- Order:
- Duration: 6:35
- Published: 22 Dec 2009
- Uploaded: 25 Aug 2011
- Author: Kartemquin
, letter founder; from the 1728 Cyclopaedia.]] In typography, a typeface is a set of one or more fonts, in one or more sizes, designed with stylistic unity, each comprising a coordinated set of glyphs. A typeface usually comprises an alphabet of letters, numerals, and punctuation marks; it may also include ideograms and symbols, or consist entirely of them, for example, mathematical or map-making symbols.
The term typeface is frequently conflated with font; the two terms had more clearly differentiated meanings before the advent of desktop publishing. The distinction between font and typeface is that a font designates a specific member of a type family such as roman, boldface, or italic type, while typeface designates a consistent visual appearance or style which can be a "family" or related set of fonts. For example, a given typeface such as Arial may include roman, bold, and italic fonts. In the metal type era, a font also meant a specific point size, but with digital scalable outline fonts this distinction is no longer valid, as a single font may be scaled to any size.
The art and craft of designing typefaces is called type design. Designers of typefaces are called type designers, and often typographers. In digital typography, type designers are also known as font developers or font designers.
The size of typefaces and fonts is traditionally measured in points; point has been defined differently at different times, but now the most popular is the Desktop Publishing point of in (). When specified in typographic sizes (points, kyus), the height of an em-square, an invisible box which is typically a bit larger than the distance from the tallest ascender to the lowest descender, is scaled to equal the specified size. For example, when setting Helvetica at 12 point, the em square defined in the Helvetica font is scaled to 12 points or in (). Yet no particular element of 12-point Helvetica need measure exactly 12 points.
Frequently measurement in non-typographic units (feet, inches, meters) will be of the cap-height, the height of the capital letters. Font size is also commonly measured in millimeters (mm) and qs (a quarter of a millimeter, kyu in romanized Japanese) and inches.
As the range of typeface designs increased and requirements of publishers broadened over the centuries, fonts of specific weight (blackness or lightness) and stylistic variants (most commonly regular or roman as distinct to italic, as well as condensed) have led to font families, collections of closely related typeface designs that can include hundreds of styles. A font family is typically a group of related fonts which vary only in weight, orientation, width, etc., but not design. For example, Times is a font family, whereas Times Roman, Times Italic and Times Bold are individual fonts making up the Times family. Font families typically include several fonts, though some, such as Helvetica, may consist of dozens of fonts.
The first "extended" font families, which included a wide range of widths and weights in the same general style emerged in the early 1900s, starting with ATF's Cheltenham (1902–1913), with an initial design by Bertram Grosvenor Goodhue, and many additional faces designed by Morris Fuller Benton. Later examples include Futura, Lucida, ITC Officina. Some became superfamilies as a result of revival, such as Linotype Syntax, Linotype Univers; while others have alternate styling designed as compatible replacements of each other, such as Compatil, Generis.
Typeface superfamilies began to emerge when foundries began to include typefaces with significant structural differences, but some design relationship, under the same general family name. Arguably the first superfamily was created when Morris Fuller Benton created Clearface Gothic for ATF in 1910, a sans serif companion to the existing (serifed) Clearface. The superfamily label does not include quite different designs given the same family name for what would seem to be purely marketing, rather than design, considerations: Caslon Antique, Futura Black and Futura Display are structurally unrelated to the Caslon and Futura families, respectively, and are generally not considered part of those families by typographers, despite their names.
Additional or supplemental glyphs intended to match a main typeface have been in use for centuries. In some formats they have been marketed as separate fonts. In the early 1990s, the Adobe Systems type group introduced the idea of expert set fonts, which had a standardized set of additional glyphs, including small caps, old style figures, and additional superior letters, fractions and ligatures not found in the main fonts for the typeface. Supplemental fonts have also included alternate letters such as swashes, dingbats, and alternate character sets, complementing the regular fonts under the same family. However, with introduction of font formats such as OpenType, those supplemental glyphs were merged into the main fonts, relying on specific software capabilities to access the alternate glyphs.
Since Apple's and Microsoft's operating systems supported different character sets in the platform related fonts, some foundries used expert fonts in a different way. These fonts included the characters which were missing on either Macintosh or Windows computers, e.g. fractions, ligatures or some accented glyphs. The goal was to deliver the whole character set to the customer regardless of which operating system was used.
Type foundries have cast fonts in lead alloys from the 1450s until the present, although wood served as the material for some large fonts called wood type during the 19th century, particularly in the United States. In the 1890s the mechanization of typesetting allowed automated casting of fonts on the fly as lines of type in the size and length needed. This was known as continuous casting, and remained profitable and widespread until its demise in the 1970s. The first machine of this type was the Linotype machine, invented by Ottmar Mergenthaler.
During a brief transitional period (c. 1950s – 1990s), photographic technology, known as phototypesetting, utilized tiny high-resolution images of individual glyphs on a film strip (in the form of a film negative, with the letters as clear areas on an opaque black background). A high-intensity light source behind the film strip projected the image of each glyph through an optical system, which focused the desired letter onto the light-sensitive phototypesetting paper at a specific size and position. This photographic typesetting process permitted optical scaling, allowing designers to produce multiple sizes from a single font, although physical constraints on the reproduction system used still required design changes at different sizes; for example, ink traps and spikes to allow for spread of ink encountered in the printing stage. Manually operated photocomposition systems using fonts on filmstrips allowed fine kerning between letters without the physical effort of manual typesetting, and spawned an enlarged type design industry in the 1960s and 1970s.
The mid-1970s saw all of the major typeface technologies and all their fonts in use: letterpress, continuous casting machines, phototypositors, computer-controlled phototypesetters, and the earliest digital typesetters—hulking machines with tiny processors and CRT outputs. From the mid-1980s, as digital typography has grown, users have almost universally adopted the American spelling font, which nowadays nearly always means a computer file containing scalable outline letterforms (digital font), in one of several common formats. Some typefaces, such as Verdana, are designed primarily for use on computer screens.
Digital fonts may also contain data representing the metrics used for composition, including kerning pairs, component creation data for accented characters, glyph substitution rules for Arabic typography and for connecting script faces, and for simple everyday ligatures like fl. Common font formats include TrueType, OpenType and PostScript Type 1, while METAFONT is still used by TeX and its variants. Applications using these font formats, including the rasterizers, appear in Microsoft and Apple Computer operating systems, Adobe Systems products and those of several other companies. Digital fonts are created with font editors such as FontForge, Fontlab's TypeTool, FontLab Studio, Fontographer, or AsiaFont Studio.
Typefaces can be divided into two main categories: serif and sans serif. Serifs comprise the small features at the end of strokes within letters. The printing industry refers to typeface without serifs as sans serif (from French sans, meaning without), or as grotesque (or, in German, grotesk).
Great variety exists among both serif and sans serif typefaces. Both groups contain faces designed for setting large amounts of body text, and others intended primarily as decorative. The presence or absence of serifs forms is only one of many factors to consider when choosing a typeface.
Typefaces with serifs are often considered easier to read in long passages than those without. Studies on the matter are ambiguous, suggesting that most of this effect is due to the greater familiarity of serif typefaces. As a general rule, printed works such as newspapers and books almost always use serif typefaces, at least for the text body. Web sites do not have to specify a font and can simply respect the browser settings of the user. But of those web sites that do specify a font, most use modern sans serif fonts, because it is commonly believed that, in contrast to the case for printed material, sans serif fonts are easier than serif fonts to read on the low-resolution computer screen.
A proportional typeface contains glyphs of varying widths, while a monospaced (non-proportional or fixed-width) typeface uses a single standard width for all glyphs in the font.
Most people generally find proportional typefaces nicer-looking and easier to read, and thus they appear more commonly in professionally published printed material. For the same reason, GUI computer applications (such as word processors and web browsers) typically use proportional fonts. However, many proportional fonts contain fixed-width (tabular) figures so that columns of numbers stay aligned.
Monospaced typefaces function better for some purposes because their glyphs line up in neat, regular columns. No glyph is given any more weight than another. Most manually-operated typewriters and text-only computer displays use monospaced fonts. Most computer programs which have a text-based interface (terminal emulators, for example) use only monospaced fonts (or add additional spacing to proportional fonts to fit them in monospaced cells) in their configuration. Monospaced fonts are commonly used by computer programmers for displaying and editing source code so that certain characters (for example parentheses used to group arithmetic expressions) are easy to see. Monospaced fonts may also come as a benefit to machines doing automatic recognition of text (cf. Optical Character Recognition).
ASCII art usually requires a monospaced font for proper viewing, with the exception of Shift JIS art which takes advantage of the proportional characters in the MS PGothic font.. In a web page, the <tt> </tt>, <code> </code>
or <pre> </pre> HTML tags most commonly specify monospaced fonts. In LaTeX, the verbatim environment or the teletype font family (e.g., \texttt{...} or {\ttfamily ...}) uses monospaced fonts (in TeX, use {\tt ...}).
Any two lines of text with the same number of characters in each line in a monospaced typeface should display as equal in width, while the same two lines in a proportional typeface may have radically different widths. This occurs because in a proportional font, glyph widths vary, such that wider glyphs (typically those for characters such as W, Q, Z, M, D, O, H, and U) use more space, and narrower glyphs (such as those for the characters i, t, l, and 1) use less space than the average.
In the publishing industry, it was once the case that editors read manuscripts in monospaced fonts (typically Courier) for ease of editing and word count estimates, and it was considered discourteous to submit a manuscript in a proportional font. This has become less universal in recent years, such that authors need to check with editors as to their preference, though monospaced fonts are still the norm.
Most scripts share the notion of a baseline: an imaginary horizontal line on which characters rest. In some scripts, parts of glyphs lie below the baseline. The descent spans the distance between the baseline and the lowest descending glyph in a typeface, and the part of a glyph that descends below the baseline has the name descender. Conversely, the ascent spans the distance between the baseline and the top of the glyph that reaches farthest from the baseline. The ascent and descent may or may not include distance added by accents or diacritical marks.
In the Latin, Greek and Cyrillic (sometimes collectively referred to as LGC) scripts, one can refer to the distance from the baseline to the top of regular lowercase glyphs (mean line) as the x-height, and the part of a glyph rising above the x-height as the ascender. The distance from the baseline to the top of the ascent or a regular uppercase glyphs (cap line) is also known as the cap height. The height of the ascender can have a dramatic effect on the readability and appearance of a font. The ratio between the x-height and the ascent or cap height often serves to characterize typefaces.
Typefaces with the same metrics (i.e., with the same glyph dimensions) are said to be "metric-compatible", that is, they can be substituted for one another in a document without changing the document's text flow. Several typefaces have been created to be metric-compatible with widely used proprietary typefaces to allow the editing of documents set in such typefaces in digital typesetting environments where these typefaces are not available. For instance, the open source Liberation fonts have been designed as metric-compatible substitutes for widely used Microsoft fonts.
Roman, italic, and oblique are also terms used to differentiate between upright and italicized variations of a typeface. The difference between italic and oblique is that the term italic usually applies to serif faces, where the letter forms are redesigned.
A well-known and popular sans serif font is Max Miedinger's Helvetica, popularized for desktop publishing by inclusion with Apple Computer's LaserWriter laserprinter and having been one of the first readily available digital typefaces. Arial, popularized by Microsoft, is a widely used sans serif font that is often compared to and substituted for Helvetica. Other fonts such as Futura, Gill Sans, Univers and Frutiger have also remained popular over many decades.
In metal type, if present in smaller sizes, ink traps (small indentations at the junctions of letter strokes) would be eliminated at display sizes. In smaller point sizes, these ink traps were intended to fill up when the letterpress was over-inked, providing some latitude in press operation while maintaining the intended appearance of the type design. At larger sizes, these ink traps were not necessary, so display faces did not have them. Today's digital typefaces are most often used for offset lithography, electrophotographic printing or other processes that are not subject to the ink supply variations of letterpress, so ink traps have largely disappeared from use.
When digital fonts feature a display variation, it is to accommodate other stylistic differences that may benefit type used at larger point sizes. Such differences, which were standard in metal type, are rare in digital type, outside of the very high end of type design. They can include: a lower x-height, higher contrast between thick and thin strokes, less space between letters, and slightly more condensed letter shapes.
Decades into the desktop publishing revolution, few typographers with metal foundry type experience are still working, and few digital typefaces are optimized specifically for different sizes, so the misuse of the term display typeface as a synonym for ornamental type has become widespread; properly speaking, ornamental typefaces are a subcategory of display typefaces.
Some elements of the software engines used to display fonts on computers have software patents associated with them. In particular, Apple Inc. has patented some of the hinting algorithms for TrueType, requiring open source alternatives such as FreeType to use different algorithms.
Although typeface design is not subject to copyright in the United States under the 1976 Copyright Act, the United States District Court for the Northern District of California in Adobe Systems, Inc. v. Southern Software, Inc. (No. C95-20710 RMW, N.D. Cal. January 30, 1998) found that there was original authorship in the placement of points on a computer font's outline; i.e., because a given outline can be expressed in myriad ways, a particular selection and placement of points has sufficient originality to qualify for copyright.
Many western countries extend copyright protection to typeface designs. However, this has no impact on protection in the United States, because all of the major copyright treaties and agreements to which the U.S. is a party (such as the Berne Convention, the WIPO Copyright Treaty, and TRIPS) operate under the principle of national treatment, under which a country is obligated to provide no greater or lesser protection to works from other countries than it provides to domestically produced works.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.