- Order:
- Duration: 3:05
- Published: 18 Jul 2006
- Uploaded: 03 Aug 2011
- Author: FueledByRamen
where: :P is the pressure, :F is the normal force, :A is the area.
Pressure is a scalar quantity. It relates the vector surface element (a vector normal to the surface) with the normal force acting on it. The pressure is the scalar proportionality constant that relates the two normal vectors:
:
The minus sign comes from the fact that the force is considered towards the surface element, while the normal vector points outwards.
It is incorrect (although rather usual) to say "the pressure is directed in such or such direction". The pressure, as a scalar, has no direction. It is the force given by the previous relationship to the quantity that has a direction, not the pressure. If we change the orientation of the surface element the direction of the normal force changes accordingly, but the pressure remains the same.
Pressure is transmitted to solid boundaries or across arbitrary sections of fluid normal to these boundaries or sections at every point. It is a fundamental parameter in thermodynamics and it is conjugate to volume.
The SI unit for pressure is the pascal (Pa), equal to one newton per square meter (N/m2 or kg·m−1·s−2). This special name for the unit was added in 1971; before that, pressure in SI was expressed simply as N/m2.
Non-SI measures such as pounds per square inch and bar are used in some parts of the world, primarily in the United States of America. The cgs unit of pressure is the barye (ba), equal to 1 dyn·cm−2 or 0.1 Pa. Pressure is sometimes expressed in grams-force/cm2, or as kg/cm2 and the like without properly identifying the force units. But using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as units of force is expressly forbidden in SI. The technical atmosphere (symbol: at) is 1 kgf/cm2 (14.223 psi).
Since a system under pressure has potential to perform work on its surroundings, pressure is a measure of potential energy stored per unit volume measured in J·m−3, related to energy density.
Some meteorologists prefer the hectopascal (hPa) for atmospheric air pressure, which is equivalent to the older unit millibar (mbar). Similar pressures are given in kilo pascals (kPa) in most other fields, where the hecto- prefix is rarely used. The inch of mercury is still used in the United States. Oceanographers usually measure underwater pressure in decibars (dbar) because an increase in pressure of 1 dbar is approximately equal to an increase in depth of 1 meter. Scuba divers often use a manometric rule of thumb: the pressure exerted by ten meters depth of water is approximately equal to one atmosphere. The increase in pressure at 34 feet of fresh water or 33 feet of sea water is one atm.
The standard atmosphere (atm) is an established constant. It is approximately equal to typical air pressure at earth mean sea level and is defined as follows: :standard atmosphere = 101,325 Pa = 101.325 kPa = 1,013.25 hPa.
Because pressure is commonly measured by its ability to displace a column of liquid in a manometer, pressures are often expressed as a depth of a particular fluid (e.g., centimetres of water, mm or inches of mercury). The most common choices are mercury (Hg) and water; water is nontoxic and readily available, while mercury's high density allows a shorter column (and so a smaller manometer) to be used to measure a given pressure. The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh. Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely. When millimeters of mercury or inches of mercury are quoted today, these units are not based on a physical column of mercury; rather, they have been given precise definitions that can be expressed in terms of SI units. One mmHg (millimeter of mercury) is equal to one torr. The water-based units still depend on the density of water, a measured, rather than defined, quantity. These manometric units are still encountered in many fields. Blood pressure is measured in millimeters of mercury in most of the world, and lung pressures in centimeters of water are still common.
Gauge pressure is often given in units with 'g' appended, e.g. 'kPag' or 'psig', and units for measurements of absolute pressure are sometimes given a suffix of 'a', to avoid confusion, for example 'kPaa', 'psia'. However, the US National Institute of Standards and Technology recommends that, to avoid confusion, any modifiers be instead applied to the quantity being measured rather than the unit of measure For example, "Pg = 100 psi" rather than "P = 100 psig".
Presently or formerly popular pressure units include the following:
Another example is of a common knife. If we try and cut a fruit with the flat side it obviously won't cut. But if we take the thin side, it will cut smoothly. The reason is that the flat side has a greater surface area (less pressure) and so it does not cut the fruit. When we take the thin side, the surface area is reduced and so it cuts the fruit easily and quickly. This is one example of a practical application of pressure.
The gradient of pressure is called the force density. For gases, pressure is sometimes measured not as an absolute pressure, but relative to atmospheric pressure; such measurements are called gage pressure (also spelled gauge pressure). An example of this is the air pressure in an automobile tire, which might be said to be "220 kPa/32psi", but is actually 220 kPa/32 psi above atmospheric pressure. Since atmospheric pressure at sea level is about 100 kPa/14.7 psi, the absolute pressure in the tire is therefore about 320 kPa/46.7 psi. In technical work, this is written "a gage pressure of 220 kPa/32 psi". Where space is limited, such as on pressure gauges, name plates, graph labels, and table headings, the use of a modifier in parentheses, such as "kPa (gage)" or "kPa (absolute)", is permitted. In non-SI technical work, a gage pressure of 32 psi is sometimes written as "32 psig" and an absolute pressure as "32 psia", though the other methods explained above that avoid attaching characters to the unit of pressure are preferred.
Gauge pressure is the relevant measure of pressure wherever one is interested in the stress on storage vessels and the plumbing components of fluidics systems. However, whenever equation-of-state properties, such as densities or changes in densities, must be calculated, pressures must be expressed in terms of their absolute values. For instance, if the atmospheric pressure is 100 kPa, a gas (such as helium) at 200 kPa (gage) (300 kPa [absolute]) is 50 % denser than the same gas at 100 kPa (gage) (200 kPa [absolute]). Focusing on gage values, one might erroneously conclude the first sample had twice the density of the second one.
A closely related quantity is the stress tensor σ, which relates the vector force F to the vector area A via :
This tensor may be divided up into a scalar part (pressure) and a traceless tensor part shear. The shear tensor gives the force in directions parallel to the surface, usually due to viscous or frictional forces. The stress tensor is sometimes called the pressure tensor, but in the following, the term "pressure" will refer only to the scalar pressure.
According to the theory of general relativity pressure increases the strength of a gravitational field (see stress-energy tensor) and so adds to the mass-energy cause of gravity. This effect is unnoticeable at every-day pressures but is significant in neutron stars, although it has not been experimentally tested.
Fluid pressure occurs in one of two situations: :1. an open condition, called "open channel flow" ::a. the ocean, ::b. swimming pool, or ::c. the atmosphere; or :2. a closed condition, called closed conduits ::a. water line, or ::b. gas line.
Pressure in open conditions usually can be approximated as the pressure in "static" or non-moving conditions (even in the ocean where there are waves and currents), because the motions create only negligible changes in the pressure. Such conditions conform with principles of fluid statics. The pressure at any given point of a non-moving (static) fluid is called the hydrostatic pressure.
Closed bodies of fluid are either "static," when the fluid is not moving, or "dynamic," when the fluid can move as in either a pipe or by compressing an air gap in a closed container. The pressure in closed conditions conforms with the principles of fluid dynamics.
The concepts of fluid pressure are predominantly attributed to the discoveries of Blaise Pascal and Daniel Bernoulli. Bernoulli's Equation can be used in almost any situation to determine the pressure at any point in a fluid. The equation makes some assumptions about the fluid. Such as the fluid being ideal and incompressible
Where: :p = pressure of the fluid :γ = ρg= density*acceleration of gravity = specific weight of the fluid.
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and lift the liquid to form vapor bubbles inside the bulk of the substance. Bubble formation deeper in the liquid requires a higher pressure, and therefore higher temperature, because the fluid pressure increases above the atmospheric pressure as the depth increases.
The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called partial vapor pressure.
Category:Atmospheric thermodynamics Category:Underwater diving Category:Fundamental physics concepts Category:Fluid dynamics Category:Fluid mechanics Category:Hydraulics Category:Thermodynamics Category:State functions
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.