- Order:
- Duration: 0:56
- Published: 22 May 2007
- Uploaded: 21 Aug 2011
- Author: HDCYT
In computing, a bit can also be defined as a variable or computed quantity that can have only two possible values. These two values are often interpreted as binary digits and are usually denoted by the Arabic numerical digits 0 and 1. Indeed, the term "bit" is a contraction of binary digit. The two values can also be interpreted as logical values (true/false, yes/no), algebraic signs (+/−), activation states (on/off), or any other two-valued attribute. The correspondence between these values and the physical states of the underlying storage or device is a matter of convention, and different assignments may be used even within the same device or program. The length of a binary number may be referred to as its "bit-length."
In information theory, one bit is typically defined as the uncertainty of a binary random variable that is 0 or 1 with equal probability, or the information that is gained when the value of such a variable becomes known.
In quantum computing, a quantum bit or qubit is a quantum system that can exist in superposition of two bit values, "true" and "false".
The symbol for bit, as a unit of information, is either simply "bit" (recommended by the ISO/IEC standard 80000-13 (2008)) or lowercase "b" (recommended by the IEEE 1541 Standard (2002)).
Ralph Hartley suggested the use of a logarithmic measure of information in 1928. Claude E. Shannon first used the word bit in his seminal 1948 paper A Mathematical Theory of Communication. He attributed its origin to John W. Tukey, who had written a Bell Labs memo on 9 January 1947 in which he contracted "binary digit" to simply "bit". Interestingly, Vannevar Bush had written in 1936 of "bits of information" that could be stored on the punched cards used in the mechanical computers of that time. The first programmable computer built by Konrad Zuse used binary notation for numbers.
==Representation==
In the 1950s and 1960s these methods were largely supplanted by magnetic storage devices such as magnetic core memory, magnetic tapes, drums, and disks, where a bit was represented by the polarity of magnetization of a certain area of a ferromagnetic film. The same principle was later used in the magnetic bubble memory developed in the 1980s, and is still found in various magnetic strip items such as metro tickets and some credit cards.
In modern semiconductor memory, such as dynamic random access memory or flash memory, the two values of a bit may be represented by two levels of electrical charge stored in a capacitor. In programmable logic arrays and certain types of read-only memory, a bit may be represented by the presence or absence of a conducting path at a certain point of a circuit. In optical discs, a bit is encoded as the presence or absence of a microscopic pit on a reflective surface. In one-dimensional bar codes, bits are encoded as the thickness of alternating black and white lines.
Computers usually manipulate bits in groups of a fixed size, conventionally named "words". The number of bits in a word varies with the computer model; typically between 8 to 80 bits; or even more in some specialized machines.
The International Electrotechnical Commission's standard IEC 60027 specifies that the symbol for binary digit should be "bit", and this should be used in all multiples, such as "kbit" (for kilobit). However, the letter "b" (in lower case) is widely used too. The letter "B" (upper case) is both the standard and customary symbol for byte.
In telecommunications (including computer networks), data transfer rates are usually measured in bits per second (bit/s) or its multiples, such as kbit/s. (This unit is not to be confused with baud.)
In the 1980s, when bitmapped computer displays became popular, some computers provided specialized bit block transfer ("bitblt" or "blit") instructions to set or copy the bits that corresponded to a given rectangular area on the screen.
In most computers and programming languages, when a bit within a group of bits such as a byte or word is to be referred to, it is usually specified by a number from 0 (not 1) upwards corresponding to its position within the byte or word. However, 0 can refer to either the most significant bit or to the least significant bit depending on the context, so the convention of use must be known.
Category:Primitive types Category:Data types Category:Units of information
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.