- Order:
- Duration: 4:43
- Published: 04 Jul 2007
- Uploaded: 15 Aug 2011
- Author: jp3design
Caffeine is found in varying quantities in the seeds, leaves, and fruit of some plants, where it acts as a natural pesticide that paralyzes and kills certain insects feeding on the plants. The U.S. Food and Drug Administration (FDA) lists caffeine as a "multiple purpose generally recognized as safe food substance".
Caffeine has diuretic properties when administered in sufficient doses to subjects who do not have a tolerance for it. Regular users, however, develop a strong tolerance to this effect,
With these effects, caffeine is an ergogenic, increasing a person's capability for mental or physical labor. A study conducted in 1979 showed a 7% increase in distance cycled over a period of two hours in subjects that consumed a considerable amount of caffeine compared to control subjects. Other studies attained much more dramatic results; one particular study of trained runners showed a 44% increase in "race-pace" endurance, as well as a 51% increase in cycling endurance, after a dosage of 9 milligrams of caffeine per kilogram of body weight. Additional studies have reported similar effects. Another study found 5.5 milligrams of caffeine per kilogram of body mass resulted in subjects cycling 29% longer during high-intensity circuits.
Caffeine citrate has proven to be of short- and long-term benefit in treating the breathing disorders of apnea of prematurity and bronchopulmonary dysplasia in premature infants. The only short-term risk associated with caffeine citrate treatment is a temporary reduction in weight gain during the therapy, and longer term studies (18 to 21 months) have shown lasting benefits of treatment of premature infants with caffeine.
Caffeine relaxes the internal anal sphincter muscles and thus should be avoided by those with fecal incontinence.
While relatively safe for humans, caffeine is considerably more toxic to some other animals such as dogs, horses, and parrots due to a much poorer ability to metabolize this compound. Caffeine also has a pronounced effect on mollusks and various insects as well as spiders. (See also Effect of psychoactive drugs on animals.)
Caffeine also increases the effectiveness of some drugs. Many over-the-counter headache drugs include caffeine in their formula. It is also used with ergotamine in the treatment of migraine and cluster headaches as well as to overcome the drowsiness caused by antihistamines.
Caffeine may also have hepatoprotective properties. Studies have shown that increased caffeine consumption is associated with less severe liver injury among those at high risk for liver disease, such as those with alcoholism, obesity, or hemochromatosis. The mechanism by which this occurs is not known.
Other research questions the idea that up-regulation of adenosine receptors is responsible for tolerance to the locomotor stimulant effects of caffeine, noting, among other things, that this tolerance is insurmountable by higher doses of caffeine (it should be surmountable if tolerance were due to an increase in receptors), and that the increase in adenosine receptor number is modest and does not explain the large tolerance that develops to caffeine.
Caffeine tolerance develops very quickly, especially among heavy coffee and energy drink consumers. Complete tolerance to the sleep disruption effects of caffeine develops after consuming 400 mg of caffeine 3 times a day for 7 days. Complete tolerance to subjective effects of caffeine was observed to develop after consuming 300 mg 3 times per day for 18 days, and possibly even earlier. In another experiment, complete tolerance of caffeine was observed when the subject consumed 750–1200 mg per day while incomplete tolerance to caffeine has been observed in those that consume more average doses of caffeine. In everyday terms, the typical caffeine content of a single cup or mug of tea or coffee is well below the 300 - 400 mg level: an average mug of instant coffee contains approximately 100mg caffeine, the same level as a cup of brewed coffee. An average mug of tea contains 75mg of caffeine.
Because adenosine, in part, serves to regulate blood pressure by causing vasodilation, the increased effects of adenosine due to caffeine withdrawal cause the blood vessels of the head to dilate, leading to an excess of blood in the head and causing a headache and nausea. This means caffeine has vasoconstrictive properties. Reduced catecholamine activity may cause feelings of fatigue and drowsiness. A reduction in serotonin levels when caffeine use is stopped can cause anxiety, irritability, inability to concentrate, and diminished motivation to initiate or to complete daily tasks; in extreme cases it may cause mild depression. Together, these effects have come to be known as a "crash".
Withdrawal symptoms—possibly including headache, irritability, an inability to concentrate, drowsiness, insomnia and pain in the stomach, upper body, and joints—may appear within 12 to 24 hours after discontinuation of caffeine intake, peak at roughly 48 hours, and usually last from one to five days, representing the time required for the number of adenosine receptors in the brain to revert to "normal" levels, uninfluenced by caffeine consumption. Analgesics, such as aspirin, may relieve the pain symptoms, as may a small dose of caffeine.
There are four caffeine-induced psychiatric disorders recognized by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition: caffeine intoxication, caffeine-induced anxiety disorder, caffeine-induced sleep disorder, and caffeine-related disorder not otherwise specified (NOS).
Caffeine overdose can result in a state of central nervous system over-stimulation called caffeine intoxication (DSM-IV 305.90), or colloquially the "caffeine jitters". The symptoms of caffeine intoxication are not unlike overdoses of other stimulants. It may include restlessness, fidgetiness, nervousness, excitement, euphoria, insomnia, flushing of the face, increased urination, gastrointestinal disturbance, muscle twitching, a rambling flow of thought and speech, irritability, irregular or rapid heart beat, and psychomotor agitation.
Extreme overdose can result in death. The median lethal dose (LD50) given orally, is 192 milligrams per kilogram in rats. The LD50 of caffeine in humans is dependent on weight and individual sensitivity and estimated to be about 150 to 200 milligrams per kilogram of body mass, roughly 80 to 100 cups of coffee for an average adult taken within a limited time frame that is dependent on half-life. Though achieving lethal dose with caffeine would be exceptionally difficult with regular coffee, there have been reported deaths from overdosing on caffeine pills, with serious symptoms of overdose requiring hospitalization occurring from as little as 2 grams of caffeine. An exception to this would be taking a drug such as fluvoxamine or levofloxacin, which block the liver enzyme responsible for the metabolism of caffeine, thus increasing the central effects and blood concentrations of caffeine dramatically at 5-fold. It is not contraindicated, but highly advisable to minimize the intake of caffeinated beverages, as drinking one cup of coffee will have the same effect as drinking five under normal conditions. Death typically occurs due to ventricular fibrillation brought about by effects of caffeine on the cardiovascular system.
Treatment of severe caffeine intoxication is generally supportive, providing treatment of the immediate symptoms, but if the patient has very high serum levels of caffeine then peritoneal dialysis, hemodialysis, or hemofiltration may be required.
In the case of caffeine-induced sleep disorder, an individual regularly ingests high doses of caffeine sufficient to induce a significant disturbance in his or her sleep, sufficiently severe to warrant clinical attention. reporting a sedative or calmative effect. This may be explained by the low arousal theory of ADHD, which suggests that ADHD sufferers have lower than normal levels of arousal, and are driven to seek more intellectual and emotional stimuli from the surrounding environment than people without ADHD in order to compensate. Because caffeine acts as an antagonist to receptors of adenosine, a neurotransmitter that inhibits arousal, ingestion of caffeine may cause the arousal levels of ADHD sufferers to return to normal and alleviate some of the symptoms of the disorder.
In another study, caffeine was added to rat neurons in vitro. The dendritic spines (a part of the brain cell used in forming connections between neurons) taken from the hippocampus (a part of the brain associated with memory) grew by 33% and new spines formed. After an hour or two, however, these cells returned to their original shape.
Another study showed that human subjects—after receiving 100 milligrams of caffeine—had increased activity in brain regions located in the frontal lobe, where a part of the working memory network is located, and the anterior cingulate cortex, a part of the brain that controls attention. The caffeinated subjects also performed better on the memory tasks.
However, a different study showed that caffeine could impair short-term memory and increase the likelihood of the tip of the tongue phenomenon. The study allowed the researchers to suggest that caffeine could aid short-term memory when the information to be recalled is related to the current train of thought, but also to hypothesize that caffeine hinders short-term memory when the train of thought is unrelated. In essence, caffeine consumption increases mental performance related to focused thought while it may decrease broad-range thinking abilities.
However, subsidiary beverages that contain caffeine, such as energy drinks, most of which contain high amounts of caffeine, have been banned in many schools throughout the world, due to other adverse effects having been observed in prolonged consumption of caffeine. In one study, caffeinated cola has been linked to hyperactivity in children.
Researchers Kovacs and associates evaluated the effects of different dosages of caffeine (2.1, 3.2 and 4.5 milligrams per kilogram of body mass) added to a 7% carbohydrate electrolyte drink on performance during a one hour cycling time trial. All three caffeine doses improved performance compared with the carbohydrate electrolyte drink alone. The results also demonstrated that ingestion of 2.1, 3.2 and 4.5 mg/kg of caffeine produced the same level of performance enhancement. This study suggests that once the threshold dose of caffeine was reached, there was no further performance benefit from a higher amount of caffeine.
Two potential mechanisms have been proposed for the performance-enhancing effects of caffeine. First, in the classic, or 'metabolic' theory, caffeine may increase fat utilization and decrease glycogen utilization. Caffeine mobilizes free fatty acids from adipose and/or intramuscular triglycerides by increasing circulating epinephrine levels. The increased availability of free fatty acids increases fat oxidation and spares muscle glycogen, thereby enhancing endurance performance. Second, as a central nervous system stimulant, caffeine increases alertness and decreases the perception of effort during exercise. Caffeine may reduce the perception of effort by lowering the neuron activation threshold, making it easier to recruit the muscles for exercise.
Common sources of caffeine are coffee, tea, and (to a lesser extent) chocolate derived from cocoa beans. Less commonly used sources of caffeine include the yerba maté and guarana plants, which are sometimes used in the preparation of teas and energy drinks. Two of caffeine's alternative names, mateine and guaranine, are derived from the names of these plants. Some yerba mate enthusiasts assert that mateine is a stereoisomer of caffeine, which would make it a different substance altogether. and therefore has no enantiomers; nor does it have other stereoisomers. The disparity in experience and effects between the various natural caffeine sources could be because plant sources of caffeine also contain widely varying mixtures of other xanthine alkaloids, including the cardiac stimulants theophylline and theobromine, and other substances such as polyphenols that can form insoluble complexes with caffeine.
One of the world's primary sources of caffeine is the coffee "bean" (which is the seed of the coffee plant), from which coffee is brewed. Caffeine content in coffee varies widely depending on the type of coffee bean and the method of preparation used; even beans within a given bush can show variations in concentration. In general, one serving of coffee ranges from 80–100 milligrams, for a single shot (30 milliliters) of arabica-variety espresso, to approximately 100–125 milligrams for a cup (120 milliliters) of drip coffee. In general, dark-roast coffee has very slightly less caffeine than lighter roasts because the roasting process reduces a small amount of the bean's caffeine content. Arabica coffee normally contains significantly (+/-50%) less caffeine than the robusta variety. Teas like the pale Japanese green tea, gyokuro, for example, contain far more caffeine than much darker teas like lapsang souchong, which has very little.
{| class="sortable wikitable" style="width:35%; float:right; clear:right; margin:0 0 0.5em 1em; font-size:85%;" |+ Caffeine content of select common food and drugs. |- ! Product !width="26%"| Serving size !width="12%"| Caffeine per serving (mg) !width="12%"| Caffeine per liter (mg) |- | Caffeine tablet (regular-strength) | 1 tablet | |— |- | Caffeine tablet (extra-strength) | 1 tablet | |— |- | Excedrin tablet | 1 tablet | |— |- | Hershey's Special Dark (45% cacao content) | | |— |- | Hershey's Milk Chocolate (11% cacao content) | | |— |- | Percolated coffee | | –135 | –652 |- | Drip coffee | | –175 | –845 |- | Coffee, decaffeinated | | –15 | –72 |- | Coffee, espresso | | | –2254 |- | Black tea | | | |- | Green tea | | | |- | Guayakí yerba mate (loose leaf) | | | |- | Coca-Cola Classic | | | |- | Barq's Root Beer | | | |- | Mountain Dew | | | |- | Vault | | | |- | Guaraná Antarctica | | | |- | Monster energy drink | | | |- | Jolt Cola | | | |- | Red Bull | | | |}
Caffeine is also a common ingredient of soft drinks, such as cola, originally prepared from kola nuts. Soft drinks typically contain about 10 to 50 milligrams of caffeine per serving. By contrast, energy drinks, such as Red Bull, can start at 80 milligrams of caffeine per serving. The caffeine in these drinks either originates from the ingredients used or is an additive derived from the product of decaffeination or from chemical synthesis. Guarana, a prime ingredient of energy drinks, contains large amounts of caffeine with small amounts of theobromine and theophylline in a naturally occurring slow-release excipient.
Chocolate derived from cocoa beans contains a small amount of caffeine. The weak stimulant effect of chocolate may be due to a combination of theobromine and theophylline, as well as caffeine. A typical 28-gram serving of a milk chocolate bar has about as much caffeine as a cup of decaffeinated coffee, although some dark chocolate currently in production contains as much as 160 mg per 100g.
Various manufacturers market caffeine tablets, claiming that using caffeine of pharmaceutical quality improves mental alertness. These effects have been borne out by research that shows caffeine use (whether in tablet form or not) results in decreased fatigue and increased attentiveness. These tablets are commonly used by students studying for their exams and by people who work or drive for long hours. One U.S. company is also marketing dissolving caffeine strips as an alternative to energy drinks.
Caffeine is also used pharmacologically to treat apnea in premature newborns and, as such, is one of the 10 drugs most commonly given in neonatal intensive care, though questions are now raised based on experimental animal research whether it might have subtle harmful side-effects. Early peoples found chewing the seeds, bark, or leaves of certain plants had the effects of easing fatigue, stimulating awareness, and elevating one's mood. Only much later was it found that the effect of caffeine was increased by steeping such plants in hot water. Many cultures have legends that attribute the discovery of such plants to people living many thousands of years ago.
According to one popular Chinese legend, the Chinese emperor Shennong, reputed to have reigned in about 3000 BCE, accidentally discovered that when some leaves fell into boiling water, a fragrant and restorative drink resulted. Shennong is also mentioned in Lu Yu's Cha Jing, a famous early work on the subject of tea. The history of coffee has been recorded as far back as the ninth century. During that time, coffee beans were available only in their native habitat, Ethiopia. A popular legend traces its discovery to a goatherder named Kaldi, who apparently observed goats became elated and sleepless at night after grazing on coffee shrubs and, upon trying the berries the goats had been eating, experienced the same vitality. The earliest literary mention of coffee may be a reference to Bunchum in the works of the 9th-century Persian physician al-Razi. In 1587, Malaye Jaziri compiled a work tracing the history and legal controversies of coffee, entitled ʕUmdat aṣ-Ṣafwa Fī Ḥill al-Qahwah. In this work, Jaziri recorded that one Sheikh, Jamal-al-Din al-Dhabhani, mufti of Aden, was the first to adopt the use of coffee in 1454, and in the 15th century, the Sufis of Yemen routinely used coffee to stay awake during prayers.
Towards the close of the 16th century, the use of coffee was recorded by a European resident in Egypt, and about this time it came into general use in the Near East. The appreciation of coffee as a beverage in Europe, where it was first known as "Arabian wine", dates from the 17th century. A legend states that, after the Ottoman Turks retreated from the walls of Vienna after losing a battle for the city, many sacks of coffee beans were found among their baggage. Europeans did not know what to do with all the coffee beans, being unfamiliar with them. So Franz George Kolschitzky, a Pole who had actually worked for the Turks, offered to take them. He subsequently taught the Viennese how to make coffee, and the first coffee house in the Western world was opened in Vienna, thus starting a long tradition of coffee appreciation. In Britain, the first coffee houses were opened in London in 1652, at St Michael's Alley, Cornhill. They soon became popular throughout Western Europe, and played a significant role in social relations in the 17th and 18th centuries.
Use of the kola nut, like the coffee berry and tea leaf, appears to have ancient origins. It is chewed in many West African cultures, individually or in a social setting, to restore vitality and ease hunger pangs. In 1911, kola became the focus of one of the earliest documented health scares, when the US government seized 40 barrels and 20 kegs of Coca-Cola syrup in Chattanooga, Tennessee, alleging the caffeine in its drink was "injurious to health". On March 13, 1911, the government initiated United States v. Forty Barrels and Twenty Kegs of Coca-Cola, hoping to force Coca-Cola to remove caffeine from its formula by making claims the product was adulterated and misbranded. The allegation of adulteration was, in substance, that the product contained an added poisonous or added deleterious ingredient: caffeine, which might render the product injurious to health. It was alleged to be misbranded in that the name 'Coca Cola' was a representation of the presence of the substances coca and cola; that the product 'contained no coca and little if any cola' and thus was an 'imitation' of these substances and was offered for sale under their 'distinctive name.' Although the judge ruled in favor of Coca-Cola, two bills were introduced to the U.S. House of Representatives in 1912 to amend the Pure Food and Drug Act, adding caffeine to the list of "habit-forming" and "deleterious" substances, which must be listed on a product's label.
The earliest evidence of cocoa bean use comes from residue found in an ancient Mayan pot dated to 600 BCE. In the New World, chocolate was consumed in a bitter and spicy drink called xocolatl, often seasoned with vanilla, chile pepper, and achiote. Xocolatl was believed to fight fatigue, a belief probably attributable to the theobromine and caffeine content. Chocolate was an important luxury good throughout pre-Columbian Mesoamerica, and cocoa beans were often used as currency.
Xocolatl was introduced to Europe by the Spaniards, and became a popular beverage by 1700. The Spaniards also introduced the cacao tree into the West Indies and the Philippines. It was used in alchemical processes, where it was known as "black bean".
The leaves and stems of the yaupon holly (Ilex vomitoria) were used by Native Americans to brew a tea called asi or the "black drink". Archaeologists have found evidence of this use stretch back far into antiquity, possibly dating to Late Archaic times.
Pelletier's article on caffeine corroborates Berzelius's account: "Caféine, s. f. Principe cristallisable découvert dans le café en 1821 par M. Robiquet. A la même époque, cherchant la quinine dans le café, parce que le café, considéré par plusieurs médecins comme fébrifuge, est d'ailleurs de la même famille que le quinquina, MM. Pelletier et Caventou obtenaient de leur côté la caféine; mais leurs recherches n'ayant qu'un but indirect, et n'ayant pas été terminées, laissent à M. Robiquet la priorité sur cet objet. Nous ignorons pourquoi M. Robiquet n'a pas publié l'analyse du café qu'il a lue à la société de pharmacie. Sa publication nous aurait permis de mieux faire connaître la caféine, et de donner des idées exactes sur la composition du café...." (Caffeine, noun (feminine). Crystallizable substance discovered in coffee in 1821 by Mr. Robiquet. During the same period – while they were searching for quinine in coffee because coffee is considered by several doctors to be a medicine that reduces fevers and because coffee belongs to the same family as the cinchona [quinine] tree – on their part, Mssrs. Pelletier and Caventou obtained caffeine; but because their research had a different goal and because their research had not been finished, they left priority on this subject to Mr. Robiquet. We do not know why Mr. Robiquet has not published the analysis of coffee which he read to the Pharmacy Society. Its publication would have allowed us to make caffeine better known and give us accurate ideas of coffee's composition .... )
Robiquet's article on coffee gives an account of his research on coffee on pages 54–56, detailing the extraction of caffeine and its properties on pages 55–56.
Pelletier's elemental analysis of caffeine appears on pages 182–183 of the article: Dumas and Pelletier (1823) "Recherches sur la composition élémentaire et sur quelques propriétés caractéristiques des bases salifiables organiques" (Studies into the elemental composition and some characteristic properties of organic bases), Annales de Chimie et de Physique, vol. 24, pages 163–191.
Berzelius later acknowledged Runge's priority in the extraction of caffeine, stating: "Es darf indessen hierbei nicht unerwähnt bleiben, dass Runge (in seinen phytochemischen Entdeckungen 1820, p.146-7.) dieselben Methode angegeben, und das Caffein unter dem Namen Caffeebase ein Jahr eher beschrieben hat, als Robiquet, dem die Entdeckung dieser Substanz gewöhnlich zugeschrieben wird, in einer Zussamenkunft der Societé de Pharmacie in Paris die erste mündliche Mittheilung darüber gab." (However, at this point, it should not remain unmentioned that Runge (in his Phytochemical Discoveries, 1820, pages 146–147) specified the same method and described caffeine under the name Caffeebase a year earlier than Robiquet, to whom the discovery of this substance is usually attributed, having made the first oral announcement about it at a meeting of the Pharmacy Society in Paris.) According to Runge, he did this at the behest of Johann Wolfgang von Goethe. In 1827, Oudry isolated "theine" from tea, but it was later proved by Mulder and by Jobst that theine was the same as caffeine. This was part of the work for which Fischer was awarded the Nobel Prize in 1902. The nitrogen atoms are all essentially planar (in sp2 orbital hybridization), resulting in the caffeine molecule's having aromatic character. Being readily available as a byproduct of decaffeination, caffeine is not usually synthesized. If desired, it may be synthesized from dimethylurea and malonic acid.
The biological half-life of caffeine—the time required for the body to eliminate one-half of the total amount of caffeine—varies widely among individuals according to such factors as age, liver function, pregnancy, some concurrent medications, and the level of enzymes in the liver needed for caffeine metabolism. In healthy adults, caffeine's half-life is approximately 4.9 hours. and in pregnant women the half-life is roughly 9–11 hours.
Caffeine can accumulate in individuals with severe liver disease, increasing its half-life up to 96 hours. In infants and young children, the half-life may be longer than in adults; half-life in a newborn baby may be as long as 30 hours. Other factors such as smoking can shorten caffeine's half-life. Fluvoxamine (Luvox) reduced the clearance of caffeine by 91.3%, and prolonged its elimination half-life by 11.4-fold; from 4.9 hours to 56 hours.
Caffeine is metabolized in the liver by the cytochrome P450 oxidase enzyme system (to be specific, the 1A2 isozyme) into three metabolic dimethylxanthines, each of which has its own effects on the body:
Each of these metabolites is further metabolized and then excreted in the urine.
Some quinolones, including ciprofloxacin, exert an inhibitory effect on the cytochrome P-450 enzyme CYP1A2, thereby reducing clearance, and thus increasing blood levels of tizanidine and methylxanthines (e.g.caffeine).
There is also research which suggests that alcohol inhibits the metabolism of caffeine in the liver, especially by influencing its demethylation to other dimethyl- and monomethylxanthines.
Caffeine readily crosses the blood–brain barrier that separates the bloodstream from the interior of the brain. Once in the brain, the principal mode of action is as a nonselective antagonist of adenosine receptors. The caffeine molecule is structurally similar to the aglycone of adenosine, adenine, and is capable of binding the adenosine receptors on the surface of cells without activating them (an "antagonist" mechanism of action), thereby acting as a competitive inhibitor.
Adenosine is found in every part of the body, because it plays a role in the fundamental ATP-related energy metabolism and is necessary for RNA synthesis, but it has special functions in the brain. There is a great deal of evidence that concentrations of brain adenosine are increased by various types of metabolic stress including anoxia and ischemia. The evidence also indicates that brain adenosine acts to protect the brain by suppressing neural activity and also by increasing blood flow through A2A and A2B receptors located on vascular smooth muscle. Caffeine also has a generally disinhibitory effect on neural activity. It has not been shown, however, how these effects cause increases in arousal and alertness.
Adenosine is released in the brain through a complex mechanism. There is evidence that adenosine functions as a synaptically released neurotransmitter in some cases, but stress-related adenosine increases appear to be produced mainly by extracellular metabolism of ATP. It is not likely that adenosine is the primary neurotransmitter for any group of neurons, but rather that it is released together with other transmitters by a number of neuron types. Unlike most neurotransmitters, adenosine does not seem to be packaged into vesicles that are released in a voltage-controlled manner, but the possibility of such a mechanism has not been completely ruled out.
Several classes of adenosine receptors have been described, with different anatomical distributions. A1 receptors are widely distributed, and act to inhibit calcium uptake. A2A receptors are heavily concentrated in the basal ganglia, an area that plays a critical role in behavior control, but can be found in other parts of the brain as well, in lower densities. There is evidence that A 2A receptors interact with the dopamine system, which is involved in reward and arousal. (A2A receptors can also be found on arterial walls and blood cell membranes.)
Beyond its general neuroprotective effects, there are reasons to believe that adenosine may be more specifically involved in control of the sleep-wake cycle. Robert McCarley and his colleagues have argued that accumulation of adenosine may be a primary cause of the sensation of sleepiness that follows prolonged mental activity, and that the effects may be mediated both by inhibition of wake-promoting neurons via A1 receptors, and activation of sleep-promoting neurons via indirect effects on A2A receptors. More recent studies have provided additional evidence for the importance of A2A, but not A1, receptors.
Some of the secondary effects of caffeine are probably caused by actions unrelated to adenosine. Like other methylated xanthines, caffeine is both a # competitive nonselective phosphodiesterase inhibitor which raises intracellular cAMP, activates PKA, inhibits TNF-alpha and leukotriene synthesis, and reduces inflammation and innate immunity.
Metabolites of caffeine also contribute to caffeine's effects. Paraxanthine is responsible for an increase in the lipolysis process, which releases glycerol and fatty acids into the blood to be used as a source of fuel by the muscles. Theobromine is a vasodilator that increases the amount of oxygen and nutrient flow to the brain and muscles. Theophylline acts as a smooth muscle relaxant that chiefly affects bronchioles and acts as a chronotrope and inotrope that increases heart rate and efficiency.
on spiders, which is reflected here in the erratic construction of their webs.|alt=Top: picture of a regular spider web with a caption "drug-naive", bottom: heavily distorted spider web with a caption "caffeinated".]]
Extraction of caffeine from coffee, to produce decaffeinated coffee and caffeine, is an important industrial process and can be performed using a number of different solvents. Benzene, chloroform, trichloroethylene, and dichloromethane have all been used over the years but for reasons of safety, environmental impact, cost, and flavor, they have been superseded by the following main methods:
The Church of Jesus Christ of Latter-day Saints has said the following with regard to caffeinated beverages: “With reference to cola drinks, the Church has never officially taken a position on this matter, but the leaders of the Church have advised, and we do now specifically advise, against the use of any drink containing harmful drugs under circumstances that would result in acquiring the habit. Any beverage that contains ingredients harmful to the body should be avoided.”
Gaudiya Vaishnavas generally also abstain from caffeine, as it is alleged to cloud the mind and over-stimulate the senses. To be initiated under a guru, one must have had no caffeine (along with alcohol, nicotine and other drugs) for at least a year.
In Islam the main rule on caffeine is that it is permissible, but it is worth noting that it should not be overused and can cause severe harm to one's body. With regard to the caffeine in coffee, Imam Shihab al-Din said: 'it is halal (lawful) to drink, because all things are halal (lawful) except that which God has made haraam (unlawful)'.
Category:Coffee chemistry Category:Xanthines Category:Anxiogenics Category:Bitter compounds Category:IARC Group 3 carcinogens Category:Phosphodiesterase inhibitors Category:Plant toxin insecticides
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.