which have the flavor of explosion. Denote by vǫ the exact solution with the same
intial data as the approximate solution uǫ. Choosing T very close to T∗ on shows that

lim
T→T∗

lim inf
ǫ→0

∥∥vǫ(T, x)
∥∥
L∞(Rx)

= ∞

This asserts that the family of exact solutions vǫ is unbounded, but it does not assert that any
given member of the family explodes.

Example 10.2.2. Consider the modification of equation (9.1.1) where the equation for u2 is
changed to a general real quadratic interaction

∂tu2 =
∑

1≤i≤j≤3

Ai,j ui uj (10.2.12)

The profile equation for σ2 is

∂tσ2(y, Y1) =
〈
E2

( ∑

1≤i≤j≤3

Ai,j σi(y, hi(Y )) σj(y, hj(Y ))r2

)
, r2

〉
, (10.2.13)

with
h1(Y ) := Y0 − Y1, h2(Y ) := Y1, h3(Y ) := Y0 + Y1 .

Write U0 as in (10.1.7). The contribution of the term A1,3 σ1 σ3 to the profile equation is computed
exactly as before and yields,

E2

(
A1,3 σ1(y, Y0 − Y1)σ3(y, Y0 + Y1) r2

)
= = A1,3

∑

n

σ̂1(y, n) σ̂3(y,−n) e−2inY1 r2

= A1,3

(
σ1 ∗ σ̌3

)
(y,−2Y1) r2 .

Denoting with an underline the mean value of a 2π periodic function one then computes the
formulas

E2

(
A1,2 σ1(y, Y0 − Y1)σ2(y, Y1) r2

)
= A1,2 σ1 σ2(y, Y1) r2 ,

E2

(
A2,3 σ2(y, Y1)σ3(y, Y0 + Y1) r2

)
= A2,3 σ2(y, Y1)σ3 r2 ,

E2

(
A2,2 σ2(y, Y1)σ2(y, Y1) r2

)
= A2,2 σ2(y, Y1)

2 r2 .

Combining yields the profile equation

∂tσ2 = A2,2 σ
2
2(y, φ) +A1,2 σ2(y, φ)σ1 +A2,3 σ2(y, φ)σ3 +A1,3 (σ1 ∗ σ̌3)(y,−2φ) . (10.2.14)

Notice that the first three terms are local in y, φ while the quadratic convolution interaction term
which comes from the resonance is local in Fourier and not in φ. For the initial data from (9.1.1),
σ1 = σ3 = 0 and the profile equation simplifies to

∂tσ2(y, φ) = A2,2 σ
2
2 +A1,3 a1(t− x) a3(t+ x) e−2iφ . (10.2.15)

Only one Fourier component of σ2 is affected by the resonant term. The A2,2 σ
2
2 broadens the

spectrum of σ2, one of whose Fourier components is influenced by the waves from modes one and
three.
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With general quadratic interactions in all the equations, one finds coupled integrodifferential equa-
tions with quadratic self interaction terms for all j. The resulting three by three systems are
analogous to

∂tσ = aσ2 + b σ ∗ σ , σ = σ(t, φ) . (10.2.16)

It would be interesting to understand well the competition between the two quadratic terms on
the right of (10.2.16). The term that is local in φ is a convolution in n while the convolution in φ
is local in n.

§10.3. Quasilinear examples.

The next examples resemble the semilinear examples. An important difference is that the ampli-
tudes of the approximate solutions are smaller. The approximate solution defined by the leading
profile is given by

uǫ(t, x) = ǫ U0(t, x, t/ǫ, x/ǫ) .

The prefactor of ǫ was absent in the semilinear case. For profiles periodic in Y , equation (9.5.1)
simplifies to,

EU0 = U0 , E
(
L(0, ∂y)U0 +

1∑

µ=0

A′
µ(0)U0

∂U0

∂Yµ

)
= 0 . (10.3.1)

Example 10.3.1 A quasilinear analogue of the system (9.1.1) is the system of conservation laws

(∂t + ∂x)u1 = 0

∂tu2 + ∂x(u1u3) = 0

(∂t − ∂x)u3 = 0

(10.3.2)

Proposition 10.1.1 shows that with φµ := yµ, the small divisor hypothesis is satisfied and equations
(10.1.1) through (10.1.7) are unchanged. And, A0(u) = I. The second component of the profile
reads,

∂t σ2 +
〈
E2

(
A′

1(0)U0
∂U0

∂Y1

)
, r2

〉
= 0 . (10.3.3)

Equation (10.1.7) yields,

∂U0

∂Y1
=
(
− σ′

1(y, Y0 − Y1) , σ
′
2(y, Y1) , σ

′
3(y, Y0 + Y1)

)
. (10.3.4)

For (10.3.2),

A1(U) =




1 0 0
0 0 0
0 0 −1


+




0 0 0
U3 0 U1

0 0 0


 = A1(0) +A′(0)U

so

A′
1(0)U0 =




0 0 0
σ3(y, Y0 + Y1) 0 σ1(y, Y0 − Y1)

0 0 0


 .

Suppressing the y dependence,

A′
1(0)U0

∂U0

∂Y1
=
(
− σ3(Y0 + Y1)σ

′
1(Y0 − Y1) + σ1(Y0 − Y1)σ

′
3(Y0 + Y1)

)
r2

= r2
∂

∂Y1

(
σ1(Y0 − Y1)σ3(Y0 + Y1)

)
.
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E2 commutes with ∂/∂Yµ
and E2 applied to the product is computed as earlier to find,

∂tσ2(t, x, Y1) =
∂

∂Y1

(∑

ν

e−2iνY1 σ̂1(t, x, ν) σ̂3(t, x,−ν)
)

(10.3.5)

The odd Fourier coefficients of σ2 are stationary and the even ones evolve according to

∂tσ̂2(y,−2ν) = −2iν σ̂1(y, ν) σ̂3(y,−ν) . (10.3.6)

The profile equations read

(
∂t + ∂x

)
σ1 = 0 ,

∂tσ2 = ∂φ

((
σ1 ∗ σ̌3

)
(t, x,−2φ)

)
,

(
∂t − ∂x

)
σ3 = 0 .

(10.3.7)

The system (10.3.7) is in conservation form. This is a general phenomenon. If the original system
is in conservation form,

d∑

µ=0

∂µAµ(u) = 0 , (10.3.8)

then the terms of the equation are A′
µ(u)∂µu. The coefficients, A′

µ(u), have the special structure
of being derivatives.

Exercise 10.3.1. If the original system is real and in conservation form (10.3.7) and A0(0) = I,
then the profile equation (9.4.14) can be written in the conservation form

∂tU0 +
d∑

j=1

∂

∂xj

(
E
(
Aj(0)U0

))
+

d∑

µ=0

N∑

j,k=1

∂

∂θk

(
E
∂2Aµ(0)

∂uj∂uk
UjUk

)
= 0 . (10.3.9)

For complex equations there are more terms because of the derivatives with respect to the conjugate
variables but the conservation form persists.

Equation (10.3.9) implies that in the case of conservation laws a profile as in Theorem 9.1 that
has mean zero with respect to θ at {t = 0} remains mean zero throughout its maximal interval of
existence. As in Example 10.2.2, the profile equations in the mean zero case are simpler.

Proposition 10.3.1. Consider a real 3 × 3 system of conservation laws with d = 1,

∂u

∂t
+

∂

∂x
A(u) = 0 , A(u) =

(
A1(u), A2(u), A3(u)

)
, (10.3.10)

satisfying A′(0) = diag
{
1, 0,−1

}
. Introduce σj as in (10.1.7) and six interaction constants

bj :=
∂2Aj(0)

∂u2
j

, j = 1, 2, 3 , c1 :=
∂2A1(0)

∂u2∂u3
, c2 :=

∂2A2(0)

∂u1∂u3
, c3 :=

∂2A3(0)

∂u1∂u2
. (10.3.11)
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The profile equation (9.5.1) for periodic profiles (10.1.1) of mean zero is equivalent to the system
of equations for the Fourier coefficients,

(
∂t + ∂x

)
σ̂1(t, x,m) = b1 im (̂σ2

1)(t, x,m) + c1 im σ̂2(t, x, 2m) σ̂3(t, x,−m) ,

∂t σ2(t, x, 2m) = b2 2im (̂σ2
2)(t, x, 2m) + c2 2im σ̂1(t, x,m) σ̂3(t, x,m) ,

(
∂t − ∂x

)
σ̂3(t, x,m) = b3 im (̂σ2

3)(t, x,m) + c3 im σ̂2(t, x, 2m) σ̂1(t, x,−m) ,

∂tσ̂2(t, x, 2m+ 1) = b3 2im (̂σ2
2)(t, x, 2m+ 1) .

(10.3.12)

Exercise 10.3.2. Prove Proposition 10.3.1.

The next goal is to analyse more closely the resonance terms. First consider the case where all the
bj vanish so the self interaction terms are absent.

Example 10.3.2. Consider the case where b1 = b2 = b3 = 0. Then for each m ∈ Z, the three
Fourier components {σ̂1(y,m), σ̂2(y,−2m), σ̂3(y,−m)} evolve independent of the other Fourier
components according to the laws

(
∂t + ∂x

)
σ̂1(t, x,m) = −c1 im σ̂2(t, x,−2m) σ̂3(t, x,∓m) ,

∂t σ̂2(t, x, 2m) = −c2 2im σ̂1(t, x,m) σ̂3(t, x,−m) ,
(
∂t − ∂x

)
σ̂3(t, x,−m) = −c3 im σ̂2(t, x,−2m) σ̂1(t, x,m) .

(10.3.13)

The odd components of σ2 belong to no such triad and are stationary,

∂tσ̂2(t, x, 2m+ 1) = 0 . (10.3.14)

For fixed m 6= 0, the triple (iσ1, iσ2, iσ3) satisfies the three wave interaction pde which we un-
derstand well. In addition to the information already gleaned, one has the following invariance
properties.

Proposition 10.3.2. The profile equations (10.3.13) have the following properties.

1. The set of σ so that for a fixed m ∈ Z, and ∀x, φ ,

σ1(t, x,m) = −σ1(t, x,−m) , σ2(t, x, 2m) = −σ2(t, x,−2m) ,

σ3(t, x,m) = −σ3(t, x,−m) ,

is invariant. Imposing this condition for all m shows that the set of σ so that σ̂(y,m) is odd in m
is invariant under the dynamics. These are exactly the functions σ(y, φ) which are odd in φ.

2. The set of σ so that for a fixed m ∈ Z, {σ̂1(y,m), σ̂2(y,−2m), σ̂3(y,−m)} are purely imaginary
for all x, φ is invariant. Therefore the set of σ so that σ̂(y,m) is purely imaginary for allm,x ∈ Z×R

is invariant.

3. The set of σ so that for a fixed m ∈ Z, {σ̂1(t, x,m), σ̂2(t, x,−2m), σ̂3(t, x,−m)} do not depend
on x is invariant. Imposing this for all m shows that the set of σ which do not depend on x is
invariant.

Global solvability of the profile equations when b = 0 is completely resolved by our analysis of the
three wave interaction pde.
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Proposition 10.3.3. If b1 = b2 = b3 = 0 and the three constants c1, c2, and c3 do not have
the same sign, then the profile equations (10.3.13) are globally solvable in the sense that for
arbitrary initial data σ(0, x, φ) ∈ ∩sReHs(R × T) there is a unique global solution σ(t, x, φ) ∈
∩sCs

(
R ; Hs(R × T)

)
. The norms ‖σ(t)‖Hs(R×T) are bounded independent of t ∈ R. In contrast,

if the bj vanish, and c1, c2, and c3 have the same sign, then the profile equations (10.3.13) have
solutions with finite blowup time 0 < T∗ <∞.

This blowup is quite striking. Consider for example the case of a profile whose Fourier series is
supported on a single pair of resonant triads as in Figure 10.1,

U0(t, x, Y ) = −
(
ζ1(t) sinm(Y0 − Y1) , ζ2(t) sin(−2mY1) , ζ3(t) sin(−m(Y0 + Y1))

)
. (10.3.15)

The exact solution is described by

uǫ(t, x) ∼ −ǫ
(
ζ1(t) sin

m(t− x)

ǫ
, ζ2(t) sin

−2mt

ǫ
, ζ3(t) sin

−m(t+ x)

ǫ

)
. (10.3.16)

Suppose that ζ(t) is a solution of the three wave interaction ode. whose components have the same
sign and blow up at time T∗ <∞ so that

lim
t→T∗−

∣∣ζ(t)
∣∣ = ∞ . (10.3.17)

The initial data and solutions are periodic in x. The data are bounded in BV (I) for any bounded
interval, and are O(ǫ) in L∞(R). For the exact solutions, Theorem 9.4 together with finite speed
of propagation yields the following result of unbounded amplification.

Theorem 10.3.4 Suppose that the system (10.3.12) satifies b = 0 and that c1, c2, and c3 have
the same sign. Choose ζ(t) a real solution of the profile equation which explodes at time 0 <
T∗ < ∞ and define the profile U0 by (10.3.15). Let uǫ be the exact solution with the initial data
U0(0, 0, x/ǫ) = U0(t, t/ǫ, x/ǫ)|{t=0}. Then for any T ∈]0, T∗], u

ǫ smooth on [0, T ] × R for ǫ small.
The data is bounded in the sense that

‖uǫ(0)‖L∞({|x|≤T∗+1}) ≤ C ǫ , ‖uǫ(0)‖BV ({|x|≤T∗+1}) ≤ C . (10.3.18)

The family of solutions explodes in BV in the sense that

lim
T→T∗

−

lim
ǫ→0+

∣∣∣
∫

{|x|≤T∗+1−T}

uǫ(T, x) sin
m(x+ t)

ǫ
dx
∣∣∣ = ∞ . (10.3.19)

The solutions are small in L∞ with data bounded in BV . The BV norm is amplified by as large
a constant as one likes in the following sense. For any large M > 0 and small δ > 0 one can chose
T ∈ [0, T ∗[ and ǫ0 > 0 so that for 0 < ǫ < ǫ0 , uǫ is smooth on [0, T ] × R,

∥∥uǫ
∥∥
L∞([0,T ]×R)

< δ , (10.3.20)

and ∥∥uǫ(T )
∥∥
BV {|x|≤T∗+1−T}

≥ M
∥∥uǫ(0)

∥∥
BV {|x|≤T∗+1−T}

∥∥ . (10.3.21)
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Proof. Theorem 9.6.2 together with Theorem 9.7.1 imply that

lim
ǫ→0+

∫

{|x|≤T∗+1}

uǫ3(T, x) sin
m(x+ t)

ǫ
dx =

T ∗ + 1

π
ζ3(T,m) .

Exercise 9.3.1 shows that each component of ζ must explode as T → T ∗, and (10.41) follows.

To prove the last assertion of the proposition, choose T < T ∗ and then ǫ0 so that

|ζ(T )| > M , and sup
t∈[0,T ]

ǫ0
∣∣ζ(t)

∣∣ < δ .

Theorems 9.6.2 and 9.7.1 complete the proof.

A weakness of this result demonstrating unbounded amplification of the BV norm of a family of
solutions with sup norm tending to zero and initial BV norms bounded is that the hypothesis
b = 0 implies that the system is not genuinely nonlinear. In [Joly, Métiver, Rauch, Comm. Math.
Phys.1994], it is verified that for b sufficiently small, the profile equations have explosive solutions
near those just constructed. In this way one has examples of families of solutions of a fixed genuinely
nonlinear system which are uniformly small in L∞, uniformly bounded in BV and for which the
BV norm at time t = 1 is as large a multiple of the BV norm at t = 0 as one likes. This that for
some genuinely nonlinear 3 × 3 systems, the desirable estimates of the form

∥∥u(1)
∥∥
BV

≤ C
∥∥u(0)

∥∥
BV

are not true for L∞ small solutions. Such estimates for the scalar case were proved by Conway-
Smoller and Kruzskov while Glimm and Lax proved such estimates for 2 × 2 systems when d = 1.
The above examples show that the Glimm-Lax result cannot be extended to general genuinely
nonlinear 3×3 systems. After its discovery using nonlinear geometric optics, alternate constructions
of such amplification were found by [Young].
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Chapter 11. Dense Oscillations for the Compressible Euler Equations

In this chapter it is proved that the compressible Euler equations have a cascade of resonant
nonlinear interactions that can create waves moving in a dense set of directions from three incoming
waves.

§11.1. The 2 − d isentropic Euler equations

This system describes compressible, inviscid, fluid flow with negligible heat flow. The velocity and
density are denoted v = (v(t, x), v(t, x)) and ρ(t, x). The pressure is assumed to be a function,
p(ρ), of the density. The governing equations (away from shocks) are

(∂t + v1∂1 + v2∂2)v1 + (p′(ρ)/ρ)∂1ρ = 0 ,

(∂t + v1∂1 + v2∂2)v2 + (p′(ρ)/ρ)∂2ρ = 0 ,

(∂t + v1∂1 + v2∂2)ρ+ ρ(∂1v + ∂2v2) = 0 .

(11.1.1)

Here
x = (x1, x2), and, ∂j := ∂/∂xj ,

Denote by
u := (v1, v2, ρ), and, f(ρ) := p′(ρ)/ρ .

The system (11.1.1) is then of the form L(u, ∂)u = 0, with coefficient matrices,

A0 = I , A1(u) =



v1 0 f(ρ)
0 v1 0
ρ 0 v1


 , A2(u) =



v2 0 0
0 v2 f(ρ)
0 ρ v2


 . (11.1.2)

The system is symmetrized by multiplying by

D(ρ) := diag
(
ρ, ρ, f(ρ)

)
:=



ρ 0 0
0 ρ 0
0 0 f(ρ)


 .

At a constant background state, u := (v, ρ), the linearized operator has symbol

L(u, τ, ξ) =



τ + v.ξ 0 f ξ1

0 τ + v.ξ f ξ2
ρ ξ1 ρ ξ2 τ + v.ξ


 , where f := f(ρ).

The operator is symmetrized by multiplying by the constant matrix D(ρ) = diag
(
ρ, ρ, f

)
.

Compute,
det L(u , τ, ξ) = (τ + v.ξ)

[
(τ + v.ξ)2 − c2|ξ|2

]
(11.1.3)

where the sound speed c is defined by

c2 := p′(ρ) , c > 0 . (11.1.4)

Convention. By a linear change of time variable t′ = c t we may assume without loss of generality
that c = 1.

276



The asymptotic relations

L(uǫ, ∂)uǫ ∼ 0, and, D(ρ)L(uǫ, ∂)uǫ ∼ 0,

are equivalent. The latter is symmetric. Solutions are constructed in §9.4 and §9.6. The construc-
tion was carried out after the change of variable ũ = D1/2u with new coefficientsD−1/2DAµD

−1/2.
As the formulae are somewhat simpler, we compute with the equations (11.1.1). The background
state u is constant.

The method of §9.4 is to expand the symmetric hyperbolic expression

(DL)
(
u+ ǫU ǫ(y, Y ) ,

∂

∂y
+

1

ǫ

∂

∂Y

)(
u+ ǫ U ǫ(y, Y )

)

in powers of ǫ and determine the profiles in the expansion of U ǫ so that coefficients of each power
of ǫ vanishes. Multiplying by D−1 shows that

L
(
u+ ǫU ǫ(y, Y ) ,

∂

∂y
+

1

ǫ

∂

∂Y

)(
u+ ǫ U ǫ(y, Y )

)
∼ ǫ∞ .

The operator on the left hand side is not symmetric. Expanding as in §9.4, the leading two terms
yield

L(u, ∂Y )U0(y, Y ) = 0 , (11.1.5)

and,

L(u, ∂y)U0 +
∑

µ

A′
µ(u)U0 ∂Yµ

U0 + L(u, ∂Y )U1 = 0 (11.1.6)

On Fourier series,

L(u, ∂Y )
∑

α

aα(y) eiα.Y = i
∑

α

L(u, α) aα(y) eiα.Y .

The result of the next lemma is trivial in the symmetric case.

Lemma 11.1.1. For (τ, ξ) ∈ R1+d, CN is the direct sum of the image and kernel of L(u, τ, ξ).
The the norms of the spectral projections π(τ, ξ) along the image onto the kernel are bounded
independent of τ, ξ.

Proof. Write L(τ, ξ) = D−1
(
DL(τ, ξ)

)
. Since DL is hermitian and D = D∗ > 0 it follows that L

is hermitian in the scalar product
(u, v)D := (Du, v) .

In fact,
(Lu, v)D := (DLu, v) = (u,DLv) = (Du,Lv) := (u,Lv)D .

The image and kernel are orthogonal in this scalar product and therefore complementary.

The spectral projections are orthogonal with respect to the scalar product
(
, )D. They have

norm equal to 1 in the corresponding matrix norm.

Since this norm is equivalent to the euclidean matrix norm, the π(τ, ξ) are uniformly bounded.

The profile U is constructed as a periodic function of Y = (T,X1,X2). In the language of §9.4,
that means choosing

φ1(T ) := T, φ2(Y ) := X1 , and φ3(Y ) := X2 .
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With this choice e = E ,

E
(∑

aα(y) eiα.Y
)

:=
∑

π(α) aα(y) eiα.Y .

The lemma shows that E is bounded on all Hs([0, T ]t ×Rdx ×T1+d
Y ). It projects onto the kernel of

L(u, ∂Y ), and
EL(u, ∂Y ) = 0 .

Thus (11.1.5) is equivalent to
EU0 = 0 . (11.1.7)

Multiplying (11.1.6) by E yields

E
(
L(u, ∂y) +

∑

µ

A′
µ(u)U0∂Yµ

)
U0 = 0 . (11.1.8)

We use equations (11.1.7)-(11.1.8) for the principal profile. The advantage is that the coefficients
of the non symmetric system L are simple.

The equations (1.17)-(1.18) have the exact same form as the equations derived for the symmetric
operator DL, only the operator E has changed. Mulitplying the equations (1.17)-(1.18) by any
operator whose restriction to kerL(u, ∂Y ) is equal to the identity, does not affect the equations.
So, there are many equivalent versions.

§11.2. Homogeneous oscillations and many wave interaction systems

For homogeneous oscillations, the equations for the leading profile, are equivalent to a system of
coupled ordinary differential equations for its Fourier coefficients.

Consider profiles U0(t, x, Y ) that are independent of x and 2π × 2π × 2π periodic in (Y0, Y1, Y2).
The approximate solution has the form

uǫ(t, x) = uǫ(t, x1, x2) ∼ ǫ U0(t, t/ǫ, x/ǫ) .

The profile equations are

EU0 = U0 , E
(
∂tU0 +

2∑

µ=0

(
A′
µ(u)U0

) ∂U0

∂Yµ

)
. (11.2.1)

Define
Bµ(V ) :=

(
A′
µ(u)

)
(V ) (11.2.2)

so that Bµ is a linear matrix valued function of the vector V . Since the leading coefficient of L is
equal to the identity, B0 = 0.

For convenience in denoting Fourier coefficients, suppress the subscript 0 and expand the leading
profile,

U(t, Y ) = U(t, Y0, Y1, Y2) =
∑

α∈Z×Z2

Uα(t) eiα.Y . (11.2.3)

Inserting this in (11.2.1), the nonlinear term is equal to

∑

µ

(∑

α

Bµ(Uα) eiα.Y
)(∑

β

iβµ Uβ e
iβ.Y

)
.
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Setting the coefficient of eiγ.Y equal to zero yields

dUγ
dt

+ π(γ)
∑

α+β=γ

[ 2∑

µ=0

Bµ(Uα)(iβµ)Uβ

]
= 0 . (11.2.4)

The factor π(γ) is from the operator E.

When α+ β = γ, define

Uα, Uβ 7−→ −π(γ)
[ 2∑

µ=0

Bµ(Uα)βµ Uβ

]
, (11.2.5)

defines a bilinear map
ker (π(α)) × ker (π(β)) 7−→ ker (π(γ)) . (11.2.6)

In the important special case when the kernels are one dimensional, choose bases rα homogeneous
of degree zero in α. Define scalar valued aα(t) and Γ(αβ) by

Uα(t) = aα(t) rα , Γ(α, β) rγ := −π(γ)
[ 2∑

µ=0

Bµ(rα)βµ rβ

]
. (11.2.7)

The coefficient Γ(α, β) measures one of the two quadratic terms by which the α and β components
can influence the γ = α+ β component. The second such term is Γ(β, α).

In (11.2.4) the contribution of these two terms yields,

daγ(t)

dt
=

i

2

∑

α+β=γ

(
Γ(α, β) + Γ(β, α)

)
aα(t) aβ(t) . (11.2.8)

where the interaction coefficient, Γ(α, β) + Γ(β, α), is scalar valued, homogeneous of degree 1 in
α, β, γ, and symmetric in α, β. Equation (11.2.8) is a three wave equation with possibly infinitely
many oscillations with quadratic interaction.

Theorem 9.5.2 implies that

∀ y ∈ [0, T∗[×Rd spec (U0(y, · )) ⊂ CharL(u, ∂) ∩ Z − Span
(
spec(U0(0, ., .)

)
. (11.2.9)

The main result of this chapter is the following. It asserts that three initial waves at t = 0 lead
by nonlinear interaction to waves moving in a dense set of directions. It is an improvement of two
articles of [Joly, Metivier, Rauch, 1994, 1998] devoted to the subject.

Theorem 11.2.1. There is a real smooth local in time solution U0(t, Y ) of the leading profile
equation which is 2π × 2π × 2π periodic in (Y0, Y1, Y2) and satisfies

Uα(0) = 0 except for α ∈ Z(1, 1, 0) ∪ Z(0, 1, 0) ∪ Z(0, 3, 4) , (11.2.10)

and {
(α1, α2)

‖(α2, α3)‖
: ∃(α0, α1, α2) ∈ Z3, α0 > 0, s.t.

d2Uα(0)

dt2
6= 0

}
(11.2.11)
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is dense in the unit circle. It contains all points on the unit circle with rational slope r so that
1 + r2 is the square of a rational with at most three exceptions.

The first assertion shows that at {t = 0} there are only three oscillating wavetrains and the second
asserts that in the future there are waves traveling in directions dense in the unit circle. In the
second article † it is shown that the Uα(t) are real analytic in time. The Uα with d2Uα/dt

2 6=
0, therefore vanish at most at a discrete set of points. Thus the dense set of wavetrains are
simultaneously illuminated with at most a countable set of exceptional times.

§11.3. Linear oscillations for the Euler equations

Consider background states with v = 0. Thanks to Gallilean invariance, this not an essential
restriction. Equation (11.1.3) simplifies to τ(τ − |ξ|2), and

Char (L(0, ∂) = {τ = 0} ∪ {τ2 = |ξ|2} ,

is the union of a horizontal plane and a light cone as for Maxwell’s equations. In contrast to
the case of electrodynamics, all the sheets of the characteristic variety are physical whereas for
Maxwell, the divergence free constraints eliminate the plane.

Convention. For the rest of the chapter the background state is v = 0 and is suppressed when
indicating the symbol L(0, ∂) as L(∂).

Figure 11.1. The characteristic variety of linearized Euler

Proposition 11.3.1. The small divisor hypothesis of §9.6 is satisfied.

Proof. Compute

det
(
L(τ, ξ) − σI

)
= (τ − σ)

(
(τ − σ)2 − |ξ|2

)
.

For,
(τ, ξ) = (n0, n1, n2) with n ∈ Z3,

one has
det

(
L(τ, ξ) − σI

)
= (n0 − σ)

(
(n0 − σ)2 − n2

1 − n2
2

)
.

If σ is a nonzero eigenvalue, then

σ = n0 ∈ Z \ 0, or, (n0 − σ)2 = n2
1 + n2

2 with n0 − σ 6= 0 .

† The book containing the first article appeared six years after the talk that it summarizes. The
second article has publication date 1994 which looks like it is four years earlier than the first!
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In the first case one has the lower bound, |σ| ≥ 1.

In the second case,
2n0σ − σ2 = n2

0 − n2
1 − n2

2 .

If the left hand side vanishes then σ = 2n0 is a nonzero integer hence of modulus ≥ 1. When it is
nonzero one has

|2n0σ − σ2| ≥ 1.

If

|σ| < min

{
1√
2
,

1

4|n0|

}

then each summand on the left is smaller than 1/2 so the sum cannot be larger than 1. Therefore
the eigenvalue satisfies

|σ| ≥ min

{
1√
2
,

1

4|n0|

}
,

verifying the small divisor hypothesis.

Theorems 9.5.1, and 9.6.2 then yield profiles and Theorem 9.6.3 affirms that he residual is infinitely
small. Theorem 9.7.1 shows that these solutions are infinitely close to the exact solutions with the
same initial data. We analyse the resonance relations and the profile equations in detail in order
to prove Theorem 11.2.1.

It is sometimes confusing that (t, x), (τ, ξ), (v, ρ), and dual vectors to the (v, ρ) space, are all
objects with three components. To maintain some distinction we use round brackets (t, x), (τ, ξ),
for the first two and Dirac brackets |v, ρ〉 for the third. Dual vectors to the |v, ρ〉 are denoted,
with reversed brackets 〈. , . |. The pairings of R2

x and R2
ξ and of R3

t,x and R3
τ,ξ are indicated with a

period, e.g. (t, x).(τ, ξ). Dirac’s notation 〈 | 〉 is used for the third pairing.

Begin by computing kerL(τ, ξ), rangeL(τ, ξ) and the spectral projection π(τ, ξ) for each (τ, ξ) ∈
Char (L). Since L(τ, ξ) is homogeneous of degree one with det L(1, 0, 0) 6= 0, it suffices to consider
|ξ| = 1. For ξ fixed there are three points in the characteristic variety, τ = 0 and τ = ±|ξ|.
For τ = 0 one has

L(0, ξ) =




0 0 fξ1
0 0 fξ2
ρξ1 ρξ2 0




ker (L(0, ξ)) = R | − ξ2,−ξ1, 0〉 (11.3.1)

range (L(0, ξ)) = Span
{
|ξ1, ξ2, 0〉, |0, 0, 1〉

}
. (11.3.2)

Note that the range is orthogonal to the kernel so the spectral projection is the orthogonal projec-
tion,

π(0, ξ) :=
∣∣∣ξ2,−ξ1, 0

〉〈
ξ2,−ξ1, 0

∣∣∣. (11.3.3)

Similarly

L(±1, ξ) =




±1 0 fξ1
0 ±1 fξ2
ρξ1 ρξ2 ±1




ker
(
L(±1, ξ)

)
= R |ξ1, ξ2,∓1/f〉

range
(
L(±1, ξ)

)
= Span

{
| ± 1, 0, ρξ1〉, |0,±1, ρξ2〉

}

π(±1, ξ) =
1

2

∣∣∣ξ1, ξ2,∓1/f
〉〈
ξ1, ξ2,∓1/ρ

∣∣∣ .
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These computations yield the plane wave solutions of the linearized equation;

|ξ2,−ξ1, 0〉F (ξ.x), |ξ1, ξ2,∓1/f〉F (±|ξ|t+ ξ.x)

where F is an arbitrary real valued function of one variable.

The first family of waves satisfy div v = 0 , |curl v| ∼ |ξ|2 , and has no variation in density. They are
standing waves. Given the background state with velocity zero this means that they are convected
with the background fluid velocity. They are called vorticity waves.

Waves of the second family have curl v = 0 and |div v| ∼ |ξ|2. The group velocity associated to
τ = ±|ξ| is equal to −∇ξ(±|ξ|) = ∓ξ/|ξ|. These solutions are called are called acoustic waves or
compression waves. They can move in any direction with speed one.

This prediction of the speed of sound, c = p′(ρ)1/2, from the static measurement of p(ρ) is an early
success of continuum mechanics. It is also a model of what is found in science text analyses of a
nonlinear hyperbolic model. That is, linearization at constant states, and computation of plane
waves solutions and group velocities for the resulting constant coefficient equation governing small
perturbations.

The solution of the linear oscillatory initial value problem

L(∂t, ∂x)w = 0 , w(0, x) = g eiζ.x , g ∈ C3 , ζ ∈ R2 .

is equal to,

w =
(
π(0, ζ/|ζ|)g

)
eiζ.x +

∑

±

(
π(±c, ζ/|ζ|)g

)
e±|ζ|t+ζ.x .

§11.4. Resonance Relations.

Quadratic nonlinear interaction of oscillations rαe
iα.(t,x) and rβe

iβ.(t,x) with α and β belonging to
Char (L) produce terms in ei(α+β).(t,x) which will propagate as soon as α+ β is characteristic.

Definition. A (quadratic) resonance is a linear relation α + β + η = 0 between three nonzero
elements of Char (L).

These are sometimes called resonances of order 3, as they involve three points of the characteristic
variety. The corresponding interactions are called three wave interactions. The simplest are
colinear resonances, always present for homogeneous systems L, when α, β, and η are multiples of
a fixed vector.

For semilinear problems one must consider linear relations among any number of characteristic
covectors. Treating small amplitude oscillations for quasilinear problems, yields only quadratic
nonlinearities in the equations for the profiles and thereby permits us to consider only triples.

Theorem 11.4.1. Quadratic resonances for the Euler equations fall into three families:

i. Colinear vectors satisfying τ2 = |ξ|2.
ii. Triples α, β, η which belong to {τ = 0}.
iii. Relations equivalent by R-dilation, x-rotation, x-reflection and permutation of the three

covectors to,

(±1, α1, α2) + (0, 0,−2α2) + (∓1,−α1, α2) = 0, α2
1 + α2

2 = 1, α1 ≥ 0 .

282



.

Figure 11.2 Resonance of type iii.

Proof. Seek α, β, η in {τ(τ2 − |ξ|2) = 0} whose sum is zero. The classification above depends on
counting how many of the α, β, η belong to {τ = 0}.
If all three belong, it is case ii.

If exactly two belong, the relation α + β + η = 0 is impossible since the τ component of the sum
will equal the τ component of the covector which does not lie in τ = 0.

If exactly one belongs, rotate axes so that the covector in τ = 0 is parallel to (0, 0, 1). The relation
then is a multiple of case iii. except possibly for the sign of α1 which can be adjusted by a reflection
in x1.

If none of the covectors belong to τ = 0 we must show that the only possibility is colinear resonance.

A rotation followed by multiplication by a nonzero real reduces to the case α = (1, 1, 0).

Seek β ∈ Char (L) such that α + β ∈ Char (L). If the τ component of β is positive then α + β
belongs to the interior of the positive light cone unless α and β are colinear.

Thus it suffices to look for β = (−|ξ|, ξ) with

(1, 1, 0) + (−|ξ|, ξ) ∈
{
τ2 = |ξ|2

}
.

This holds if and only if
(1 − |ξ|)2 = [(1 + ξ1)

2 + ξ22 ] .

Canceling common terms shows that this holds if and only if −2|ξ| = 2ξ1, so we must have ξ2 = 0
and ξ1 < 0. Thus (1, 1, 0) and (−|ξ|, ξ) are colinear.

§11.5. Interaction coefficients for Euler’s equations

To define interaction coefficients, basis vectors r(τ,ξ) for kerL(τ, , ξ) with (τ, ξ) ∈ CharL are needed.
Choose vectors which are the extensions of formulas (11.3.1), (11.3.2) homogeneous of degree zero,

r(0,ξ) := |ξ|−1
∣∣∣ξ2,−ξ1, 0

〉
(11.5.1)

r(±c|ξ|,ξ) :=
∣∣ξ|−1

∣∣∣ξ1, ξ2,∓|ξ|ρ
〉
. (11.5.2)

Theorem 11.5.1. Suppose that α, β, and α+ β := γ are nonzero elements of CharL.

i. If α and β are colinear elements of {τ2 = |ξ|2} with β = aα, a 6= 0,−1, then the interaction
coefficient Γ(α, β) + Γ(β, α) is given by

Γ(α, β) + Γ(β, α) = sgn(a) (γ2
1 + γ2

2)1/2 (3 + hρ2)/2 . (11.5.3)
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where h is defined in (11.5.6).

ii. If α and β belong to {τ = 0}, the interaction coefficient is given by

Γ(α, β) + Γ(β, α) = −(1/2)|β − α| sin
(
6 (α, β)

)
cos
(
6 (α+ β, α− β)

)
(11.5.4)

where 6 (α, β) ∈ R/2πZ denotes the angle between α and β measured in the positive sense.

iii. If α = (±1, α1, α2), α1 > 0, and β = (0, 0,−2α2) as in Theorem 11.2.iii, then the interaction
coefficient is given by

Γ(α, β) + Γ(β, α) = cos(φ/2) cos(φ) sgn(−α2) (γ2
1 + γ2

2)1/2, φ := 6
(
(γ1, γ2), (α1, α2)

)
. (11.5.5)

iiibis. If α = (±1, α1, α2), β = (∓1,−α1, α2), γ = (0, 0, 2α2) then the interaction coefficient
Γ(α, β) + Γ(β, α) vanishes.

The exceptional case, iiibis, asserts that for the creation of a vorticity wave by the interaction of
two acoustic waves, the interaction coefficient vanishes.

Proof. First compute the matrices Bj = DuAj(u). Define the constant h by

h :=
d

dρ

(
p′(ρ)

ρ

)∣∣∣∣
ρ=ρ

. (11.5.6)

From (11.1.4) one finds

B1

(
|δv1, δv2, δρ〉

)
=



δv1 0 hδρ
0 δv1 0
δρ 0 δv1


 (11.5.7)

B2

(
|δv1, δv2, δρ〉

)
=



δv2 0 0
0 δv2 hδρ
0 δρ δv2


 (11.5.8)

Case ii. When α = (0, α1, α2) and β = (0, β1, β2) belong to {τ = 0}, (11.5.1) shows that δρ = 0
for rα and rβ so

B1(rα) = |α|−1 α2 I, B2(rα) = −|α|−1α1I ,

and (11.3.3) yields π(γ) = |rγ〉〈rγ |. Thus

Γ(α, β) = 〈rγ |[β1B1(rα) + β2B2(rα)]rβ〉 = |α|−1(β1α2 − β2α1)〈rα+β|rβ〉
= |α|−1(β1α2 − β2α1)|α+ β|−1|β|−1 < α2 + β2,−α1 − β1, 0

∣∣ β2,−β1, 0〉 .

The last duality is equal to the scalar product 〈α+ β|β〉, so

Γ(α, β) = |α|−1(β1α2 − β2α1)|α+ β|−1|β|−1 〈α+ β|β〉 .

Interchanging the role of α and β and summing yields

Γ(α, β) + Γ(β, α) = |α|−1(β1α2 − β2α1)|α+ β|−1|β|−1 〈α+ β|β − α〉 . (11.5.9)
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Formula (11.5.4) follows since

|α|−1(β1α2 − β2α1)|β|−1 = − sin
(
6 (α, β)

)

|α+ β|−1|β − α|−1 〈α+ β|β − α〉 = cos
(
6 (α+ β, β − α)

)
.

Case i. By homogeneity and Euclidean invariance it suffices to compute the case

α = (±1, 1, 0), β = aα, a ∈ R \ 0 .

Then rα, rβ, and π(γ) are given by

rα = |1, 0,∓ρ〉 , rβ = sgn(a)rα , π(γ) =
1

2
rα〈1, 0,∓1/ρ| .

Since β2 = 0, one has

Γ(α, β)rγ = π(γ)
[
β1B1(rα)rβ

]
= a sgn (a)π(γ)




1 0 ∓hρ
0 1 0
∓ρ 0 1




= |a| rα
2

〈
1 , 0 , ∓1/ρ

∣∣∣ 1 + hρ2 , 0 , ∓2ρ
〉

= |a|
(
3 + hρ2

) rα
2
.

Now rα = ±rγ the sign depending on whether γ = (1 + a)α is a positive or negative multiple of α,
that is by sgn (1 + a). Thus

Γ(α, β) = sgn(1 + a) |a| (3 + hρ2)/2.

By homogeniety the case of general α is given by

Γ(α, β) = (α2
1 + α2

2)
1/2 sgn(1 + a) |a| (3 + hρ2)/2

= (β2
1 + β2

2)1/2 sgn(1 + a) (3 + hρ2)/2 ,

since |a|‖α1, α2‖ = ‖β1, β2‖. Noting that α = a−1β, the reversed coefficient is given by

Γ(β, α) = (α2
1 + α2

2)
1/2 sgn(1 + a−1) (3 + hρ2)/2 .

Adding yields

Γ(α, β) + Γ(β, α) =
[
(β2

1 + β2
2)1/2 sgn(1 + a) + (α2

1 + α2
2)

1/2 sgn(1 + a−1)
]
(3 + hρ2)/2 .

In the three cases a > 0, −1 < a < 0, and a < −1, the factor in square bracket is given by

‖β‖ + ‖α‖ , ‖β‖ − ‖α‖ , and, −‖β‖ + ‖α‖ ,

respectively. In all cases this is equal to sgn (a)‖γ‖ which proves (11.5.3).

Case iii. It is sufficient to consider α with α2
1 + α2

2 = 1 and a > 0. Then

α = (±1, α1, α2) , β = (0, 0,−2α2) , γ = (±1, α1,−α2) , rα = |α1, α2,∓ρ〉,
rβ = |sgn (−α2), 0, 0〉 , rγ = |α1,−α2,∓ρ〉 , π(γ) =

rγ
2

〈α1,−α2,±1/ρ| .
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Since β1 = 0,

Γ(α, β)rγ = π(γ)
[
β2B2(rα)rβ

]
= π(γ)

[
− 2α2



α2 0 0
0 α2 ∓hρ
0 ∓ρ α2






sgn (−α2)
0
0



]

=
rγ
2

〈
α1 , −α2 , ∓1/ρ

∣∣∣ − 2α2
2 sgn(−α2) , 0 , 0

〉
.

Therefore, Γ(αβ) = −α1α
2
2 sgn(−a).

To compute the coefficient Γ(β, α) note first that B2(rβ) = 0 and B1(rβ) = sgn (−α2)I, since for
rβ , δv2 = δρ = 0 and δv1 = sgn (−α2). Therefore

Γ(β, α)rγ = π(γ)
[
α1B1(rβ)rα

]
= π(γ)

[
α1sgn (−α2)rα

]

=
α1

2
sgn (−α2) rγ

〈
α1 , −α2 , ∓1/ρ

∣∣∣ α1 , α2 , ∓ρ
〉
.

Therefore,

Γ(β, α) =
α1

2
sgn(−α2) (α2

1 − α2
2 + 1) = α1 sgn (−α2)α

2
1 .

Adding the previous results yields

Γ(α, β) + Γ(β, α) = α1 (α2
1 − α2

2) sgn(−α2) = cos(φ/2)
(
cos2(φ/2) − sin2(φ/2)

)
sgn(−α2),

since (α1, α2) = (cos(φ/2), sin(φ/2)). Formula (11.5.5) for the case α2
1 + α2

2 = 1 follows. The
general case follows by homogeneity.

Case iiibis. When |α1, α2| = 1, one has

rα = |α1, α2,∓ρ〉 , rβ = | − α1, α2,∓ρ〉 ,

rγ = sgn(α2) |1, 0, 0〉 , π(γ) = |1, 0, 0〉〈1, 0, 0| .

By definition, sgn(α2) Γ(α, β) is equal to the first component of the vector


−α1



α1 0 ∓hρ
0 α1 0
∓ρ 0 α1


+ α2



α2 0 0
0 α2 ∓h ρ
0 ∓ρ α2








−α1

α2

∓ρ


 .

Therefore
Γ(α, β) = −α1 sgn(α2)

(
− α2

1 + α2
2 + hρ

)
.

To compute the coefficient Γ(β, α) it suffices to change the sign of α1 in the above computation
which simply changes the sign of the result. Thus Γ(β, α) = −Γ(α, β) which proves iiibis.

§11.6. Dense oscillations for the Euler equations

§11.6.1. The algebraic/geometric part.

The characteristic variety is given by the equation

τ
(
τ2 − (ξ21 + ξ22)

)
= 0.
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Definition. In the (τ, ξ) space denote by Λ the lattice of integer linear combinations of the
characteristic covectors

(1, 1, 0) , (0, 1, 0) , and (0, 3, 4) . (11.6.1)

The next result improves substantially the corresonding result from the original paper. The proof
is entirely different.

Theorem 11.6.1. For every rational r there is a point

(τ, ξ) ∈ Λ ∩ {τ = |ξ|} ,

with ξ1/ξ2 = r.

Remark. The group velocity associated to (τ, ξ) is equal to −ξ so this asserts that there are wave
numbers with group velocities with arbitrary rational slope.

Proof. The points of Λ are the integer linear combinations,

(τ, ξ) = n1(1, 1, 0) + n2(0, 1, 0) + n3(0, 3, 4) =
(
n1 , n1 + n2 + 3n3 , 4n3

)
. (11.6.2)

This (τ, ξ) belongs to {τ = |ξ|} if and only if

n2
1 = (n1 + n2 + 3n3)

2 + (4n3)
2, and, n1 > 0 .

Dividing by n2
1 and setting

q2 :=
n2

n1
, q3 :=

n3

n1
, (11.6.3)

shows that qj ∈ Q satsify,

1 = (1 + q2 + 3q3)
2 + (4q3)

2 . (11.6.4)

For any rational r, the line q2 = rq3 intersects the ellipse (11.6.4) when

1 = (1 + (r + 3)q3)
2 + (4q3)

2, equivalently, q3

((
42 + (r + 3)3

)
q3 + 2(r + 3)

)
= 0 .

Therefore, q3 = −2(r + 3)/(42 + (r + 3)2) is a solution.

Mulitplying by the greatest common multiple of the denominators of the qj gives an integer solution
n. Multiplying by ±1 gives the desired solution with n1 > 0.

§11.6.2. Construction of the profiles

We construct a solution of the profile equation (11.2.1) satisfying the conditions of Theorem 11.2.1.
Introduce g ∈ C∞(S1) all of whose Fourier coefficients are nonzero,

g(θ) :=
∑

n∈Z

gn e
inθ , gn 6= 0 . (11.6.5)

with gn rapidly decreasing..
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Let U0(T,X1,X2) be the solution of the linearized Euler equation consisting of three plane waves
and given by

U0(T,X) := |1, 0,−1/f〉 g
(
(1, 1, 0).(T,X1,X2)

)

+|0, 1, 0〉 g
(
(0, 1, 0).(T,X1,X2)

)
+ |4,−3, 0〉 g

(
(0, 3, 4).(T,X1,X2)

)
.

The spectrum of U0(T,X) is exactly equal to the integer multiples of the covectors in (11.6.1).

Theorem 9.5.1 implies that there is a unique local solution U =
∑
Uα(t)eiα.(T,X) of the profile

equations (11.2.1) (equivalently (11.2.8)) with initial value U(0, T,X) = U0(T,X). Theorem 9.5.2
shows that specU(t) ⊂ Λ ∩ CharL(∂). As in §11.1, define aα(t) by Uα(t) = aα(t)rα .

The next result is stronger than that proved in [Joly, Métivier, Rauch, 1998]. The new proof also
smooths a rough part of the earlier demonstration. The proof of Theorem 11.2.1 from Theorem
11.6.2 is presented afterward.

Theorem 11.6.2. If

(τ, ξ) = n1(1, 1, 0) + n2(0, 1, 0) + n3(0, 3, 4) ∈ Λ ∩ {τ = |ξ|}

with
n1n2n3 6= 0, n2 + 5n3 6= 0, n2 − 5n3 6= 0, and n2 + 3n3 6= 0 ,

then,
d2U(τ,ξ)(0)

dt2
6= 0 , U(τ,ξ)(0) =

dU(τ,ξ)(0)

dt
= 0 .

Proof. The dynamics is given by

daδ
dt

=
∑

µ+ν=δ

K(α, β) aα aβ .

Consider

δ = (τ, ξ) = n1(1, 1, 0) + n2((0, 1, 0) + n3(0, 3, 4) := n1α+ n2β + n3γ, with n1n2n3 6= 0 .

This is the unique representation of δ as a linear combination of α, β, γ. Thus δ is never equal to
a linear combination of only two of the vectors which proves that daδ(0)/dt = 0.

Compute,

d2aδ
dt2

=
∑

α+β=δ

K(α, β)
(
(∂taα)aβ + aα∂taβ

)

=
∑

α+β=δ

K(α, β)
(
aβ

∑

µ+ν=α

K(µ, ν)aµ aν
)

+ aα
∑

κ+λ=β

K(κ, λ)aκ aλ

)

=
∑

α+β=δ
µ+ν=α

K(α, β)K(µ, ν) aβaµ aν +
∑

α+β=δ
κ+λ=β

K(α, β)K(κ, λ) aα aκ aλ

=
∑

β+µ+ν=δ

K(µ+ ν, β)K(µ, ν) aβ aµ aν +
∑

α+κ+λ=δ

K(α, κ+ λ)K(κ, λ) aα aκ aλ

=
∑

β+µ+ν=δ

K(µ+ ν, β)K(µ, ν) aβ aµ aν +
∑

α+κ+λ=δ

K(α, κ+ λ)K(κ, λ) aα aκ aλ .
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Since K is symmetric, the two sums are equal. Therefore

d2aδ
dt2

=
∑

α+µ+ν=δ

J(α, µ, ν) aα aµ aν , J(α, µ, ν) := 2K(α , µ+ ν)K(µ , ν) .

The interaction coefficient, J(α, µ, ν), is homogeneous of degree two in α, µ, ν and symmetric in
µ, ν.

Then d2aδ(0)/dt2 is the sum of six terms. Each is the product of

an1(1,1,0) an2(0,1,0) an3(0,3,4)

∣∣
t=0

= gn1
gn2

gn3
.

and an interaction coefficient. A typical coefficient is

J
(
n1(1, 1, 0) , n2(0, 1, 0) , n3(0, 3, 4)

)
= n2

1 J
(
(1, 1, 0) , q2(0, 1, 0) , q3(0, 3, 4)

)
, (11.6.6)

with qj from (11.6.3). The other five terms come from permuting the arguments of J . We need
to compute the sum of J(α, β, γ) and the five other terms which arise by permutation of the
arguments.

Fortunately, four of the six summands vanish, and the other two are equal. SinceK(κ, λ) vanishes if
λ is not characterisitic, J vanishes whenever the sum of its last two arguments is noncharacteristic.
Of the six summands that leaves only

J(α, β, γ) + J(α, γ, β) = 2 J(α, β, γ) = 2K(α, β + γ)K(β, γ) (11.6.7) .

Formula (11.5.4) implies that

K(β, γ) = 0 ⇐⇒ ‖β‖2 = ‖α‖2 ⇐⇒ q2 = ± 5q3 . (11.6.8)

Formula (11.5.5) implies that

K(α, β + γ) = 0 ⇐⇒ (1, 0) ⊥ β + γ ⇐⇒ q2 + 3 q3 = 0 . (11.6.9)

Summarizing, at all points of the ellipse (11.6.4) except the intersection with the three lines in
(11.6.8)-(11.6.9), the interaction coefficient is not equal to zero. This completes the proof.

Proof of Theorem 11.2.1. The points (τ, ξ) of Theorem 11.6.2 have last components

(ξ1 , ξ2) = n1(1 + q2 + 3q3 , 4q3) .

If r 6= 0 is rational, to have slope r is equivalent to the equation

4q3 = r(1 + q2 + 3q3) ,

which is a line in R2
q.

Intersecting with the ellipse (11.6.4) yields

1 = (1 + r2)(1 + q2 + 3q3)
2 .

For this to have a rational solution q requires that (1 + r2) = ρ−2 be the square of a rational
number which is a hypothesis of Theorem 11.2.1. Then ρ ≤ 1, and, there are exactly two solutions
q determined by

1 + q2 + 3q2 = ρ2, 1 = ρ2 + (4q3)
2 .

The three exceptional slopes come from q2 = ±5q3 and q2 + 3q3 = 0.
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ique mathématiques, vol. 1, Paris 1840.

E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasi-linear first-order
equations in several space variables. Comm. Pure Appl. Math. 19(1966)95–105.

Y. Choquet-Bruhat, Ondes asymptotiques et approchées pour les systèmes d’équations aux dérivées
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Polytéchnique, Paris, 1994.

P. Donnat, J.L. Joly, G. Métivier and J. Rauch, Diffractive nonlinear geometric optics, in Séminaire
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Index

Eα(ξ), spectral projection for αth sheet, 88
Hs(Rd), Sobolev space, 47
Hs(y), local Sobolev space, 121
Hs(y, η), microlocal Sobolev space, 124
Hs
ǫ , ǫ∂ Sobolev space, 233–237

LqtL
r
x, Strichartz norms, 102

PCk, piecewise smooth functions, 18
Q(Y ), partial inverse, 108
Q(α), partial inverse of L1(α), 255
Q(y), partial inverse of L1(y, dφ(y)), 134
Sm(Ω × RN ), classical symbols, 156
WF , wavefront set, 125
WFs, H

s wavefront set, 124
E , restriction of E to quasiperiodic profiles, 256
F , Fourier transform, 46
Q, restriction of Q to quasiperiodic profiles, 256
π(y, η), spectral projection on kerL1(y, η), 72
σ-admissible, for Strichartz inequality, 103
A, Wiener algebra, 88
E, projection onto kernel for trigonometric series, 254
Q, partial inverse for trigonometric series, 255
Op(σ, ∂x), order σ differential operators, 51

approximation, quasiclassical, 8

bicharacteristic (strip), 180
Borel’s theorem, 117, 196
boundary layer, 7
breakdown/blow up, 192–194, 202–203, 269–270, 273
Brenner’s theorem, 5, 94–95

Cauchy problem
linear, 45–84
nonlinear, 185–219
quasilinear, 197–206
small data, 206–210
subcritical, 210–219

characteristic curves, 11, 20
characteristic polynomial, 64
characteristic variety, 64, 141

curved and flat, 87
characteristics, see characteristic curves

method of, 10–22
and finite speed, 58–59

characteristics, method of
fully nonlinear scalar, 182

commutator, 16, 236
computer approximation, 267
computer approximations, 7, 8, 143
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conservation of charge, 45
constant rank hypothesis, 134
continuity equation, 45
controlability, 9
corrector, 30, 115, 258
curved sheets, of characteristic variety, 87

D’Alembert formula, 11, 20
dimensional analysis, 99, 189
dispersion, 85–107

dispersive behavior, 85–107
relation, 20, 28, 74–75, 85

dispersion relation, 36, 38
Duhamel’s formula, 57

eikonal equation, 133–134, 153, 177–184
elliptic operator, 6, 75
elliptic regularity theorem, 120–126

microlocal, 124–126
emission, 75–78
energy

conservation of, 19, 20, 47, 131, 210
method, 38

Euler equations
compresssible inviscid, 258
dense oscillations for, 276–289

Fermat’s principal of least time, 7
finite speed, 6, 17, 32, 40, 57–78

speed of sound, 282
flat parts, of characteristic variety, 87
Fourier transform, definition, 46
fundamental solution, 20, 21, 25

geometric optics, 5, 7, 8
cautionary example, 31
elliptic, 113–120
laws of, 22
linear hyperpolic, 127–152
nonlinear multiphase, 243–289
nonlinear one phase, 220–242, 258
physical, 10
second order scalar, 128–132
symmetric hyperbolic, 132–168

Gronwall’s Lemma, 51
group velocity, 22–26, 28, 31, 36, 38, 70–75, 131, 141

Haar’s inequality, 15
Hadamard’s ovaloid theorem, 96, 112
Hamilton-Jacobi theory, 177–184
harmonics, generation of, 9, 220–223
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homogeneous Sobolev norm, 103
hyperbolic

constant coefficient, 79–83
constant multiplicity, 83, 153
strictly, 6, 14, 83

second order, 130–131
symmetric, 45–57, 83, 132–168

definition, constant coefficients, 46
variable coefficient, 48

images, method of, 33–36
inequality of stationary phase, 98
influence curve, 75–78
integration by parts, 61
inviscid compressible fluid dynamics, 7

Keller’s blowup theorem, 213
Klein-Gordon equation, 20
Kreiss matrix theorem, 5, 82

lagrangian (manifold, 183
Lax parametrix, 152–168
Liouville

Liouville number, 259, 260
Liouville’s theorem, 259

Littlewood-Paley decomposition, 100, 106

maximally dispersive, 85, 95
Maxwell’s equations, 6, 45–47, 241
microlocal

analysis, 5, 9
elliptic regularity theorem, 9, 124–126

Moser’s inequality, 192, 269
Hs
ǫ , 239

nondegenerate phase, 157
nondispersive, 91
nonstationary phase, 269
nonstationary phase, method of, 5, 22–26, 111, 155, 162

observability, 9
operator

Fourier integral, 5, 158–162
pseudodifferential, 5, 123, 160
transposed, 122

oscillations
creation of, 258
homogeneous, 251, 278–280

oscillatory integrals, 155–162

partial inverse, 108
perturbation theory
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for semisimple eigenvalues, 108–109, 142
generation of harmonics, 222–223
quasilinear, 203
semilinear, 194–197
small oscillations, 220–222

phase velocity, 71
piecewise smooth, 17, 18, 40, 126

function, wavefront set of, 126
polarization, rotation of the axis of, 9
prinicipal symbol, 64
profile equations

quasilinear, 251–261
semilinear, 224–232, 261–262

propagation cone, 64–70, 72
propagation of singularities, 9
pulse, see wave
purely dispersive, 91

Römer, 7
rays

and conormal waves, 9
spread of, 29
transport along, 10, 28, 239–242
tube of, 30, 37, 92, 131

rectilinear propagation, 7, 26–31
reflection

coefficient of, 35, 37, 38
law of, 7, 32
operator, 34
total, 44

refraction
Snell’s law, 38–44

refraction, Snell’s law, 7
resonance, 9

collinear, 282
examples of, 243–251, 263–275
introduction to, 243–244
quadratic, definition, 282
quasilinear, 251–261, 271–275
relation, 243
relations for Euler equations, 282–283
semilinear, 243–251, 261–262, 266–271

Schauder’s lemma, 186–190
self phase modulation, 241
semisimple eigenvalue, 108
short wavelength asymptotic analysis, 8
singularities

(microlocal) of piecewise smooth functions, 126
and the method of characteristics, 17
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for piecewise smooth waves, 17–19, 167
for progressing waves, 19–22
propagation and the method of characteristics, 19
propagation for piecewise smooth waves, 166
propagation global in time, 165–168
propagation local in time, 162–165
propagation of, 6, 9
propagation of and stabilization, 168–176

small divisor, 258–261
example, 258–259
hypothesis, 259, 263

for Euler equations, 280
smooth characteristic variety hypothesis, 141, 142, 153
Snell’s law, see refraction
Sobolev embedding, 186, 188
spectral projection, 108
spectrum

of F (V ), 262
of a periodic function, 257
of principal profile, 257

stability
Hadamard’s notion of, 45
theorem, quasilinear, 261
theorem, semilinear, 237

stationary phase inequality, 30, 110–111
stationary point, nondegenerate, 110
stratification theorem, 73, 87
Strichartz inequalities, 5, 102–107, 214–219

three wave interaction
general, 279, 282
ODE, 248–251
PDE, 245–248, 267–271

time like cone, 64–70
time of nonlinear interaction

quasilinear, 252
semilinear, 222

wave
acoustic, 282
conormal, 9
plane, 20, 36–37, 70–75, 127
progressing, 19–22
shock waves, 7, 19
short pulse, 8
spherical, 35, 147–149
vorticity, 282
wave packets, 6, 10, 27–31, 37–38
wave train, 10, 243

wave number, good and bad, 86
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wavefront set, 124–126, 160–168, 172–175
Wiener algebra, 89
WKB from Euler’s method, 113–116

Young measure, 244
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