
Source Code Documentation as a Live User Manual

PTLogica

Abstract

Source code documentation is the manual and
guide that helps in understanding and correctly
utilizing the source code. Complementing cod-
ing standards and naming conventions with nat-
ural language results in enhanced clarity for the
designer, a handbook for the client and a guide for
the maintainer of the code, facilitating code reuse
and refactoring.

1 A Live Document

While it makes sense to have independent high-
level design documentation, it is not reasonable
to detach the detailed design from the code, be-
cause it is well-known that independent docu-
mentation is difficult to maintain and not up-
dated as frequently.

Designers in many ISO-approved companies
simply copy and paste their methods or func-
tions comments into a detailed design document
so they can deliver the required documentation
to conform to their software development pro-
cess. While this might be satisfactory to auditors
and customers, it is not an acceptable solution,
because the deliverable in this case is a hard-to-
maintain snapshot of an evolving entity.

The natural tendency is to reduce paper doc-
ument dependency in the design process and to
use the code and its comments as the direct

source for detailed design and interface descrip-
tions.

A solution to this problem is to employ a tool
to extract meaningful source code comments to
create external documentation. This tool may be
an integral part of the software build process by
automating the documentation effort. Neverthe-
less, as with code, this process is truly effective
only if designers can see and generate the docu-
mentation themselves, allowing them to perfect
and debug it.

2 Commenting Code

Effective and practical documentation captures
the intended use of modules, classes and routines
in a user-manual-like form. In order to produce
highly maintainable documentation, practice in-
dicates that comments should not focus on ex-
plaining how the code works, but rather on how
the code is to be used.

If comments are used to explain how the code
works, any alteration to the code will render the
documentation obsolete, resulting in duplication
of effort and inaccurate documentation.

Plain English at the top of the file and each
code construct should be used to describe its
unique purpose and objective. Inline, detailed
comments should be avoided because they can-
not express the mechanics of the code more ac-
curately than the code itself.

1



PTLogica Source Code Documentation as a Live User Manual

By avoiding the description of “anything be-
tween the brackets”, the formal documentation
reaches the non-redundant level of abstraction
needed to streamline the authorship, usage and
maintenance of the code.

3 Documentation Tools

When considering a source code documentation
tool, it is useful to examine the following aspects:

• Usability

• Target media

• Documentation structure

• Level of detail

• Comment extraction capabilities

• Languages supported

• Inline formatting and style elements

• Source code readability

3.1 Usability

Source code documentation tools are meant to
help designers to document their code clearly
and produce external documentation from it
without the tools getting in the way. They
should be unobtrusive and simple enough to ac-
tually get used while coding. Designers are likely
to adopt a simple and familiar framework that
provides rapid feedback.

3.2 Target media

HTML is the appropriate medium for a live doc-
ument. It is an open standard that can be easily
generated on the fly and rendered on any web

browser. It also allows depiction of the structure
and layout of a page with sufficient precision,
particularly when combined with cascade style
sheets.

Printed documentation is useful only on a se-
lective basis. Generating printed material for 50,
100, 500 or more files simply makes no sense due
to the high volume of paper. If however you
can print documentation for individual files or
portions of them (as a reference), then printed
documentation serves its purpose.

3.3 Documentation structure

The book paradigm is a proven approach to de-
termine the documentation structure. As a min-
imum, the generated documentation should con-
tain an index to pages or chapters. Each chapter
should contain a title, introduction or foreword,
table of contents and sections.

3.4 Level of detail

The level of detail in the documentation is an
important element. Too much detail renders the
documentation ineffective; rather the tool should
generate documentation as intended by the au-
thor and not as produced by an exhaustive pars-
ing tool.

3.5 Comment extraction capabilities

Documentation tools should be able to extract
source code comments regardless of the com-
menting style used by the author. If conventions
are necessary, they should not be excessively in-
trusive.

2



PTLogica Source Code Documentation as a Live User Manual

3.6 Languages supported

Source code documentation tools supporting
multiple programming languages are preferable
to those focusing on a specific programming lan-
guage. The result is consistent documentation
for your solution and an improved return on your
investment and training.

3.7 Inline formatting and style ele-
ments

Because a document is being created from es-
sentially a loosely formatted source, special ele-
ments such as tags or markup are generally re-
quired to determine the layout, structure and
style of the documentation. A heavily typed and
precise XML/SGML vocabulary is certainly a se-
rious burden for the software designer and ulti-
mately detrimental to the clarity of the source.
The preferable alternative is using only a lim-
ited number of tags. The ideal system should
not require noticeable formatting elements.

3.8 Source code readability

An external set of documents is not the only ex-
pected deliverable in the source code documenta-
tion process; clear source code comments should
support all the generated documentation as well.
Even if no external documentation is generated
at all, a source code documentation tool returns
its original investment if a software solution is
documented at the source code level in a consis-
tent and human-readable way.

4 TwinText

TwinTextTMis a source code documentation tool
that obeys the book paradigm by generating

the required elements automatically with con-
figurable format and style. In addition, the tool
properly mixes selected comment sections with
precise code analysis to generate usable docu-
mentation with the right level of detail. Virtu-
ally all programming languages and commenting
styles are supported.

For most practical situations, the inline for-
matting elements required to define the structure
of the documentation are those used naturally
when documenting code. Also time honored
ASCII conventions are used to enhance style
and formatting. TwinText does not force you
to commit to noticeable formatting conventions,
yet you can still deliver documentation based on
your code.

When processing individual files or projects,
the associated page is promptly displayed in the
embedded web browser, giving useful feedback
to the author who can then proceed to perfect
the results if necessary.

Printed documentation can be generated on a
selective basis by right-clicking the appropriate
document window.

TwinText’s affordable licensing means that
you can deploy it on a per-designer basis, re-
sulting in accurate documentation for each func-
tional area or module in your solution.

With TwinText you are not only delivering
outstanding external documentation, but also
clear and readable source code comments.

TwinText sensibly complies with the different
aspects discussed above, embedding the elements
necessary to make the documentation process ef-
fective, with a minimal learning curve for the
software designer.

c©2002–2011 PTLogica. All Rights Reserved.

3

http://www.ptlogica.com

	A Live Document
	Commenting Code
	Documentation Tools
	Usability
	Target media
	Documentation structure
	Level of detail
	Comment extraction capabilities
	Languages supported
	Inline formatting and style elements
	Source code readability

	TwinText

