
- Order:
- Duration: 3:53
- Published: 05 Apr 2010
- Uploaded: 01 Aug 2011
- Author: victorragingredlma1
A landmine is usually a weight-triggered explosive device which is intended to damage a target—either human or inanimate—by means of a blast and/or fragment impact.
The name originates from the ancient practice of military mining, where tunnels were dug under enemy fortifications or troop formations by sappers. These killing tunnels ("mines") were at first collapsed to destroy targets located above, but they were later filled with explosives and detonated in order to cause greater devastation.
Nowadays, in common parlance, land mines generally refer to devices specifically manufactured as anti-personnel or anti-vehicle weapons and should be distinguished from improvised explosive devices ("IEDs").
The use of land mines is controversial because of their potential as indiscriminate weapons.
They can remain dangerous many years after a conflict has ended, harming the economy of many developing nations. With pressure from a number of campaign groups organised through the International Campaign to Ban Landmines, a global movement to prohibit their use led to the 1997 Convention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-Personnel Mines and on their Destruction. As of 2011, a total of 158 nations have agreed to the treaty.
The former purpose is the primary large-scale current use of land mines, and the reason for their widespread use in the demilitarized zones (DMZs) of likely flashpoints such as Cyprus, Afghanistan and Korea.
Explosive land mines were being used in 1277 AD by the Song Dynasty Chinese against an assault of the Mongols, who were besieging a city in southern China. The invention of this detonated "enormous bomb" was credited to one Lou Qianxia of the 13th century. The famous 14th century Chinese text of the Huolongjing, which was the first to describe hollow cast iron cannonball shells filled with gunpowder, was also the first to describe the invention of the land mine in greater detail than references found in texts written beforehand. The wad of the mine was made of hard wood, carrying three different fuses in case of defective connection to the touch hole. However, the Huolongjing also describes land mines that were set off by enemy movement, called the 'ground-thunder explosive camp', one of the 'self-trespassing' (zifan) types, as the text says:
The Huolongjing describes the trigger device used for this as a 'steel wheel', which directed sparks of flame onto the connection of fuses running to the multiple-laid land mines underneath the carefully hidden trap. However, further description of how this flint device operated was not made until a Chinese text of 1606 AD revealed that a weight drive (common in medieval clockworks) had been used to work the 'steel wheel'. In terms of global significance, the first wheellock musket in Europe was sketched by Leonardo da Vinci around 1500 AD, although no use of metal flint for gunpowder weapons were known before that point in Europe. The Ming Dynasty (1368–1644) text of the Wubei Zhi (Treatise on Armament Technology), written by Mao Yuanyi in 1628, outlined the use of land mines that were triggered by the heat of a slow-burning incandescent material in an underground bowl placed directly above the train of fuses leading to the mines buried 3 ft beneath. The booby trap of this mine system had a mound where weapons of halberds, pikes, and lances were dug in, meant to entice the enemy to walk up the small mound and claim their stolen prize of war booty.
In Europe in the early eighteenth century, improvised land mines or booby traps were constructed in the form of bombs buried in shallow wells in the earth and covered with scrap metal and/or gravel to serve as shrapnel. Known in French as fougasse, the term is sometimes still used in the present day to describe such devices. This technique was used in several European wars of the eighteenth century, the American Revolution, and the American Civil War.
The first modern mechanically-fused high explosive anti-personnel land mines were created by Confederate troops of Brigadier General Gabriel J. Rains during the Battle of Yorktown in 1862. As a Captain, Rains had earlier employed explosive booby traps during the Seminole Wars in Florida in 1840. Both mechanically and electrically fused "land torpedoes" were employed, although by the end of the war mechanical fuses had been found to be generally more reliable. Many of these designs were improvised in the field, especially from explosive shells, but by the end of the war nearly 2,000 standard pattern "Rains mines" had been deployed.
Improved designs of mines were created in Imperial Germany, circa 1912, and were copied and manufactured by all major participants in the First World War. Both sides employed land mines (defensively) and tunnel mines (offensively).
Minefields may be laid by several means. The preferred, but most labour-intensive, way is to have engineers bury the mines, since this will make the mines practically invisible and reduce the number of mines needed to deny the enemy an area. Mines can be laid by specialized mine-laying vehicles. Mine-scattering shells may be fired by artillery from a distance of several tens of kilometers.
Mines may be dropped from helicopters or airplanes, or ejected from cluster bombs or cruise missiles.
Anti-tank minefields can be scattered with anti-personnel mines to make clearing them manually more time-consuming; and anti-personnel minefields are scattered with anti-tank mines to prevent the use of armored vehicles to clear them quickly. Some anti-tank mine types are also able to be triggered by infantry, giving them a dual purpose even though their main and official intention is to work as anti-tank weapons.
Some minefields are specifically booby-trapped to make clearing them more dangerous. Mixed anti-personnel and anti-tank minefields, anti-personnel mines under anti-tank mines, and fuses separated from mines have all been used for this purpose. Often, single mines are backed by a secondary device, designed to kill or maim personnel tasked with clearing the mine.
Multiple anti-tank mines have been buried in stacks of two or three with the bottom mine fuzed, in order to multiply the penetrating power. Since the mines are buried, the ground directs the energy of the blast in a single direction — through the bottom of the target vehicle or on the track.
Another specific use is to mine an aircraft runway immediately after it has been bombed in order to delay or discourage repair. Some cluster bombs combine these functions. One example is the British JP233 cluster bomb which includes munitions to damage (crater) the runway as well as anti-personnel mines in the same cluster bomb.
Metal detectors were first used for demining, after their invention by the Polish officer Józef Kosacki. His invention, known as the Polish mine detector, was used by the Allies alongside mechanical methods, to clear the German mine fields during the Second Battle of El Alamein when 500 units were shipped to Field Marshal Montgomery's Eighth Army.
Whereas the placing and arming of mines is relatively inexpensive and simple, the process of detecting and removing them is typically expensive, slow, and dangerous. This is especially true of irregular warfare where mines were used on an ad hoc basis in unmarked areas. Anti-personnel mines are most difficult to find, due to their small size and the fact that many are made almost entirely of non-metallic materials specifically to escape detection.
Manual clearing remains the most effective technique for clearing mine fields, although hybrid techniques involving the use of animals and robots are being developed. Animals are desirable due to their strong sense of smell, which is more than capable of detecting a land mine. Animals like rats and dogs can also differentiate between other metal objects and land mines because they can be trained to detect the explosive agent itself.
Other techniques involve the use of geo-location technologies. A joint team of researchers at the University of New South Wales and Ohio State University is working to develop a system based on multi-sensor integration.
The laying of land mines has inadvertently lead to a positive development in the Falkland Islands. Mine fields near the sea from the Falklands War have become favorite places for penguins, which do not weigh enough to detonate the mines. Therefore, they can breed safely, free of human intrusion. These odd sanctuaries have proven so popular and lucrative for ecotourism that efforts exist to prevent removal of the mines.
Norwegian NGO Norwegian People's Aid is one organisation involved in the safe removal of land mines.
The use of land mines is controversial because they are indiscriminate weapons, harming soldier and civilian alike. They remain dangerous after the conflict in which they were deployed has ended, killing and injuring civilians and rendering land impassable and unusable for decades. To make matters worse, many factions have not kept accurate records (or any at all) of the exact locations of their minefields, making removal efforts painstakingly slow. These facts pose serious difficulties in many developing nations where the presence of mines hampers resettlement, agriculture, and tourism. The International Campaign to Ban Landmines campaigned successfully to prohibit their use, culminating in the 1997 Convention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-Personnel Mines and on their Destruction, known informally as the Ottawa Treaty.
The Ottawa Treaty (Convention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-Personnel Mines and on their Destruction) came into force on March 1, 1999. The treaty was the result of the leadership of the Government of Canada working with the International Campaign to Ban Landmines, launched in 1992. The campaign and its leader, Jody Williams, won the Nobel Peace Prize in 1997 for its efforts.
The treaty does not include anti-tank mines, cluster bombs or claymore-type mines operated in command mode and focuses specifically on anti-personnel mines, because these pose the greatest long term (post-conflict) risk to humans and animals since they are typically designed to be triggered by any movement or pressure of only a few kilograms, whereas anti-tank mines require much more weight (or a combination of factors that would exclude humans). Existing stocks must be destroyed within four years of signing the treaty.
Signatories of the Ottawa Treaty agree that they will not use, develop, manufacture, stockpile or trade in anti-personnel land mines. There were originally 122 signatories in 1997; , it has been signed by 155 countries and ratified by 153. Another 40 have yet to sign on. The United States is not one of the signatories, based on lacking an exception for the DMZ of Korea.
There is a clause in the treaty, Article 3, which permits countries to retain land mines for use in training or development of countermeasures. 64 countries have taken this option.
As an alternative to an outright ban, 10 countries follow regulations that are contained in a 1996 amendment of Protocol II of the Convention on Conventional Weapons (CCW). The countries are China, Finland, India, Israel, Morocco, Pakistan, South Korea, Sri Lanka, and the United States.
Of other states which are thought to have manufactured mines recently: Egypt has unofficially stated that production ceased in 1988. South Korea has stated that no mines have been produced since 2000. An official from China stated in September 2003 that production has ceased there, since they have an ample stockpile. In March 2004, a Libyan official stated that the country has never produced anti-personnel mines, but is known to have laid land mines in the 1970s and 1980s. A United Nations assessment mission to Peru reported that production of land mines in the country ceased in January 1999. Peru was one of the original signatories and the treaty came into force for them in March 1999. Denmark had officially declared having 6 factories producing land mines in 1995 but production ceased since ratification of the Ottawa treaty. The United States stopped manufacturing land mines in 1997, but has one of the largest stockpiles.
;Mines
PPE]] ;Places
;Organisations
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.