
- Order:
- Duration: 4:12
- Published: 22 Aug 2006
- Uploaded: 24 Aug 2011
- Author: opiegonebad
, a concrete arch-gravity dam in Black Canyon of the Colorado River. Lake Mead in the background is impounded by the dam.]] A dam is a barrier that impounds water or underground streams. Dams generally serve the primary purpose of retaining water, while other structures such as floodgates or levees (also known as dikes) are used to manage or prevent water flow into specific land regions. Hydropower and pumped-storage hydroelectricity are often used in conjunction with dams to generate electricity. A dam can also be used to collect water or for storage of water which can be evenly distributed between locations.
The word dam can be traced back to Middle English, and before that, from Middle Dutch, as seen in the names of many old cities. Early dam building took place in Mesopotamia and the Middle East. Dams were used to control the water level, for Mesopotamia's weather affected the Tigris and Euphrates rivers, and could be quite unpredictable.
The earliest known dam is the Jawa Dam in Jordan, northeast of the capital Amman. This gravity dam featured a high and wide stone wall, supported by a wide earth rampart. The structure is dated to 3000 BC. The Ancient Egyptian Sadd-el-Kafara Dam at Wadi Al-Garawi, located about south of Cairo, was long at its base and wide. The structure was built around 2800 or 2600 B.C. as a diversion dam for flood control, but was destroyed by heavy rain during construction or shortly afterwards.
Roman dam construction was characterized by "the Romans' ability to plan and organize engineering construction on a grand scale". Roman planners introduced the then novel concept of large reservoir dams which could secure a permanent water supply for urban settlements also over the dry season. Their pioneering use of water-proof hydraulic mortar and particularly Roman concrete allowed for much larger dam structures than previously built, and the Harbaqa Dam, both in Roman Syria. The highest Roman dam was the Subiaco Dam near Rome; its record height of remained unsurpassed until its accidental destruction in 1305.
Roman engineers made routine use of ancient standard designs like embankment dams and masonry gravity dams. Apart from that, they displayed a high degree of inventiveness, introducing most of the other basic dam designs which had been unknown until then. These include arch-gravity dams, arch dams, buttress dams and multiple arch buttress dams, all of which were known and employed by the 2nd century AD (see List of Roman dams). Roman workforces also were the first to build dam bridges, such as the Bridge of Valerian in Iran.
Eflatun Pınar is a Hittite dam and spring temple near Konya, Turkey. It's thought to be from the time of the Hittite empire between the 15th and 13 century BC.
The Kallanai is constructed of unhewn stone, over long, high and wide, across the main stream of the Kaveri river in Tamil Nadu, South India. The basic structure dates to the 1st century AD. and is considered one of the oldest water-diversion or water-regulator structures in the world, which is still in use. The purpose of the dam was to divert the waters of the Kaveri across the fertile Delta region for irrigation via canals.It is considered to be the oldest dam still in use.
Du Jiang Yan is the oldest surviving irrigation system in China that included a dam that directed waterflow. It was finished in 251 B.C. A large earthen dam, made by the Prime Minister of Chu (state), Sunshu Ao, flooded a valley in modern-day northern Anhui province that created an enormous irrigation reservoir in circumference), a reservoir that is still present today.
In Iran, bridge dams such as the Band-e Kaisar were used to provide hydropower through water wheels, which often powered water-raising mechanisms. One of the first was the Roman-built dam bridge in Dezful, which could raise water 50 cubits in height for the water supply to all houses in the town. Also diversion dams were known. Milling dams were introduced which the Muslim engineers called the Pul-i-Bulaiti. The first was built at Shustar on the River Karun, Iran, and many of these were later built in other parts of the Islamic world. In the 10th century, Al-Muqaddasi described several dams in Persia. He reported that one in Ahwaz was more than long, Another one, the Band-i-Amir dam, provided irrigation for 300 villages.
In the Netherlands, a low-lying country, dams were often applied to block rivers in order to regulate the water level and to prevent the sea from entering the marsh lands. Such dams often marked the beginning of a town or city because it was easy to cross the river at such a place, and often gave rise to the respective place's names in Dutch. For instance the Dutch capital Amsterdam (old name Amstelredam) started with a dam through the river Amstel in the late 12th century, and Rotterdam started with a dam through the river Rotte, a minor tributary of the Nieuwe Maas. The central square of Amsterdam, covering the original place of the 800 year old dam, still carries the name Dam Square or simply the Dam.
French engineer Benoît Fourneyron developed the first successful water turbine in 1832. The era of large dams was initiated after Hoover Dam was completed on the Colorado River near Las Vegas in 1936. By 1997, there were an estimated 800,000 dams worldwide, some 40,000 of them over high.
In the arch dam, stability is obtained by a combination of arch and gravity action. If the upstream face is vertical the entire weight of the dam must be carried to the foundation by gravity, while the distribution of the normal hydrostatic pressure between vertical cantilever and arch action will depend upon the stiffness of the dam in a vertical and horizontal direction. When the upstream face is sloped the distribution is more complicated. The normal component of the weight of the arch ring may be taken by the arch action, while the normal hydrostatic pressure will be distributed as described above. For this type of dam, firm reliable supports at the abutments (either buttress or canyon side wall) are more important. The most desirable place for an arch dam is a narrow canyon with steep side walls composed of sound rock. The safety of an arch dam is dependent on the strength of the side wall abutments, hence not only should the arch be well seated on the side walls but also the character of the rock should be carefully inspected.
, Quebec, is a multiple-arch buttress dam.]] Two types of single-arch dams are in use, namely the constant-angle and the constant-radius dam. The constant-radius type employs the same face radius at all elevations of the dam, which means that as the channel grows narrower towards the bottom of the dam the central angle subtended by the face of the dam becomes smaller. Jones Falls Dam, in Canada, is a constant radius dam. In a constant-angle dam, also known as a variable radius dam, this subtended angle is kept a constant and the variation in distance between the abutments at various levels are taken care of by varying the radii. Constant-radius dams are much less common than constant-angle dams. Parker Dam is a constant-angle arch dam.
A similar type is the double-curvature or thin-shell dam. Wildhorse Dam near Mountain City, Nevada in the United States is an example of the type. This method of construction minimizes the amount of concrete necessary for construction but transmits large loads to the foundation and abutments. The appearance is similar to a single-arch dam but with a distinct vertical curvature to it as well lending it the vague appearance of a concave lens as viewed from downstream.
The multiple-arch dam consists of a number of single-arch dams with concrete buttresses as the supporting abutments, as for example the Daniel-Johnson Dam, Québec, Canada. The multiple-arch dam does not require as many buttresses as the hollow gravity type, but requires good rock foundation because the buttress loads are heavy.
When situated on a suitable site, gravity dams can prove to be a better alternative to other types of dams. When built on a carefully studied foundation, the gravity dam probably represents the best developed example of dam building. Since the fear of flood is a strong motivator in many regions, gravity dams are being built in some instances where an arch dam would have been more economical.
Gravity dams are classified as "solid" or "hollow" and are generally made of either concrete or masonry. This is called "zoning". The core of the dam is zoned depending on the availability of locally available materials, foundation conditions and the material attributes. The solid form is the more widely used of the two, though the hollow dam is frequently more economical to construct. Gravity dams can also be classified as "overflow" (spillway) and "non-overflow." Grand Coulee Dam is a solid gravity dam and Itaipu Dam is a hollow gravity dam.
A gravity dam can be combined with an arch dam into an arch-gravity dam for areas with massive amounts of water flow but less material available for a purely gravity dam.
Barrages that are built at the mouth of rivers or lagoons to prevent tidal incursions or utilize the tidal flow for tidal power are known as tidal barrages.
The tallest dam in the world is the 300-meter-high Nurek Dam in Tajikistan.
Timber crib dams were erected of heavy timbers or dressed logs in the manner of a log house and the interior filled with earth or rubble. The heavy crib structure supported the dam's face and the weight of the water. Splash dams were timber crib dams used to help float logs downstream in the late 19th and early 20th centuries.
Timber plank dams were more elegant structures that employed a variety of construction methods utilizing heavy timbers to support a water retaining arrangement of planks.
As of 2005, hydroelectric power, mostly from dams, supplies some 19% of the world's electricity, and over 63% of renewable energy. Much of this is generated by large dams, although China uses small scale hydro generation on a wide scale and is responsible for about 50% of world use of this type of power. Others such as the Berg Strait dam can help to stabilize or restore the water levels of inland lakes and seas, in this case the Aral Sea. |- !style="text-align:center"| Flood prevention | Dams such as the Blackwater dam of Webster, New Hampshire and the Delta Works are created with flood control in mind. |- !style="text-align:center"| Land reclamation | Dams (often called dykes or levees in this context) are used to prevent ingress of water to an area that would otherwise be submerged, allowing its reclamation for human use. |- !style="text-align:center"| Water diversion | A typically small dam used to divert water for irrigation, power generation, or other uses, with usually no other function. Occasionally, they are used to divert water to another drainage or reservoir to increase flow there and improve water use in that particular area. See: diversion dam. |- !style="text-align:center"| Navigation | Dams create deep reservoirs and can also vary the flow of water downstream. This can in return affect upstream and downstream navigation by altering the river's depth. Deeper water increases or creates freedom of movement for water vessels. Large dams can serve this purpose but most often weirs and locks are used. |- !style="text-align:center"| Recreation and aquatic beauty | Dams built for any of the above purposes may find themselves displaced by time of their original uses. Nevertheless the local community may have come to enjoy the reservoir for recreational and aesthetic reasons. Often the reservoir will be placid and surrounded by greenery, and convey to visitors a natural sense of rest and relaxation. |}
Significant other engineering and engineering geology considerations when building a dam include:
Older dams often lack a fish ladder, which keeps many fish from moving up stream to their natural breeding grounds, causing failure of breeding cycles or blocking of migration paths. Even the presence of a fish ladder does not always prevent a reduction in fish reaching the spawning grounds upstream. In some areas, young fish ("smolt") are transported downstream by barge during parts of the year. Turbine and power-plant designs that have a lower impact upon aquatic life are an active area of research.
A large dam can cause the loss of entire ecospheres, including endangered and undiscovered species in the area, and the replacement of the original environment by a new inland lake.
Large reservoirs formed behind dams have been indicated in the contribution of seismic activity, due to changes in water load and/or the height of the water table.
Once completed, if it is well designed and maintained, a hydroelectric power source is usually comparatively cheap and reliable. It has no fuel and low escape risk, and as an alternative energy source it is cheaper than both nuclear and wind power. It is more easily regulated to store water as needed and generate high power levels on demand compared to wind power, although dams have life expectancies while renewable energies do not.
During an armed conflict, a dam is to be considered as an "installation containing dangerous forces" due to the massive impact of a possible destruction on the civilian population and the environment. As such, it is protected by the rules of International Humanitarian Law (IHL) and shall not be made the object of attack if that may cause severe losses among the civilian population. To facilitate the identification, a protective sign consisting of three bright orange circles placed on the same axis is defined by the rules of IHL.
The main causes of dam failure include inadequate spillway capacity, piping through the embankment, foundation or abutments, spillway design error (South Fork Dam), geological instability caused by changes to water levels during filling or poor surveying (Vajont Dam, Malpasset, Testalinden Creek Dam), poor maintenance, especially of outlet pipes (Lawn Lake Dam, Val di Stava Dam collapse), extreme rainfall (Shakidor Dam), and human, computer or design error (Buffalo Creek Flood, Dale Dike Reservoir, Taum Sauk pumped storage plant).
A notable case of deliberate dam failure (prior to the above ruling) was the Royal Air Force 'Dambusters' raid on Germany in World War II (codenamed "Operation Chastise"), in which three German dams were selected to be breached in order to have an impact on German infrastructure and manufacturing and power capabilities deriving from the Ruhr and Eder rivers. This raid later became the basis for several films.
Since 2007, the Dutch IJkdijk foundation is developing, with an open innovation model and early warning system for levee/dike failures. As a part of the development effort, full scale dikes are destroyed in the IJkdijk fieldlab. The destruction process is monitored by sensor networks from an international group of companies and scientific institutions.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.