'', 20th ed. 1918.]]
The lung (adjectival form: ) is the essential respiration organ in many air-breathing animals, including most tetrapods, a few fish and a few snails. In mammals and the more complex life forms, the two lungs are located near the backbone on either side of the heart. Their principal function is to transport oxygen from the atmosphere into the bloodstream, and to release carbon dioxide from the bloodstream into the atmosphere. This exchange of gases is accomplished in the mosaic of specialized cells that form millions of tiny, exceptionally thin-walled air sacs called alveoli.
To completely explain the anatomy of the lungs, it is necessary to discuss the passage of air through the mouth to the alveoli. Once air progresses through the mouth or nose, it travels through the oropharynx, nasopharynx, the larynx, the trachea, and a progressively subdividing system of bronchi and bronchioles until it finally reaches the alveoli where the gas exchange of carbon dioxide and oxygen takes place.
The drawing and expulsion of air (ventilation) is driven by muscular action; in early tetrapods, air was driven into the lungs by the pharyngeal muscles via buccal pumping, whereas in reptiles, birds and mammals a more complicated musculoskeletal system is used.
Medical terms related to the lung often begin with pulmo-, from the Latin pulmonarius ("of the lungs"), or with pneumo- (from Greek πνεύμων "lung").
Mammalian lungs
The lungs of mammals have a spongy and soft texture and are honeycombed with
epithelium, having a much larger surface area in total than the outer surface area of the lung itself. The
lungs of humans are a typical example of this type of lung.
Breathing is largely driven by the muscular diaphragm at the bottom of the thorax. Contraction of the diaphragm pulls the bottom of the cavity in which the lung is enclosed downward, increasing volume and thus decreasing pressure, causing air to flow into the airways. Air enters through the oral and nasal cavities; it flows through the pharynx, then the larynx and into the trachea, which branches out into the main bronchi and then subsequent divisions. During normal breathing, expiration is passive and no muscles are contracted (the diaphragm relaxes). The rib cage itself is also able to expand and contract to some degree, through the action of other respiratory and accessory respiratory muscles. As a result, air is transported into or expelled out of the lungs. This type of lung is known as a bellows lung as it resembles a blacksmith's bellows.
Anatomy
In humans, the trachea divides into the two main bronchi that enter the roots of the lungs. The bronchi continue to divide within the lung, and after multiple divisions, give rise to bronchioles. The bronchial tree continues branching until it reaches the level of terminal bronchioles, which lead to alveolar sacs. Alveolar sacs are made up of clusters of
alveoli, like individual grapes within a bunch. The individual alveoli are tightly wrapped in blood vessels and it is here that gas exchange actually occurs. Deoxygenated blood from the
heart is pumped through the
pulmonary artery to the lungs, where oxygen
diffuses into blood and is exchanged for carbon dioxide in the
hemoglobin of the
erythrocytes. The oxygen-rich blood returns to the heart via the pulmonary veins to be pumped back into systemic circulation.
Human lungs are located in two cavities on either side of the heart. Though similar in appearance, the two are not identical. Both are separated into
lobes by fissures, with three lobes on the right and two on the left. The lobes are further divided into segments and then into lobules, hexagonal divisions of the lungs that are the smallest subdivision visible to the naked eye. The connective tissue that divides lobules is often blackened in smokers. The medial border of the right lung is nearly vertical, while the left lung contains a
cardiac notch. The cardiac notch is a concave impression molded to accommodate the shape of the heart.
Lungs are to a certain extent 'overbuilt' and have a tremendous reserve volume as compared to the oxygen exchange requirements when at rest. Such excess capacity is one of the reasons that individuals can smoke for years without having a noticeable decrease in lung function while still or moving slowly; in situations like these only a small portion of the lungs are actually perfused with blood for gas exchange. Destruction of too many alveoli over time leads to the condition emphysema, which is associated with extreme shortness of breath. As oxygen requirements increase due to exercise, a greater volume of the lungs is perfused, allowing the body to match its CO2/O2 exchange requirements. Additionally, due to the excess capacity, it is possible for humans to live with only one lung, with the other compensating for its loss.
The environment of the lung is very moist, which makes it hospitable for bacteria. Many respiratory illnesses are the result of bacterial or viral infection of the lungs. Inflammation of the lungs is known as pneumonia; inflammation of the pleura surrounding the lungs is known as pleurisy.
Vital capacity is the maximum volume of air that a person can exhale after maximum inhalation; it can be measured with a spirometer. In combination with other physiological measurements, the vital capacity can help make a diagnosis of underlying lung disease.
The lung parenchyma is strictly used to refer solely to alveolar tissue with respiratory bronchioles, alveolar ducts and terminal bronchioles.
Non respiratory functions
In addition to their function in respiration, the lungs also:
Alter the pH of blood by facilitating alterations in the partial pressure of carbon dioxide
Filter out small blood clots formed in veins
Filter out gas micro-bubbles occurring in the
venous blood stream such as those created after
scuba diving during
decompression.
Influence the concentration of some biologic substances and drugs used in medicine in blood
Convert angiotensin I to angiotensin II by the action of angiotensin-converting enzyme
May serve as a layer of soft, shock-absorbent protection for the heart, which the lungs flank and nearly enclose.
Immunoglobulin-A is secreted in the bronchial secretion and protects against respiratory infections.
Maintain sterility by producing
mucus containing antimicrobial compounds. Mucus contains
glycoproteins, e.g.
mucins,
lactoferrin,
lysozyme,
lactoperoxidase. We find also on the epithelium
Dual oxidase 2 proteins generating hydrogen peroxide, useful for
hypothiocyanite endogenous antimicrobial synthesis. Function not in place in
cystic fibrosis patient lungs.
Ciliary escalator action is an important defence system against air-borne infection.The dust particles and bacteria in the inhaled air are caught in the mucous layer present at the mucosal surface of respiratory passages and are moved up towards pharynx by the rhythmic upward beating action of the cilia.
Avian lungs
Avian lungs do not have alveoli as mammalian lungs do, they have Faveolar lungs. They contain millions of tiny passages known as para-bronchi, connected at both ends by the dorsobronchi. The airflow through the avian lung always travels in the same direction posterior to anterior. This is in contrast to the mammalian system, in which the direction of airflow in the lung is tidal, reversing between inhalation and exhalation. By utilizing a unidirectional flow of air, avian lungs are able to extract a greater concentration of oxygen from inhaled air. Birds are thus equipped to fly at altitudes at which mammals would succumb to
hypoxia. This also allows them to sustain a higher
metabolic rate than an equivalent weight mammal.
Because of the complexity of the system, misunderstanding is common and it is incorrectly believed that it takes two breathing cycles for air to pass entirely through a bird's respiratory system. A bird's lungs do not store air in either of the sacs between respiration cycles, air moves continuously from the posterior to anterior air sacs throughout respiration. This type of lung construction is called a circulatory lung, as distinct from the bellows lung possessed by other animals.
Reptilian lungs
Reptilian lungs are typically ventilated by a combination of expansion and contraction of the ribs via axial muscles and buccal pumping.
Crocodilians also rely on the
hepatic piston method, in which the liver is pulled back by a muscle anchored to the pubic bone (part of the pelvis), which in turn pulls the bottom of the lungs backward, expanding them.
Turtles, which are unable to move their ribs, instead use their forelimbs and
pectoral girdle to force air in and out of the lungs. These outpocketings first arose in the
bony fish; in some of the
ray-finned fish the sacs evolved into gas bladders, while in other ray-finned fish (such as the
gar,
bichir and
amia) as well as the
lobe-finned fish they evolved into lungs.
Further reading
Lung Function Fundamentals. http://www.anaesthetist.com/icu/organs/lung/lungfx.htm
Dr D.R. Johnson: Introductory anatomy, respiratory system
Franlink Institute Online: The Respiratory System
Lungs 'best in late afternoon'
Chronic Respiratory Disease - leading research and articles on respiratory disease.
Avian lungs and respiration
Footnotes
Category:Organs