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Overview

Polynomials are incredibly useful mathematical tools as they are simply defined, can be calculated

quickly on computer systems and represent a tremendous variety of functions. They can be differentiated

and integrated easily, and can be pieced together to form spline curves that can approximate any function to

any accuracy desired. Most students are introducted to polynomials at a very early stage in their studies of

mathematics, and would probably recall them in the form below:

p(t) = antn + an−1t
n−1 + · · ·+ a1t + a0

which represents a polynomial as a linear combination of certain elementary polynomials
{
(1, t, t2, ..., tn

}
.

In general, any polynomial function that has degree less than or equal ton, can be written in this way,

and the reasons are simply

• The set of polynomials of degree less than or equal ton forms a vector space: polynomials can be

added together, can be multiplied by a scalar, and all the vector space properties hold.

• The set of functions
{
1, t, t2, ..., tn

}
form a basis for this vector space – that is, any polynomial of

degree less than or equal ton can be uniquely written as a linear combinations of these functions.

This basis, commonly called thepower basis, is only one of an infinite number of bases for the space of

polynomials.

In these notes we discuss another of the commonly used bases for the space of polynomials, theBernstein

basis, and discuss its many useful properties.



Bernstein Polynomials

The Bernstein polynomials of degreen are defined by

Bi,n(t) =
(

n

i

)
ti(1− t)n−i

for i = 0, 1, ..., n, where (
n

i

)
=

n!
i!(n− i)!

There aren+1 nth-degree Bernstein polynomials. For mathematical convenience, we usually setBi,n = 0,

if i < 0 or i > n.

These polynomials are quite easy to write down: the coefficients
(
n
i

)
can be obtained from Pascal’s

triangle; the exponents on thet term increase by one asi increases; and the exponents on the(1 − t) term

decrease by one asi increases. In the simple cases, we obtain

• The Bernstein polynomials of degree 1 are

B0,1(t) = 1− t

B1,1(t) = t

and can be plotted for0 ≤ t ≤ 1 as
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• The Bernstein polynomials of degree 2 are

B0,2(t) = (1− t)2

B1,2(t) = 2t(1− t)

B2,2(t) = t2

and can be plotted for0 ≤ t ≤ 1 as
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• The Bernstein polynomials of degree 3 are

B0,3(t) = (1− t)3

B1,3(t) = 3t(1− t)2

B2,3(t) = 3t2(1− t)

B3,3(t) = t3

and can be plotted for0 ≤ t ≤ 1 as

3



� �
�

����� �
	���


����� �
����� ����� �
���� 

!�"�# "
$�%�&

4



A Recursive Definition of the Bernstein Polynomials

The Bernstein polynomials of degreen can be defined by blending together two Bernstein polynomials

of degreen− 1. That is, thekth nth-degree Bernstein polynomial can be written as

Bk,n(t) = (1− t)Bk,n−1(t) + tBk−1,n−1(t)

To show this, we need only use the definition of the Bernstein polynomials and some simple algebra:

(1− t)Bk,n−1(t) + tBk−1,n−1(t) = (1− t)
(

n− 1
k

)
tk(1− t)n−1−k + t

(
n− 1
k − 1

)
tk−1(1− t)n−1−(k−1)

=
(

n− 1
k

)
tk(1− t)n−k +

(
n− 1
k − 1

)
tk(1− t)n−k

=
[(

n− 1
k

)
+

(
n− 1
k − 1

)]
tk(1− t)n−k

=
(

n

k

)
tk(1− t)n−k

= Bk,n(t)

The Bernstein Polynomials are All Non-Negative

A function f(t) is non-negative over an interval[a, b] if f(t) ≥ 0 for t ∈ [a, b]. In the case of the

Bernstein polynomials of degreen, each is non-negative over the interval[0, 1]. To show this we use the

recursive definition property above and mathematical induction.

It is easily seen that the functionsB0,1(t) = 1−t andB1,1(t) = t are both non-negative for0 ≤ t ≤ 1. If

we assume that all Bernstein polynomials of degree less thank are non-negative, then by using the recursive

definition of the Bernstein polynomial, we can write

Bi,k(t) = (1− t)Bi,k−1(t) + tBi−1,k−1(t)

and argue thatBi,k(t) is also non-negative for0 ≤ t ≤ 1, since all components on the right-hand side

of the equation are non-negative components for0 ≤ t ≤ 1. By induction, all Bernstein polynomials are

non-negative for0 ≤ t ≤ 1.

In this process, we have also shown that each of the Bernstein polynomials ispositivewhen0 < t < 1.
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The Bernstein Polynomials form a Partition of Unity

A set of functionsfi(t) is said to partition unity if they sum to one for all values oft. Thek+1 Bernstein

polynomials of degreek form a partition of unity in that they all sum to one.

To show that this is true, it is easiest to first show a slightly different fact: for eachk, the sum of the

k +1 Bernstein polynomials of degreek is equal to the sum of thek Bernstein polynomials of degreek− 1.

That is,
k∑

i=0

Bi,k(t) =
k−1∑
i=0

Bi,k−1(t)

This calculation is straightforward, using the recursive definition and cleverly rearranging the sums:

k∑
i=0

Bi,k(t) =
k∑

i=0

[(1− t)Bi,k−1(t) + tBi−1,k−1(t)]

= (1− t)

[
k−1∑
i=0

Bi,k−1(t) + Bk,k−1(t)

]
+ t

[
k∑

i=1

Bi−1,k−1(t) + B−1,k−1(t)

]

= (1− t)
k−1∑
i=0

Bi,k−1(t) + t
k∑

i=1

Bi−1,k−1(t)

= (1− t)
k−1∑
i=0

Bi,k−1(t) + t
k−1∑
i=0

Bi,k−1(t)

=
k−1∑
i=0

Bi,k−1(t)

(where we have utilizedBk,k−1(t) = B−1,k−1(t) = 0).

Once we have established this equality, it is simple to write

n∑
i=0

Bi,n(t) =
n−1∑
i=0

Bi,n−1(t) =
n−2∑
i=0

Bi,n−2(t) = · · · =
1∑

i=0

Bi,1(t) = (1− t) + t = 1

The partition of unity is a very important property when utilizing Bernstein polynomials in geometric

modeling and computer graphics. In particular, for any set of pointsP0, P1, ..., Pn, in three-dimensional

space, and for anyt, the expression

P(t) = P0B0,n(t) + P1B1,n(t) + · · ·+ PnBn,n(t)
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is an affine combination of the set of pointsP0,P1, ...,Pn and if 0 ≤ t ≤ 1, it is a convex combination of

the points.

Degree Raising

Any of the lower-degree Bernstein polynomials (degree< n) can be expressed as a linear combination

of Bernstein polynomials of degreen. In particular, any Bernstein polynomial of degreen−1 can be written

as a linear combination of Bernstein polynomials of degreen. We first note that

tBi,n(t) =
(

n

i

)
ti+1(1− t)n−i

=
(

n

i

)
ti+1(1− t)(n+1)−(i+1)

=

(
n
i

)(
n+1
i+i

)Bi+1,n+1(t)

=
i + 1
n + 1

Bi+1,n+1(t)

and

(1− t)Bi,n(t) =
(

n

i

)
ti(1− t)n+1−i

=

(
n
i

)(
n+1

i

)Bi,n+1(t)

=
n− i + 1

n + 1
Bi,n+1(t)

and finally

1(
n
i

)Bi,n(t) +
1(
n

i+1

)Bi+1,n(t) = ti(1− t)n−i + ti+1(1− t)n−(i+1)

= ti(1− t)n−i−1((1− t) + t)

= ti(1− t)n−i−1

=
1(

n−1
i

)Bi,n−1(t)

Using this final equation, we can write an arbitrary Bernstein polynomial in terms of Bernstein polynomials
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of higher degree. That is,

Bi,n−1(t) =
(

n− 1
i

) [
1(
n
i

)Bi,n(t) +
1(
n

i+1

)Bi+1,n(t)

]

=
(

n− i

n

)
Bi,n(t) +

(
i + 1

n

)
Bi+1,n(t)

which expresses a Bernstein polynomial of degreen − 1 in terms of a linear combination of Bernstein

polynomials of degreen. We can easily extend this to show that any Bernstein polynomial of degreek

(less thann) can be written as a linear combination of Bernstein polynomials of degreen – e.g., a Bernstein

polynomial of degreen−2 can be expressed as a linear combination of two Bernstein polynomials of degree

n − 1, each of which can be expressed as a linear combination of two Bernstein polynomials of degreen,

etc.

Converting from the Bernstein Basis to the Power Basis

Since the power basis{1, t, t2, ..., tn} forms a basis for the space of polynomials of degree less than or

equal ton, any Bernstein polynomial of degreen can be written in terms of the power basis. This can be

directly calculated using the definition of the Bernstein polynomials and the binomial theorem, as follows:

Bk,n(t) =
(

n

k

)
tk(1− t)n−k

=
(

n

k

)
tk

n−k∑
i=0

(−1)i

(
n− k

i

)
ti

=
n−k∑
i=0

(−1)i

(
n

k

)(
n− k

i

)
ti+k

=
n∑

i=k

(−1)i−k

(
n

k

)(
n− k

i− k

)
ti

=
n∑

i=k

(−1)i−k

(
n

i

)(
i

k

)
ti

where we have used the binomial theorem to expand(1− t)n−k.

To show that each power basis element can be written as a linear combination of Bernstein Polynomials,
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we use the degree elevation formulas and induction to calculate:

tk = t(tk−1)

= t

n∑
i=k−1

(
i

k−1

)(
n

k−1

)Bi,n−1(t)

=
n∑

i=k

(
i−1
k−1

)(
n−1
k−1

) tBi−1,n−1(t)

=
n−1∑

i=k−1

(
i

k−1

)(
n

k−1

) i

n
Bi,n(t)

=
n−1∑

i=k−1

(
i
k

)(
n
k

)Bi,n(t),

where the induction hypothesis was used in the second step.

Derivatives

Derivatives of thenth degree Bernstein polynomials are polynomials of degreen− 1. Using the defini-

tion of the Bernstein polynomial we can show that this derivative can be written as a linear combination of

Bernstein polynomials. In particular

d

dt
Bk,n(t) = n(Bk−1,n−1(t)−Bk,n−1(t))

for 0 ≤ k ≤ n. This can be shown by direct differentiation

d

dt
Bk,n(t) =

d

dt

(
n

k

)
tk(1− t)n−k

=
kn!

k!(n− k)!
tk−1(1− t)n−k +

(n− k)n!
k!(n− k)!

tk(1− t)n−k−1

=
n(n− 1)!

(k − 1)!(n− k)!
tk−1(1− t)n−k +

n(n− 1)!
k!(n− k − 1)!

tk(1− t)n−k−1

= n

(
(n− 1)!

(k − 1)!(n− k)!
tk−1(1− t)n−k +

(n− 1)!
k!(n− k − 1)!

tk(1− t)n−k−1

)
= n (Bk−1,n−1(t)−Bk,n−1(t))
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That is, the derivative of a Bernstein polynomial can be expressed as the degree of the polynomial, multiplied

by the difference of two Bernstein polynomials of degreen− 1.

The Bernstein Polynomials as a Basis

Why do the Bernstein polynomials of ordern form a basis for the space of polynomials of degree less

than or equal ton?

1. They span the space of polynomials – any polynomial of degree less than or equal ton can be written

as a linear combination of the Bernstein polynomials.

This is easily seen if one realizes that The power basis spans the space of polynomials and any member

of the power basis can be written as a linear combination of Bernstein polynomials.

2. They are linearly independent – that is, if there exist constantsc0, c1, ..., cn so that the identity

0 = c0B0,n(t) + c1B1,n(t) + · · ·+ cnBn,n(t)

holds for allt, then all theci’s must be zero.

If this were true, then we could write

0 = c0B0,n(t) + c1B1,n(t) + · · ·+ cnBn,n(t)

= c0

n∑
i=0

(−1)i

(
n

i

)(
i

0

)
ti + c1

n∑
i=1

(−1)i−1

(
n

i

)(
i

1

)
ti + · · ·+ cn

n∑
i=n

(−1)i−n

(
n

i

)(
i

n

)
ti

= c0 +

[
1∑

i=0

ci

(
n

1

)(
1
1

)]
t1 + · · ·+

[
n∑

i=0

ci

(
n

n

)(
n

n

)]
tn

Since the power basis is a linearly independent set, we must have that

c0 = 0
1∑

i=0

ci

(
n

1

)(
1
1

)
= 0

...
n∑

i=0

ci

(
n

n

)(
n

n

)
= 0

which implies thatc0 = c1 = · · · = cn = 0 (c0 is clearly zero, substituting this in the second equation
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givesc1 = 0, substituting these two into the third equation gives ...)
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A Matrix Representation for Bernstein Polynomials

In many applications, a matrix formulation for the Bernstein polynomials is useful. These are straight-

forward to develop if one only looks at a linear combination in terms of dot products.

Given a polynomial written as a linear combination of the Bernstein basis functions

B(t) = c0B0,n(t) + c1B1,n(t) + · · ·+ cnBn,n(t)

It is easy to write this as a dot product of two vectors

B(t) =
[

B0,n(t) B1,n(t) · · · Bn,n(t)
]


c0

c1

...

cn


We can convert this to

B(t) =
[

1 t t2 · · · tn
]


b0,0 0 0 · · · 0

b1,0 b1,1 0 · · · 0

b2,0 b2,1 b2,2 · · · 0
...

...
...

...
...

bn,0 bn,1 bn,2 · · · bn,n





c0

c1

c2

...

cn


where thebi,j are the coefficients of the power basis that are used to determine the respective Bernstein

polynomials. We note that the matrix in this case is lower triangular.

In the quadratic case (n = 2), the matrix representation is

B(t) =
[

1 t t2
] 

1 0 0

−2 2 0

1 −2 1




c0

c1

c2


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and in the cubic case (n = 3), the matrix representation is

B(t) =
[

1 t t2 t3
]


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




c0

c1

c2

c3


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