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Abstract

In this paper, we present a millipede’s model for
locomotion on a plane. The purpose of this paper
15 to appreciate the millipede’s periodic gaits
through a set of equations describing the positions
of the tip of the leg with respect to time and the
ordinal number of the leg. A set of experiments,
using the coefficient of determination calculated
Jfrom the non-linear regression analyses, were
performed in order to acquire and verify the
equations. Additionally, turning method was
theoretically concerned. The result contributes to
the progress in multi-legged robot, as well as in

understanding the mystery of the natural system.

1. Introduction

The numerous legs of the cylindrical millipedes
have caught the imagination of naturalists
through the ages, as C.D.D. Owen [12] started:
‘in their going, it is observable that on each side
of their bodies every leg has its motion, one
regularly after another, so that their legs, being
numerous, form a kind of undulation and thereby
communicate to the body a swifter progression
than one could imagine where so many short feet
are to take so many short steps that follow one
another rolling on like the waves of the sea.’
Later, F.G. Sinclair [13] reported: ‘It is
remarkable that when the animal is in motion a

sort of wave runs down along fringe-like row of

feet... my belief was that the feet were moved in
sets of five. The extensive work of S.M. Manton
[8-10] has given the locomotion a scientific base,

but not a physical base.

Recent researches on this locomotion focus on the
robotics. Multi-legged robot is built, but the
number of legs is not as many as that of millipede.
The general model for legged locomotion is
presented [2] but with neglect of the precise
relation between the locomotion variables such as
gait, duty factor, step length, stroke pitch, and
cycle time. In this work, we use the millipede as a
representative case of the multi-legged animals to
attain the relation and restate the better version
of leg trajectory. Moreover, the relation leads to a
future study on how the millipede transfers and

shares its body weight while walking.
2. General observation: walking in millipedes

Walking in millipedes is more complicated than
Sinclair’s ‘moving in set of five’! When walking,
each leg takes a step. Each step consists of two
stages. The first is when the claw is in contact
with the ground and is moving backward, while
the body is moving forward. The second is the
transfer stage when the leg moves forward in the
air. In millipede, the propulsive stage, when the
feet are on the ground, lasts longer than the
transfer stage. The longer the propulsive stage

lasts, the greater is the thrust for pushing.
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Each leg pair, on the right and left sides of the
body, is in phase. However, on the same side of
the body, each leg is slightly out of phase with
the leg immediately anterior and posterior to it.
This avoids interference between adjacent legs.
The phase difference is less than 0.5. Thus any
given leg is less than half a cycle (of propelling
and recovering) behind that in front of it. This
cause a metachronal waves which are so
characteristic of millipedes. The number of legs
between two that are in phase at any moment in
time depends on the species of millipede and the

speed at which it is traveling. [7]
3. A previous model for multi-legged locomotion

Motion is described by means of a world
coordinate system (Fig. 1). Defining the leg
lengths L, and L, the cycle time T, the duty
factor f3, the transference time t, = (1- AT, the
support time tp = BT, the step length Lg, the
stroke pitch Sp, the body height Hz and
maximum foot clearance F,, we consider a
periodic trajectory for each foot, maintaining a

constant body velocity Vp= Ly / T.

Fig. 1 Coordinate system and variables that
characterize the motion trajectories of the multi-

legzed robot

The algorithm for the forward motion planning
accepts the body and feet trajectories in (z, y) as
inputs and, by means of an inverse kinematics
algorithm, generates the related joint trajectories,
selecting the solution corresponding to a forward

knee.

The body of the robot and, by consequence, the
legs hips are assumed to have a horizontal
movement with a constant forward speed Ve
Therefore, the (z, y) coordinates of the hip of the
legs are given by (for leg 1):

2(t) = Vpt (1a)

Yn(t) = Hp (1b)
For a particular gait and duty factor p it is
possible to calculate (1) for leg i the
corresponding phase @, and the time instant each
leg leaves and returns to contact with the ground.
From these results, and knowing 7, # and “1p, the
(z, y) trajectory of the tip of the foot must be

completed during ;.

For each cycle the (z, y) trajectory of the tip of
the swinging leg is computed through a cycloid
function given by (considering that the transfer

stage starts at { = 0 sec for leg 1), with f=1/T:

* during the transfer stage:

Tp(t) =V, |t - -l—sin(Eﬂﬁ) (2a)

2rf

Fy

e kt) = ?[1 — cos (27 ft)] (2b)

* during the propulsive stage:
Tpr(t) = Vo | T = —— sin (@ fT) | = V.T (30)

2r f

Ym()=0 (3b)
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Based on this data, the trajectory generator is
responsible for producing a motion that

synchronizes and coordinates the legs.

In order to avoid the impact and friction effects
we Impose null velocities of the feet in the
instants of landing and taking off, assuring also
the velocity continuity. These joint trajectories
can be accomplished also with a step or a

polynomial acceleration time profile.

This model is based on a wrong hypothesis that
the ftrajectory is a half-cycle cycloid curve,
because the proportion is dependent upon other
factors such as body weight, the number of legs,
and leg length. Consequently, the accuracy of this

model is eliminated.
4. An alternative model in progress

4.1. Theoretical analysis
The model is for the straight walk on a plane,

and have 3 assumptions.

Vwave

Fig. 2 The circle of reference and variables; the
black path shows the path along which the tip of

a leg traces.

4.1.1. The millipede’s leg have one segment. (This
assumption is addressed to simplify the
problem)

4.1.2. Every leg has the walk pattern in common.

4.1.3.1f we have a millipede walk freely with its
legs in the air, the tip of each leg traces
along a certain circle path called the circle
of reference (Fig. 2). When it walks on the
floor, the circle of reference is trimmed by

the ground into a segment of the circle.

Initially, we define the wave velocity v,,,., the
millipede’s body velocity uupeq., the maximum
foot clearance h, the radius of the circle of
reference r, the angle @ at the center of the circle
of reference standing on the arc along which the
tip actually traces, the transference time t,, and

the support time, during the propulsive stage, tp.

Having observed a cut leg of a walking millipede,
we found that the cut leg swung cyclically. Hence,
the following theoretical analysis is carried out on
the assumption that every leg swings along a
certain circle namely the circle of reference (Fig.
2). As the claw touches the ground, the trajectory
is reduced to a semicircle as shown by a black
path in Fig. 2. An observer who moves along with
the millipede’s body velocity can inspect the path.
Consequently, if the observer motionlessly views a
walking millipede from the side, the cycloid
trajectory appears (Fig. 3).

)

Floor
00 2 4 B

Fig. 3. The cycloid trajectory and the predicted
locus of the tip of a leg
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The line segment AB is where the claw places

on; hence all points in the segment AB coincide

at a certain point.

As a leg push behind on the ground, the
millipede’s body move forward at the same speed
as the pushing claw. Consequently, the circle of
reference moves along at the same speed as its
body, v, The observed wave velocity is a
linear velocity of each swinging leg, in the
transfer stage (Fig. 2).

* during the transfer stage:

(4)

!Uw ave

or
£

* during the propulsive stage:

2rsin (%)
Unnitlipede = (5)
tp
From the definition,
T =tp+ tp. (6)

Combining (4), (5), and (6),

2rsin (4
Or N rsin(§) .
v

wave Um:'l.h‘pede

T=

(7)

Moreover, from the definition and some
computing, we have

h=r—rcos(§). (8)
From the system of equations (7) and (8),

knowing T, h, v,,,., and Unmillipede; 1t 15 possible to
find the value of r and 6.

Maintaining the constant wave velocity v,

wave’

we

define the angular frequency, valid only during

=9 . 9)

Couubining (5), (6), and (9), we attain

the transfer stage,

7
e — 10
. T_ 2rsin (%) (10)
vmlflﬁpede

As a result, the (z, y) trajectory is defined
through a cycloid function of time ¢ as follow.

T = Upigipeqe  t'— Tsin (ot '), (11a)

y = —rcos(wt'). (11b)

For a leg 7, defining a particular distance from

the point of reference to the leg, d, = d - i, where

d is the distance between any two consecutive

legs, it is possible to calculate the corresponding

= Yo 02)

To  generalize the equations (11), the

phase ¢, by:

corresponding phase is added, hence
T = Vitipede * (t . ¢z) — rsin (a)(t'_ ﬂ))’
y = —rcos(a)(t'— 1?51))1

hence

(/)

T, = Ve -(t‘— 4 J+ rsin(kd, — wt'),
(13a)
y, = —rcos(kd, — wt"), (13b)

where k = % is the wave number.
wave

The equations (13) are valid only during the
transfer stage. To resolve this partial validity
problem, we define an unreal time t’ = g(f) by

the unit-step function,

1 where z > 0
te) = 0 where £ <0’

as follow:

gt +T) = g(t) + t,,
and for 0<¢t < T,

g(t, t[U®) -U@-t.)]+T[U(E~1t,)- Ut - )],
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4.2. Correspondence between the millipede wave

and the periodic wave

We perform an experiment by making 4
millipedes walk in a straight transparent plastic
tube and measuring their body velocities, wave
velocities, cycle times, frequencies, and
wavelengths, for 3 times. Then, compare these

acquired data, shown in the table 1.

As a result, we attain equality between v, and

wave
the product f4, i.e. v, = fi.

This corresponds to a property of the continuous
periodic wave, and leads to the confirmation of

the assumption (4.1.2).

No ! A i3 v v_
(Hz) (em) (cm/s) | (em/s) cm/s

1 1.17 1.60 1.9 1.9 2.0

1.19 1.60 1.9 1.8 1.8

1.18 1.60 1.9 2.0 2.0

2 0.85 1.72 1.5 1.4 1.5

0.59 1.72 1.0 1.0 1.0

0.85 1.72 1.5 14 1.3

3 1.16 1.53 1.8 1.7 2.3

1.05 1.53 1.6 1.5 2.2

1.27 1.53 1.9 1.9 2.6

4 1.29 1.45 1.9 2.1 3.2

1.33 1.45 1.9 2.1 3.4

1.37 1.45 2.0 2.0 27

Table 1 The acquired data and comparison.
4.3. Experimental Confirmation: snap ¢

To consolidate the theoretically derived equations
(13), we carried out two experiments observing
fitness of the model with the actual millipede's
walk when the time and the ordinal number of
leg are set to be constant. In this section, a
number of millipede’s ventral-view photographs

are observed. The angle ¥ between each leg and

the normal line, perpendicular to its body, is
measured (Fig. 4). From five sinusoidal regression
analyses of the ordinal numbers of 24 legs and the
corresponding  angles, the coefficients of
determination * are 0.805 on average and the
highest value reaches 0.847. This shows that the
ordinal number of a leg i and the corresponding
angle ¥ are significantly related in sine function,
w = Asin(ki— p).

Fig. 4 A sample ventral-view photograph (taken
by the finalist) used in the experiment 4.3, and

the lines drawn in measuring angles

This result proves the correspondence between

the actual motion of the leg and our model.

Regression Analysis of the Picture 2
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Fig. 5 A sample plot of data and the regression
curve from the NLREG program
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4.4. Experimental confirmation: fix d constant

To observe the fitness of the derived model, an
experiment was carried out by the following
methodology (Fig. 6). First, after coloring a tip of
a leg of a millipede, we took some lateral-view
digital videos of the walking millipede and
captured them frame by frame every 1/6 second.
Thereafter, we drew a grid on the pictures and
read the coordinate of the colored tip of each
frame. Finally, we carried out ten regression
analyses of seven positions (z, y) of the tips of
legs, using time domain. The coefficients of
determination 7* are at the average of 0.887 in z-t
fitting and 0.879 in y-t fitting, which show a
significant relationship between the computed

trajectory and the actual one.

Fig. 6 A sample snapped lateral-view photograph
(the millipede is walking left) and the points
plotted in the experiment 4.4

5. Turning

Applying the straight walk’s equations (13), we
theoretically predict a turning procedure of a
millipede. The analysis is based on the
assumption that the millipede turns in a circular
arc and during the turn, the X scales of the inner

and outer legs’ trajectory change in proportion.

{ L 5

TOP VIEW

Fig. 7 Variables and points used in the turning

analysis

According to the Fig. 7, let AB be an outer arc,

C_]j be a center arc, E_F be an inner arc, and I
denote the width of the millipede’s body. Suppose
that the millipede changes the direction by an
angle ¢ and a radius L. The angle ¢ determines
the degree of turning, while the radius L
determines the width of the turning arc..

[BF| 1y L

Then, 1—=r= =
CD| (L+Dg L+4

=p.. (14)

‘AB (L+D¢ L+l _
nd —= = =pout'
CD| (L+4)¢ L+4

a

(15)

Hence, the turning equation is

z'= [wmmedﬂ -(t'— d J-}- rsin (kd, — ot ')} D
v

wave

where P € {D,, s} (16)

Note that the proportion depends on the radius L
only, while the angle ¢ affects the turning time
interval t,,., by:

_4E+Y)

millipede

t

turn

(17b)
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6. Simulating programs
6.1. The 2-D simulation program

The program is written in C++ so as to visualize
the result of the experiment 4.3, which proves the
correspondence between the motion of the leg and

the circular motion.

Through the observation, the program result is
close to the actual gait in comparison with the
ventral-view and lateral-view videos, taken during

the experiment 4.3 and 4.4, respectively.
6.2. The 3-D simulation program

The program is written in Delphi so as to

visualize the result of the study.

Through the observation, the program result is

close to the actual gait.
7. Conclusion

In this paper, we have developed the model for a
periodic gait of a millipede focusing on the
trajectory of the tip of a leg. Two experiments,
namely 4.2 and 4.3, were done in order to
substantiate some assumptions used in the
theoretical analysis. Subsequently, the results
from the theoretical analysis are affirmed by the
experiment 4.4, using regression analyses.
Additionally, a turning procedure is predicted,
but with some neglects. All the results are again
verified by 2-D and 3-D computer graphic

visualizations.

While our focus has been on the straight walk,
the model for turning is not yet settled. As a
consequence, the future work in this area will
address the development of turning model, the

study of adaptive behavior of the millipede under

various conditions, and the incorporation of more

unstructured terrain.

This paper contributes to the progress in multi-
legged robot, as well as in understanding the

mystery of the natural system.
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