- Order:
- Duration: 19:15
- Published: 18 Sep 2009
- Uploaded: 01 Aug 2011
- Author: khanacademy
Entropy is a thermodynamic property that can be used to determine the energy available for useful work in a thermodynamic process, such as in energy conversion devices, engines, or machines. Such devices can only be driven by convertible energy, and have a theoretical maximum efficiency when converting energy to work. During this work, entropy accumulates in the system, but has to be removed by dissipation in the form of waste heat.
In classical thermodynamics, the concept of entropy is defined phenomenologically by the second law of thermodynamics, which states that the entropy of an isolated system always increases or remains constant. Thus, entropy is also a measure of the tendency of a process, such as a chemical reaction, to be entropically favored, or to proceed in a particular direction. It determines that thermal energy always flows spontaneously from regions of higher temperature to regions of lower temperature, in the form of heat. These processes reduce the state of order of the initial systems, and therefore entropy is an expression of disorder or randomness. This picture is the basis of the modern microscopic interpretation of entropy in statistical mechanics. Here one defines entropy as the amount of information needed to specify the exact physical state of a system, given its thermodynamic specification. The second law is then a consequence of this definition and the fundamental postulate of statistical mechanics.
Thermodynamic entropy has the dimension of energy divided by temperature, and a unit of joules per kelvin (J/K) in the International System of Units.
The term entropy was coined in 1865 by Rudolf Clausius based on the Greek εντροπία [entropía], a turning toward, from εν- [en-] (in) and τροπή [tropē] (turn, conversion).
Thermodynamic entropy is a non-conserved state function that is of great importance in the sciences of physics and chemistry. Historically, the concept of entropy evolved in order to explain why some processes (permitted by conservation laws) occur spontaneously while their time reversals (also permitted by conservation laws) do not; systems tend to progress in the direction of increasing entropy. For isolated systems, entropy never decreases.
In statistical mechanics, entropy is essentially a measure of the number of ways in which a system may be arranged, often taken to be a measure of "disorder" (the higher the entropy, the higher the disorder). Specifically, this definition describes the entropy as being proportional to the logarithm of the number of possible microscopic configurations of the individual atoms and molecules of the system (microstates) which could give rise to the observed macroscopic state (macrostate) of the system. The constant of proportionality is the Boltzmann constant.
It follows from the second law of thermodynamics that the entropy of a system that is not isolated may decrease. An air conditioner, for example, may cool the air in a room, thus reducing the entropy of the air of that system. The heat expelled from the room (the system), involved in the operation of the air conditioner, will always make a bigger contribution to the entropy of the environment than will the decrease of the entropy of the air of that system. Thus, the total of entropy of the room plus the entropy of the environment increases, in agreement with the second law of thermodynamics.
In mechanics, the second law in conjunction with the fundamental thermodynamic relation places limits on a system's ability to do useful work. The entropy change of a system at temperature T absorbing an infinitesimal amount of heat in a reversible way, is given by . More explicitly, an energy TRS is not available to do useful work, where TR is the temperature of the coldest accessible reservoir or heat sink external to the system. For further discussion, see Exergy.
Statistical mechanics demonstrates that entropy is governed by probability, thus allowing for a decrease in disorder even in a closed system. Although this is possible, such an event has a small probability of occurring, making it unlikely. Even if such event were to occur, it would result in a transient decrease that would affect only a limited number of particles in the system.
Now equating the two expressions gives If we allow to incorporate the algebraic sign, this becomes a sum and implies that there is a function of state which is conserved over a complete cycle. Clausius called this state function entropy. This is the second law of thermodynamics.
Then Clausius asked what would happen if there would be less work done than that predicted by Carnot's principle. The right-hand side of the first equation would be the upper bound of the work, which would now be converted into an inequality, When the second equation is used to express the work as a difference in heats, we get or So more heat is given off to the cold reservoir than in the Carnot cycle. If we denote the entropies by for the two states, then the above inequality can be written as a decrease in the entropy, The wasted heat implies that irreversible processes must have prevented the cycle from carrying out maximum work.
More specifically, entropy is a logarithmic measure of the density of states:
:
where kB is the Boltzmann constant, equal to . The summation is over all the microstates the system can be in, and Pi is the probability that the system is in the ith microstate. For almost all practical purposes, this can be taken as the fundamental definition of entropy since all other formulas for S can be mathematically derived from it, but not vice versa. (In some rare and recondite situations, a generalization of this formula may be needed to account for quantum coherence effects, but in any situation where a classical notion of probability makes sense, the above is the entropy.)
In what has been called the fundamental assumption of statistical thermodynamics or the fundamental postulate in statistical mechanics, the occupation of any microstate is assumed to be equally probable (i.e. Pi=1/Ω since Ω is the number of microstates); this assumption is usually justified for an isolated system in equilibrium. Then the previous equation reduces to
:
In thermodynamics, such a system is one in which the volume, number of molecules, and internal energy are fixed (the microcanonical ensemble).
In essence, the most general interpretation of entropy is as a measure of our uncertainty about a system. The equilibrium state of a system maximizes the entropy because we have lost all information about the initial conditions except for the conserved variables; maximizing the entropy maximizes our ignorance about the details of the system. This uncertainty is not of the everyday subjective kind, but rather the uncertainty inherent to the experimental method and interpretative model.
The interpretative model has a central role in determining entropy. The qualifier "for a given set of macroscopic variables" above has very deep implications: if two observers use different sets of macroscopic variables, then they will observe different entropies. For example, if observer A uses the variables U, V and W, and observer B uses U, V, W, X, then, by changing X, observer B can cause an effect that looks like a violation of the second law of thermodynamics to observer A. In other words: the set of macroscopic variables one chooses must include everything that may change in the experiment, otherwise one might see decreasing entropy!
In general, entropy can be defined for any Markov processes with reversible dynamics and the detailed balance property.
In Boltzmann's 1896 Lectures on Gas Theory, he showed that this expression gives a measure of entropy for systems of atoms and molecules in the gas phase, thus providing a measure for the entropy of classical thermodynamics.
According to the Clausius equality, for a reversible process
: That means the line integral is path independent.
So we can define a state function S called entropy, which satisfied :
With this we can only obtain the difference of entropy by integrating the above formula. To obtain the absolute value, we need Third Law of Thermodynamics, which states that S=0 at absolute zero for perfect crystals.
From a macroscopic perspective, in classical thermodynamics the entropy is interpreted as a state function of a thermodynamic system: that is, a property depending only on the current state of the system, independent of how that state came to be achieved. The state function has the important property that, when multiplied by a reference temperature, it can be understood as a measure of the amount of energy in a physical system that cannot be used to do thermodynamic work; i.e., work mediated by thermal energy. More precisely, in any process where the system gives up energy ΔE, and its entropy falls by ΔS, a quantity at least TR ΔS of that energy must be given up to the system's surroundings as unusable heat (TR is the temperature of the system's external surroundings). Otherwise the process will not go forward. In classical thermodynamics, the entropy of a system is defined only if it is in thermodynamic equilibrium.
In a thermodynamic system, pressure, density, and temperature tend to become uniform over time because this equilibrium state has higher probability (more possible combinations of microstates) than any other; see statistical mechanics. In the ice melting example, the difference in temperature between a warm room (the surroundings) and cold glass of ice and water (the system and not part of the room), begins to be equalized as portions of the thermal energy from the warm surroundings spread to the cooler system of ice and water. Over time the temperature of the glass and its contents and the temperature of the room become equal. The entropy of the room has decreased as some of its energy has been dispersed to the ice and water. However, as calculated in the example, the entropy of the system of ice and water has increased more than the entropy of the surrounding room has decreased. In an isolated system such as the room and ice water taken together, the dispersal of energy from warmer to cooler always results in a net increase in entropy. Thus, when the "universe" of the room and ice water system has reached a temperature equilibrium, the entropy change from the initial state is at a maximum. The entropy of the thermodynamic system is a measure of how far the equalization has progressed.
A special case of entropy increase, the entropy of mixing, occurs when two or more different substances are mixed. If the substances are at the same temperature and pressure, there will be no net exchange of heat or work – the entropy change will be entirely due to the mixing of the different substances. At a statistical mechanical level, this results due to the change in available volume per particle with mixing.
Entropy began with the work of French mathematician Lazare Carnot who in his 1803 paper Fundamental Principles of Equilibrium and Movement proposed that in any machine the accelerations and shocks of the moving parts all represent losses of moment of activity. In other words, in any natural process there exists an inherent tendency towards the dissipation of useful energy. Building on this work, in 1824 Lazare's son Sadi Carnot published Reflections on the Motive Power of Fire in which he set forth the view that in all heat-engines whenever "caloric", or what is now known as heat, falls through a temperature difference, that work or motive power can be produced from the actions of the "fall of caloric" between a hot and cold body. This was an early insight into the second law of thermodynamics.
Carnot based his views of heat partially on the early 18th century "Newtonian hypothesis" that both heat and light were types of indestructible forms of matter, which are attracted and repelled by other matter, and partially on the contemporary views of Count Rumford who showed in 1789 that heat could be created by friction as when cannon bores are machined. Accordingly, Carnot reasoned that if the body of the working substance, such as a body of steam, is brought back to its original state (temperature and pressure) at the end of a complete engine cycle, that "no change occurs in the condition of the working body". This latter comment was amended in his foot notes, and it was this comment that led to the development of entropy.
In the 1850s and 1860s, German physicist Rudolf Clausius gravely objected to this latter supposition, i.e. that no change occurs in the working body, and gave this "change" a mathematical interpretation by questioning the nature of the inherent loss of usable heat when work is done, e.g. heat produced by friction. Clausius described entropy as the transformation-content, i.e. dissipative energy use, of a thermodynamic system or working body of chemical species during a change of state.
The thermodynamic entropy therefore has the dimension of energy divided by temperature, and the unit joule per kelvin (J/K) in the International System of Units (SI).
Thermodynamic entropy is an extensive property, meaning that it scales with the size or extent of a system. In many processes it is useful to specify the entropy as an intensive property independent of the size, as a specific entropy characteristic of the type of system studied. Specific entropy may be expressed relative to a unit of mass, typically the kilogram (unit: ). Alternatively, in chemistry, it is also referred to one mole of substance, in which case it is called the molar entropy with a unit of .
Thus, when one mole of substance at is warmed by its surroundings to , the sum of the incremental values of qrev/T constitute each element's or compound's standard molar entropy, a fundamental physical property and an indicator of the amount of energy stored by a substance at . Entropy change also measures the mixing of substances as a summation of their relative quantities in the final mixture.
Entropy is equally essential in predicting the extent and direction of complex chemical reactions. For such applications, ΔS must be incorporated in an expression that includes both the system and its surroundings, ΔSuniverse = ΔSsurroundings + ΔS system. This expression becomes, via some steps, the Gibbs free energy equation for reactants and products in the system: ΔG [the Gibbs free energy change of the system] = ΔH [the enthalpy change] −T ΔS [the entropy change].
When specific heat and volume are constant, the change in entropy is given by: :.
When specific heat and pressure are constant, the change in entropy is given by: :.
When specific heat and temperature are constant, the change in entropy is given by: :.
In these equations is the specific heat at constant volume, is the specific heat at constant pressure, is the ideal gas constant, and is the number of moles of gas.
For some other transformations, not all of these properties (specific heat, volume, pressure or temperature) are constant. In these cases, for only 1 mole of an ideal gas, the change in entropy can be given by either: : or :.
:
where
: = the net rate of entropy flow due to the flows of mass into and out of the system (where = entropy per unit mass).
: = the rate of entropy flow due to the flow of heat across the system boundary.
: = the rate of internal generation of entropy within the system.
Note, also, that if there are multiple heat flows, the term is to be replaced by where is the heat flow and is the temperature at the jth heat flow port into the system.
where is the density matrix and Tr is the trace operator.
This upholds the correspondence principle, because in the classical limit, i.e. whenever the classical notion of probability applies, this expression is equivalent to the familiar classical definition of entropy,
Von Neumann established a rigorous mathematical framework for quantum mechanics with his work Mathematische Grundlagen der Quantenmechanik. He provided in this work a theory of measurement, where the usual notion of wave function collapse is described as an irreversible process (the so called von Neumann or projective measurement). Using this concept, in conjunction with the density matrix he extended the classical concept of entropy into the quantum domain.
Ambiguities in the terms disorder and chaos, which usually have meanings directly opposed to equilibrium, contribute to widespread confusion and hamper comprehension of entropy for most students. As the second law of thermodynamics shows, in an isolated system internal portions at different temperatures will tend to adjust to a single uniform temperature and thus produce equilibrium. A recently developed educational approach avoids ambiguous terms and describes such spreading out of energy as dispersal, which leads to loss of the differentials required for work even though the total energy remains constant in accordance with the first law of thermodynamics (compare discussion in next section). Physical chemist Peter Atkins, for example, who previously wrote of dispersal leading to a disordered state, now writes that "spontaneous changes are always accompanied by a dispersal of energy".
Thus, the fact that the entropy of the universe is steadily increasing, means that its total energy is becoming less useful: eventually, this will lead to the "heat death of the Universe".
It is important to realize that the decrease in the entropy of the surrounding room is less than the increase in the entropy of the ice and water: the room temperature of 298 K is larger than 273 K and therefore the ratio, (entropy change), of δQ/298 K for the surroundings is smaller than the ratio (entropy change), of δQ/273 K for the ice+water system. To find the entropy change of our "universe", we add up the entropy changes for its constituents: the surrounding room and the ice+water. The total entropy change is positive; this is always true in spontaneous events in a thermodynamic system and it shows the predictive importance of entropy: the final net entropy after such an event is always greater than was the initial entropy.
As the temperature of the cool water rises to that of the room and the room further cools imperceptibly, the sum of the δQ/T over the continuous range, at many increments, in the initially cool to finally warm water can be found by calculus. The entire miniature "universe", i.e. this thermodynamic system, has increased in entropy. Energy has spontaneously become more dispersed and spread out in that "universe" than when the glass of ice water was introduced and became a "system" within it.
Notice that the system will reach a point where the room, the glass and the contents of the glass will be at the same temperature. In this situation, nothing else can happen: although thermal energy does exist in the room (in fact, the amount of thermal energy is the same as in the beginning, since it is a closed system), it is now unable to do useful work, as there is no longer a temperature gradient. Unless an external event intervenes (thus breaking the definition of a closed system), the room is destined to remain in the same condition for all eternity. Therefore, following the same reasoning but considering the whole universe as our "room", we reach a similar conclusion: that, at a certain point in the distant future, the whole universe will be a uniform, isothermic and inert body of matter, in which there will be no available energy to do work. This condition is known as the "heat death of the Universe".
a measure of energy dispersal at a specific temperature.
In the 1982 textbook Principles of Biochemistry by American biochemist Albert Lehninger, for example, it is argued that the "order" produced within cells as they grow and divide is more than compensated for by the "disorder" they create in their surroundings in the course of growth and division. In short, according to Lehninger, "living organisms preserve their internal order by taking from their surroundings free energy, in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."
Evolution-related concepts: Negentropy – a shorthand colloquial phrase for negative entropy. Ectropy – a measure of the tendency of a dynamical system to do useful work and grow more organized.
Since a finite universe is an isolated system then, by the Second Law of Thermodynamics, its total entropy is constantly increasing. It has been speculated, since the 19th century, that the universe is fated to a heat death in which all the energy ends up as a homogeneous distribution of thermal energy, so that no more work can be extracted from any source.
If the universe can be considered to have generally increasing entropy, then—as Roger Penrose has pointed out—gravity plays an important role in the increase because gravity causes dispersed matter to accumulate into stars, which collapse eventually into black holes. The entropy of a black hole is proportional to the surface area of the black hole's event horizon. Jacob Bekenstein and Stephen Hawking have shown that black holes have the maximum possible entropy of any object of equal size. This makes them likely end points of all entropy-increasing processes, if they are totally effective matter and energy traps. Hawking has, however, recently changed his stance on this aspect.
The role of entropy in cosmology remains a controversial subject. Recent work has cast some doubt on the heat death hypothesis and the applicability of any simple thermodynamic model to the universe in general. Although entropy does increase in the model of an expanding universe, the maximum possible entropy rises much more rapidly, moving the universe further from the heat death with time, not closer. This results in an "entropy gap" pushing the system further away from the posited heat death equilibrium. Other complicating factors, such as the energy density of the vacuum and macroscopic quantum effects, are difficult to reconcile with thermodynamical models, making any predictions of large-scale thermodynamics extremely difficult.
The entropy gap is widely believed to have been originally opened up by the early rapid exponential expansion of the universe.
In information theory, entropy is the measure of the amount of information that is missing before reception and is sometimes referred to as Shannon entropy. Shannon entropy is a broad and general concept which finds applications in information theory as well as thermodynamics. It was originally devised by Claude Shannon in 1948 to study the amount of information in a transmitted message. The definition of the information entropy is, however, quite general, and is expressed in terms of a discrete set of probabilities :
:
In the case of transmitted messages, these probabilities were the probabilities that a particular message was actually transmitted, and the entropy of the message system was a measure of how much information was in the message. For the case of equal probabilities (i.e. each message is equally probable), the Shannon entropy (in bits) is just the number of yes/no questions needed to determine the content of the message. a few argue that they have nothing to do with each other.
The expressions for the two entropies are very similar. The information entropy H for equal probabilities is
:
where k is a constant which determines the units of entropy. For example, if the units are bits, then k = 1/ln(2). The thermodynamic entropy S, from a statistical mechanical point of view, was first expressed by Boltzmann:
:
where p is the probability of a system being in a particular microstate, given that it is in a particular macrostate, and is Boltzmann's constant. It can be seen that one may think of the thermodynamic entropy as Boltzmann's constant, divided by log(2), times the number of yes/no questions that must be asked in order to determine the microstate of the system, given that we know the macrostate. The link between thermodynamic and information entropy was developed in a series of papers by Edwin Jaynes beginning in 1957.
There are many ways of demonstrating the equivalence of "information entropy" and "physics entropy", that is, the equivalence of "Shannon entropy" and "Boltzmann entropy". Nevertheless, some authors argue for dropping the word entropy for the H function of information theory and using Shannon's other term "uncertainty" instead.
Category:Philosophy of thermal and statistical physics Entropy Category:Greek loanwords Category:State functions
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.