The Julian calendar has a regular year of 365 days divided into 12 months with a leap day added to February every four years. The Julian year is, therefore, on average 365.25 days long. The motivation for most calendars is to fix the number of days between return of the cycle of seasons (from Spring equinox to the next Spring equinox, for example), so that the calendar could be used as an aid to planting and other season-related activities. The cycle of seasons (tropical year) had been known since ancient times to be about 365 and 1/4 days long.
The more modern Gregorian calendar eventually superseded the Julian calendar: the reason is that a tropical year (or solar year) is actually about 11 minutes shorter than 365.25 days. These extra 11 minutes per year in the Julian calendar caused it to gain about three days every four centuries, when compared to the observed equinox times and the seasons. In the Gregorian calendar system, first proposed in the 16th century, this problem was dealt with by dropping some calendar days, in order to realign the calendar and the equinox times. Subsequently, the Gregorian calendar drops three leap year days across every four centuries.
The Julian calendar remained in use into the 20th century in some countries as a civil calendar, but has been replaced by the Gregorian calendar in nearly all countries. The Roman Catholic Church, the Eastern Rite Catholic Churches and Protestant churches have replaced the Julian calendar with the Gregorian calendar; however, the Orthodox Church (with the exception of Romania, Estonia and Finland) still use the Julian calendar for calculating the dates of moveable feasts. Some Orthodox churches have adopted the Revised Julian calendar for the observance of fixed feasts, while other Orthodox churches retain the Julian calendar for all purposes. The Julian calendar is still used by the Berber people of North Africa, and on Mount Athos.
The notation "Old Style" (OS) is sometimes used to indicate a date in the Julian calendar, as opposed to "New Style" (NS), which either represents the Julian date with the start of the year as 1 January or a full mapping onto the Gregorian calendar. This notation is used in reference to dates from tsarist Russia (the country did not switch to the new calendar until 1918).
According to the later writers Censorinus and Macrobius, the ideal intercalary cycle consisted of ordinary years of 355 days alternating with intercalary years, alternately 377 and 378 days long. On this system, the average Roman year would have had 366¼ days over four years, giving it an average drift of one day per year relative to any solstice or equinox. Macrobius describes a further refinement wherein, for 8 years out of 24, there were only three intercalary years, each of 377 days. This refinement averages the length of the year to 365¼ days over 24 years. In practice, intercalations did not occur schematically according to these ideal systems, but were determined by the pontifices. So far as can be determined from the historical evidence, they were much less regular than these ideal schemes suggest. They usually occurred every second or third year, but were sometimes omitted for much longer, and occasionally occurred in two consecutive years.
If managed correctly this system allowed the Roman year, on average, to stay roughly aligned to a tropical year. However, since the Pontifices were often politicians, and because a Roman magistrate's term of office corresponded with a calendar year, this power was prone to abuse: a Pontifex could lengthen a year in which he or one of his political allies was in office, or refuse to lengthen one in which his opponents were in power. If too many intercalations were omitted, as happened after the Second Punic War and during the Civil Wars, the calendar would drift rapidly out of alignment with the tropical year. Moreover, because intercalations were often determined quite late, the average Roman citizen often did not know the date, particularly if he were some distance from the city. For these reasons, the last years of the pre-Julian calendar were later known as "years of confusion". The problems became particularly acute during the years of Julius Caesar's pontificate before the reform, 63–46 BC, when there were only five intercalary months, whereas there should have been eight, and none at all during the five Roman years before 46 BC. For example, Caesar crossed the Rubicon on January 10, 49 BC of the official calendar, but the official calendar had drifted so far away from the seasons that it was actually mid-autumn.
The reform was intended to correct this problem permanently, by creating a calendar that remained aligned to the sun without any human intervention. This feature proved useful very soon after the new calendar came into effect. Varro used it in 37 BC to fix calendar dates for the start of the four seasons, which would have been impossible only 8 years earlier. A century later, when Pliny gave the dates (established by Caesar) of some natural and astronomical phenomena along the year, such as the dates of the solstices and the equinoxes (the 8th day before the calends of January, April, July and October (25 December, 25 March, 24 June, 24 September, respectively)), this stability had become an ordinary fact of life.
In Egypt, a fixed year of 365 days was in use, drifting by one day against the sun in four years. An unsuccessful attempt to add an extra day every fourth year was made in 238 BC (Decree of Canopus). Caesar probably experienced the solar calendar in that country. He landed in the Nile delta in October 48 BC and soon became embroiled in the Ptolemaic dynastic war, especially when Cleopatra managed to be "introduced" to him in Alexandria. Caesar imposed a peace, and a banquet was held to celebrate the event. Lucan depicted Caesar talking to a wise man called Acoreus during the feast, stating his intention to create a calendar more perfect than that of Eudoxus (Eudoxus was popularly credited with having determined the length of the year to be 365¼ days). But the war soon resumed and Caesar was attacked by the Egyptian army for several months until he achieved victory. He then enjoyed a long cruise on the Nile with Cleopatra before leaving the country in June 47 BC.
Caesar returned to Rome in 46 BC and, according to Plutarch, called in the best philosophers and mathematicians of his time to solve the problem of the calendar. Pliny says that Caesar was aided in his reform by the astronomer Sosigenes of Alexandria who is generally considered the principal designer of the reform. Sosigenes may also have been the author of the astronomical almanac published by Caesar to facilitate the reform. Eventually, it was decided to establish a calendar that would be a combination between the old Roman months, the fixed length of the Egyptian calendar, and the 365¼ days of the Greek astronomy. According to Macrobius, Caesar was assisted in this by a certain Marcus Flavius.
A passage in Macrobius has been interpreted to mean that Caesar decreed that the first day of the new calendar began with the new moon which fell on the night of 1/2 January 45 BC. However, more recent studies of the manuscripts have shown that the word on which this is based, which was formerly read as lunam, should be read as linam, meaning that Macrobius was simply stating that Caesar published an edict giving the revised calendar.
The Julian months were formed by adding ten days to a regular pre-Julian Roman year of 355 days, creating a regular Julian year of 365 days: Two extra days were added to Ianuarius, Sextilis (later changed in name to Augustus) and December, and one extra day was added to Aprilis, Iunius, September and November. Februarius was not changed in ordinary years, and so continued to be the traditional 28 days. Thus, the ordinary (i.e., non leap year) lengths of all of the months were set by the Julian calender to the same values they still hold today. (See Debunked month length myths below for stories purporting otherwise).
Macrobius states that the extra days were added immediately before the last day of each month to avoid disturbing the position of the established Roman fasti (days prescribed for certain events) relative to the start of the month. However, since Roman dates after the Ides of the month counted down toward the start of the next month, the extra days had the effect of raising the initial value of the count of the day after the Ides. Romans of the time born after the Ides of a month responded differently to the effect of this change on their birthdays. Mark Antony kept his birthday on the 14th day of Ianuarius, which changed its date from a.d. XVII Kal. Feb. to a.d. XIX Kal. Feb., a date that had previously not existed. Livia kept the date of her birthday unchanged at a.d. III Kal. Feb., which moved it from the 28th to the 30th day of Ianuarius, a day that had previously not existed. Augustus kept his on the 23rd day of September, but both the old date (a.d. VIII Kal. Oct.) and the new (a.d. IX Kal. Oct.) were celebrated in some places.
The old intercalary month was abolished. The new leap day was dated as ante diem bis sextum Kalendas Martias, usually abbreviated as a.d. bis VI Kal. Mart.; hence it is called in English the bissextile day. The year in which it occurred was termed annus bissextus, in English the bissextile year.
There is debate about the exact position of the bissextile day in the early Julian calendar. The earliest direct evidence is a statement of the 1st century jurist Celsus, who states that there were two halves of a 48-hour day, and that the intercalated day was the "posterior" half. An inscription from AD 168 states that a.d. V Kal. Mart. was the day after the bissextile day. The 19th century chronologist Ideler argued that Celsus used the term "posterior" in a technical fashion to refer to the earlier of the two days, which requires the inscription to refer to the whole 48-hour day as the bissextile. Some later historians share this view. Others, following Mommsen, take the view that Celsus was using the ordinary Latin (and English) meaning of "posterior". A third view is that neither half of the 48-hour "bis sextum" was originally formally designated as intercalated, but that the need to do so arose as the concept of a 48-hour day became obsolete.
There is no doubt that the bissextile day eventually became the earlier of the two days. In 238 Censorinus stated that it was inserted after the Terminalia (23 February) and was followed by the last five days of February, i.e. a. d. VI, V, IV, III and prid. Kal. Mart. (which would be the 24th to 28th days of February in a common year and the 25th to the 29th days in a leap year). Hence he regarded the bissextum as the first half of the doubled day. All later writers, including Macrobius about 430, Bede in 725, and other medieval computists (calculators of Easter) followed this rule, as did the liturgical calendar of the Roman Catholic Church until 1970.
During the late Middle Ages days in the month came to be numbered in consecutive day order. Consequently, the leap day was considered to be the last day in February in leap years, i.e. 29 February, which is its current position.
The historic sequence of leap years in this period is not given explicitly by any ancient source, although the existence of the triennial leap year cycle is confirmed by an inscription that dates from 9 or 8 BC. The chronologist Joseph Scaliger established in 1583 that the Augustan reform was instituted in 8 BC, and inferred that the sequence of leap years was 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9 BC, AD 8, 12 etc. This proposal is still the most widely accepted solution, although Ideler and Mommsen, among others, argued that there was an additional bissextile day in the first year of the Julian reform, i.e. that 45 BC was also a leap year.
Around the time Scaliger's proposal was published, several other solutions were suggested on the same data. In 1590, Bunting proposed the sequence 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12 BC, AD 4, 8, 12 etc. This solution assumed the same phase for the triennial cycle as Scaliger, but differed on the date of its start (45 vs 42 BC) and end (12 vs 9 BC) and on the date at which the correct cycle was resumed (AD 4 vs 8). Other scholars proposed a different phase. Also in 1590, Christmann published an influential translation of Alfraganus, which argued that Caesar had intended leap years to fall in every fourth reformed year, i.e. in 42, 38..., suggesting a triennial cycle of 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10 BC. Through an arithmetical error in interpreting years of the Julian reform, he supposed that the correct cycle had resumed in AD 7, but other scholars followed the same line of argument while correcting for this. Harriot considered the sequence 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10 BC, AD 4, 8, 12 etc., while in 1614 Kepler discussed 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10 BC, AD 8, 12 etc. However Scaliger's solution became generally adopted.
Other solutions have occasionally been proposed since the 17th century. In 1883 the German chronologist Matzat proposed 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11 BC, AD 4, 8, 12 etc., based on a passage in Dio Cassius that mentions a leap day in 41 BC that was said to be contrary to (Caesar's) rule. In 1889, Soltau suggested a modified version of this: 45, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11 BC, AD 8, 12 etc. In the 1960s Radke argued the reform was actually instituted when Augustus became pontifex maximus in 12 BC, suggesting the sequence 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12 BC, AD 4, 8, 12 etc., the same solution which Bunting had proposed in 1590.
With the solutions of Scaliger, Kepler and Soltau, the Roman calendar was not finally aligned to the Julian calendar of later times until 25 February (a.d. V Kal. Mar.) AD 4. On Bunting's, Harriot's, Matzat's and Radke's solutions, the two calendars were aligned on 25 February 1 BC.
In 1999, an Egyptian papyrus was published that gives an ephemeris table for 24 BC with both Roman and Egyptian dates. While the Roman dates match the proleptic Julian calendar, they are not aligned with any previously proposed solution for the triennial cycle. One suggested resolution of this problem, which matches the data of the papyrus, is a new triennial sequence: 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8 BC, AD 4, 8, 12 etc. This sequence is very close to that proposed by Matzat, differing only in the date of the last triennial leap year. On it, the three excess leap days added during the years that the triennial cycle was in operation were backed out on the triennial cycle (5, 2 BC, AD 2), not the quadrennial cycle (5, 1 BC, AD 4 (Scaliger) or 8, 4 BC, AD 1 (Matzat)); the standard Julian leap year sequence began in AD 4, the 12th year of the Augustan reform; and the Roman calendar was finally aligned to the Julian calendar in 1 BC (with AD 1 the first full year of alignment).
The Romans later renamed months after Julius Caesar and Augustus, renaming Quintilis (originally, "the fifth month", with March = month 1) as Iulius (July) in 44 BC and Sextilis ("sixth month") as Augustus (August) in 8 BC. Quintilis was renamed to honour Caesar because it was the month of his birth. According to a senatus consultum quoted by Macrobius, Sextilis was renamed to honour Augustus because several of the most significant events in his rise to power, culminating in the fall of Alexandria, occurred in that month.
Other months were renamed by other emperors, but apparently none of the later changes survived their deaths. Caligula renamed September ("seventh month") as Germanicus; Nero renamed Aprilis (April) as Neroneus, Maius (May) as Claudius and Iunius (June) as Germanicus; and Domitian renamed September as Germanicus and October ("eighth month") as Domitianus. At other times, September was also renamed as Antoninus and Tacitus, and November ("ninth month") was renamed as Faustina and Romanus. Commodus was unique in renaming all twelve months after his own adopted names (January to December): Amazonius, Invictus, Felix, Pius, Lucius, Aelius, Aurelius, Commodus, Augustus, Herculeus, Romanus, and Exsuperatorius.
Much more lasting than the ephemeral month names of the post-Augustan Roman emperors were the names introduced by Charlemagne. He renamed all of the months agriculturally into Old High German. They were used until the 15th century, over 700 years after his rule, and continued with some modifications until the late 18th century in Germany and in the Netherlands. The names (January to December) were: Wintarmanoth (winter month), Hornung (the month when the male red deer sheds its antlers), Lentzinmanoth (Lent month), Ostarmanoth (Easter month), Wonnemanoth (love-making month), Brachmanoth (plowing month), Heuvimanoth (hay month), Aranmanoth (harvest month), Witumanoth (wood month), Windumemanoth (vintage month), Herbistmanoth (autumn/harvest month), and Heilagmanoth (holy month).
The original Roman names as fixed in 8 BC are still in use in North Africa, where Berber farmers use the Julian calendar in everyday life. They are pronounced today Yennair, Febrair, Mars, Ibril, Mai, Yuniu, Yulius, Ghusht, Shutambir, Ktuber, Nuwambir, Dujanbir, with local variations; they are also used often in classic Arabic and medieval Arabic texts when referring to the months of the solar calendar.
In 309 and 310, and from time to time thereafter, no consuls were appointed. When this happened, the consular date was given a count of years since the last consul (so-called "post-consular" dating). After 541, only the reigning emperor held the consulate, typically for only one year in his reign, and so post-consular dating became the norm. Similar post-consular dates were also known in the West in the early 6th century. The system of consular dating, long obsolete, was formally abolished in the law code of Leo VI, issued in 888.
Only rarely did the Romans number the year from the founding of the city (of Rome), ab urbe condita (AUC). This method was used by Roman historians to determine the number of years from one event to another, not to date a year. Different historians had several different dates for the founding. The Fasti Capitolini, an inscription containing an official list of the consuls which was published by Augustus, used an epoch of 752 BC. The epoch used by Varro, 753 BC, has been adopted by modern historians. Indeed, Renaissance editors often added it to the manuscripts that they published, giving the false impression that the Romans numbered their years. Most modern historians tacitly assume that it began on the day the consuls took office, and ancient documents such as the Fasti Capitolini which use other AUC systems do so in the same way. However, Censorinus, writing in the 3rd century AD, states that, in his time, the AUC year began with the Parilia, celebrated on 21 April, which was regarded as the actual anniversary of the foundation of Rome. Because the festivities associated with the Parilia conflicted with the solemnity of Lent, which was observed until the Saturday before Easter Sunday, the early Roman church did not celebrate Easter after 21 April.
While the Julian reform applied originally to the Roman calendar, many of the other calendars then used in the Roman Empire were aligned with the reformed calendar under Augustus. This led to the adoption of several local eras for the Julian calendar, such as the Era of Actium and the Spanish Era, some of which were used for a considerable time. Perhaps the best known is the Era of Martyrs, sometimes also called Anno Diocletiani (after Diocletian), which was often used by the Alexandrian Christians to number their Easters during the 4th and 5th centuries, and continues to be used by the Coptic and Ethiopian churches, as well as influencing the modern Ethiopian calendar.
In the Eastern Mediterranean, the efforts of Christian chronographers such as Annianus of Alexandria to date the Biblical creation of the world led to the introduction of Anno Mundi eras based on this event. The most important of these was the Etos Kosmou, used throughout the Byzantine world from the 10th century and in Russia until 1700. In the West, Dionysius Exiguus proposed the system of Anno Domini in 525. This era gradually spread through the western Christian world, once the system was adopted by Bede.
During the Middle Ages 1 January retained the name New Year's Day (or an equivalent name) in all Western European countries (affiliated with the Roman Catholic Church), since the medieval calendar continued to display the months from January to December (in twelve columns containing 28 to 31 days each), just as the Romans had. However, most of those countries began their numbered year on 25 December (the Nativity of Jesus), 25 March (the Incarnation of Jesus, approximating the vernal equinox), or even Easter, as in France (see the Liturgical year article for more details).
In England, even before 1752, 1 January was sometimes treated as the start of the new year – for example by Pepys – while the "year starting 25th March was called the Civil or Legal Year". To reduce misunderstandings on the date, it was not uncommon in parish registers for a new year heading after 24 March, for example 1661, to have another heading at the end of the following December indicating "1661/62". This was to explain to the reader that the year was 1661 Old Style and 1662 New Style.
Most Western European countries shifted the first day of their numbered year to 1 January while they were still using the Julian calendar, before they adopted the Gregorian calendar, many during the 16th century. The following table shows the years in which various countries adopted 1 January as the start of the year. Eastern European countries, with populations showing allegiance to the Orthodox Church, began the year on 1 September from about 988.
Country !! Year starting1 January !!Adoption of new calendar | ||
Republic of Venice | 1522 | 1582 |
Holy Roman Empire | 1544 | |
Spain, Portugal | 1556 | |
Prussia, Denmark | Denmark/Norway | 1559 |
Sweden | 1559 | |
France | Edict of Roussillon>1564 | |
Southern Netherlands | 1576 | |
Lorraine (province) | Lorraine | 1579 |
Holland, Zeeland | 1583 | |
Dutch Republic except Holland and Zeeland | 1583 | |
Kingdom of Scotland | Scotland | 1600 |
Russia | 1700 | |
Grand Duchy of Tuscany | Tuscany | 1721 |
British Empire excluding Scotland | 1752 | |
Serbia | 1804 |
:30, 29, 30, 29, 30, 29, 30, 29, 30, 29, 30, 29.
He then thought that Julius Caesar added one day to every month except February, a total of 11 more days, giving the year 365 days. A leap day could now be added to the extra short February:
:31, 29/30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30.
He then said Augustus changed this to:
:31, 28/29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
so that the length of Augustus would not be shorter than (and therefore inferior to) the length of Iulius, giving us the irregular month lengths which are still in use.
There is abundant evidence disproving this theory. First, a wall painting of a Roman calendar predating the Julian reform has survived, which confirms the literary accounts that the months were already irregular before Julius Caesar reformed them:
:29, 28, 31, 29, 31, 29, 31, 29, 29, 31, 29, 29.
Also, the Julian reform did not change the dates of the Nones and Ides. In particular, the Ides were late (on the 15th rather than 13th) in March, May, July and October, showing that these months always had 31 days in the Roman calendar, whereas Sacrobosco's theory requires that March, May and July were originally 30 days long and that the length of October was changed from 29 to 30 days by Caesar and to 31 days by Augustus. Further, Sacrobosco's theory is explicitly contradicted by the 3rd and 5th century authors Censorinus and Macrobius, and it is inconsistent with seasonal lengths given by Varro, writing in 37 BC, before the Augustan reform, with the 31-day Sextilis given by the new Egyptian papyrus from 24 BC, and with the 28-day February shown in the Fasti Caeretani, which is dated before 12 BC.
The Gregorian calendar was soon adopted by most Catholic countries (e.g. Spain, Portugal, Poland, most of Italy). Protestant countries followed later, and the countries of Eastern Europe adopted the "new calendar" even later. In the British Empire (including the American colonies), Wednesday was followed by Thursday . For 12 years from 1700 Sweden used a modified Julian calendar, and adopted the Gregorian calendar in 1753, but Russia remained on the Julian calendar until 1918 ( became ), after the Russian Revolution (which is thus called the "October Revolution" though it occurred in Gregorian November), while Greece continued to use it until 1924.
Throughout the long transition period, the Julian calendar has continued to diverge from the Gregorian. This has happened in whole-day steps, as dropped leap-years on certain centennial years in the Gregorian calendar continued to be leap years in the Julian calendar. Thus, in the year 1700 (after Feb. 29, 1700) the difference increased to 11 days; in 1800, 12; and in 1900, 13. Since 2000 was a leap year according to the Gregorian calendar, the Julian calendar remained in step with it: (Julian) fell on (Gregorian). This difference will persist through the last day of February, 2100 (Julian), which is not a Gregorian leap year, but is a Julian leap year. Monday (Julian) falls on Monday (Gregorian), a full two-week discrepancy.
Although all Eastern Orthodox countries (most of them in Eastern or Southeastern Europe) had adopted the Gregorian calendar (or in the case of Greece, possibly the Revised Julian calendar) by 1927, their national churches had not. The "Revised Julian calendar" was proposed during a synod in Constantinople in May 1923, consisting of a solar part which was and will be identical to the Gregorian calendar until the year 2800, and a lunar part which calculated Pascha (Easter) astronomically at Jerusalem. All Orthodox churches refused to accept the lunar part, so almost all Orthodox churches continue to celebrate Pascha according to the Julian calendar (with the exception of the Estonian Orthodox Church and the Finnish Orthodox Church).
The solar part of the Revised Julian calendar was accepted by only some Orthodox churches. Those that did accept it, with hope for improved dialogue and negotiations with the Western denominations, were the Ecumenical Patriarchate of Constantinople, the Patriarchates of Alexandria, Antioch, the Orthodox Churches of Greece, Cyprus, Romania, Poland, Bulgaria (the last in 1963), and the Orthodox Church in America (although some OCA parishes are permitted to use the Julian calendar). Thus these churches celebrate the Nativity on the same day that Western Christians do, 25 December Gregorian until 2800. The Orthodox Churches of Jerusalem, Russia, Serbia, Macedonia, Georgia, Ukraine, and the Greek Old Calendarists and other groups continue to use the Julian calendar, thus they celebrate the Nativity on 25 December Julian (which is 7 January Gregorian until 2100). The Russian Orthodox Church has some parishes in the West which celebrate the Nativity on 25 December Gregorian. Parishes of the Orthodox Church in America Bulgarian Diocese, both before and after the 1976 transfer of that diocese from the Russian Orthodox Church Outside Russia to the Orthodox Church in America, were permitted to use the 25 December Gregorian date. Some Old Calendarist groups which stand in opposition to the state churches of their homelands will use the Great Feast of the Theophany (6 January Julian/19 January Gregorian) as a day for religious processions and the Great Blessing of Waters, to publicize their cause.
The Oriental Orthodox Churches generally use the local calendar of their homelands. However when calculating the Nativity Feast most observe the Julian calendar. This was traditionally for the sake of unity throughout Christendom. In the West, some Oriental Orthodox Churches either use the Gregorian calendar or are permitted to observe the Nativity according to it. The Armenian Apostolic Orthodox Church celebrates the Nativity as part of the Feast of Theophany according to its traditional calendar.
Category:Roman calendar Calendar Category:Eastern Christian liturgy Category:Liturgical calendars
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.