- Order:
- Duration: 3:30
- Published: 08 Mar 2010
- Uploaded: 03 Jul 2011
- Author: 666xTHEFALLENONEx666
The term clone is derived from κλῶνος, the Greek word for "trunk, branch", referring to the process whereby a new plant can be created from a twig. In horticulture, the spelling clon was used until the twentieth century; the final e came into use to indicate the vowel is a "long o" instead of a "short o". Since the term entered the popular lexicon in a more general context, the spelling clone has been used exclusively.
Cloning of any DNA fragment essentially involves four steps # fragmentation - breaking apart a strand of DNA # ligation - gluing together pieces of DNA in a desired sequence # transfection - inserting the newly formed pieces of DNA into cells # screening/selection - selecting out the cells that were successfully transfected with the new DNA Although these steps are invariable among cloning procedures a number of alternative routes can be selected, these are summarized as a 'cloning strategy'.
Initially, the DNA of interest needs to be isolated to provide a DNA segment of suitable size. Subsequently, a ligation procedure is used where the amplified fragment is inserted into a vector (piece of DNA). The vector (which is frequently circular) is linearised using restriction enzymes, and incubated with the fragment of interest under appropriate conditions with an enzyme called DNA ligase. Following ligation the vector with the insert of interest is transfected into cells. A number of alternative techniques are available, such as chemical sensitivation of cells, electroporation, optical injection and biolistics. Finally, the transfected cells are cultured. As the aforementioned procedures are of particularly low efficiency, there is a need to identify the cells that have been successfully transfected with the vector construct containing the desired insertion sequence in the required orientation. Modern cloning vectors include selectable antibiotic resistance markers, which allow only cells in which the vector has been transfected, to grow. Additionally, the cloning vectors may contain colour selection markers, which provide blue/white screening (??-factor complementation) on X-gal medium. Nevertheless, these selection steps do not absolutely guarantee that the DNA insert is present in the cells obtained. Further investigation of the resulting colonies must be required to confirm that cloning was successful. This may be accomplished by means of PCR, restriction fragment analysis and/or DNA sequencing.
A useful tissue culture technique used to clone distinct lineages of cell lines involves the use of cloning rings (cylinders). According to this technique, a single-cell suspension of cells that have been exposed to a mutagenic agent or drug used to drive selection is plated at high dilution to create isolated colonies; each arising from a single and potentially clonal distinct cell. At an early growth stage when colonies consist of only a few of cells, sterile polystyrene rings (cloning rings), which have been dipped in grease are placed over an individual colony and a small amount of trypsin is added. Cloned cells are collected from inside the ring and transferred to a new vessel for further growth.
Many trees, shrubs, vines, ferns and other herbaceous perennials form clonal colonies. Parts of a large clonal colony often become detached from the parent, termed fragmentation, to form separate individuals. Some plants also form seeds asexually, termed apomixis, e.g. dandelion.
Artificial embryo splitting or embryo twinning may also be used as a method of cloning, where an embryo is split in the maturation before embryo transfer. It is optimally performed at the 6- to 8-cell stage, where it can be used as an expansion of IVF to increase the number of available embryos. If both embryos are successful, it gives rise to monozygotic (identical) twins.
Dolly was publicly significant because the effort showed that the genetic material from a specific adult cell, programmed to express only a distinct subset of its genes, can be reprogrammed to grow an entirely new organism. Before this demonstration, it had been shown by John Gurdon that nuclei from differentiated cells could give rise to an entire organism after transplantation into an enucleated egg. However, this concept was not yet demonstrated in a mamallian system.
Cloning Dolly the sheep had a low success rate per fertilized egg; she was born after 237 eggs were used to create 29 embryos, which only produced three lambs at birth, only one of which lived. Seventy calves have been created and one third of them died young; Prometea took 277 attempts. Notably, although the first clones were frogs, no adult cloned frog has yet been produced from a somatic adult nucleus donor cell.
There were early claims that Dolly the Sheep had pathologies resembling accelerated aging. Scientists speculated that Dolly's death in 2003 was related to the shortening of telomeres, DNA-protein complexes that protect the end of linear chromosomes. However, other researchers, including Ian Wilmut who led the team that successfully cloned Dolly, argue that Dolly's early death due to respiratory infection was unrelated to deficiencies with the cloning process.
The various forms of human cloning are controversial. There have been numerous demands for all progress in the human cloning field to be halted. Most scientific, governmental and religious organizations oppose reproductive cloning. The American Association for the Advancement of Science (AAAS) and other scientific organizations have made public statements suggesting that human reproductive cloning be banned until safety issues are resolved. Serious ethical concerns have been raised by the future possibility of harvesting organs from clones. Some people have considered the idea of growing organs separately from a human organism - in doing this, a new organ supply could be established without the moral implications of harvesting them from humans. Research is also being done on the idea of growing organs that are biologically acceptable to the human body inside of other organisms, such as pigs or cows, then transplanting them to humans, a form of xenotransplantation.
The first hybrid human clone was created in November 1998, by Advanced Cell Technologies. It was created from a man's leg cell, and a cow's egg whose DNA was removed. It was destroyed after 12 days. Since a normal embryo implants at 14 days, Dr Robert Lanza, ACT's director of tissue engineering, told the Daily Mail newspaper that the embryo could not be seen as a person before 14 days. While making an embryo, which may have resulted in a complete human had it been allowed to come to term, according to ACT: "[ACT's] aim was 'therapeutic cloning' not 'reproductive cloning'"
On January, 2008, Wood and Andrew French, Stemagen's chief scientific officer in California, announced that they successfully created the first 5 mature human embryos using DNA from adult skin cells, aiming to provide a source of viable embryonic stem cells. Dr. Samuel Wood and a colleague donated skin cells, and DNA from those cells was transferred to human eggs. It is not clear if the embryos produced would have been capable of further development, but Dr. Wood stated that if that were possible, using the technology for reproductive cloning would be both unethical and illegal. The 5 cloned embryos, created in Stemagen Corporation lab, in La Jolla, were destroyed.
Gregory Stock is a scientist and outspoken critic against restrictions on cloning research. Bioethicist Gregory Pence also attacks the idea of criminalizing attempts to clone humans.
The social implications of an artificial human production scheme were famously explored in Aldous Huxley's novel Brave New World.
On December 28, 2006, the U.S. Food and Drug Administration (FDA) approved the consumption of meat and other products from cloned animals. Cloned-animal products were said to be virtually indistinguishable from the non-cloned animals. Furthermore, companies would not be required to provide labels informing the consumer that the meat comes from a cloned animal.
Critics have raised objections to the FDA's approval of cloned-animal products for human consumption, arguing that the FDA's research was inadequate, inappropriately limited, and of questionable scientific validity. Several consumer-advocate groups are working to encourage a tracking program that would allow consumers to become more aware of cloned-animal products within their food.
Joseph Mendelson, legal director of the Center for Food Safety, said that cloned food still should be labeled since safety and ethical issues about it remain questionable.
Carol Tucker Foreman, director of food policy at the Consumer Federation of America, stated that FDA does not consider the fact that the results of some studies revealed that cloned animals have increased rates of mortality and deformity at birth.
In 2001, a cow named Bessie gave birth to a cloned Asian gaur, an endangered species, but the calf died after two days. In 2003, a banteng was successfully cloned, followed by three African wildcats from a thawed frozen embryo. These successes provided hope that similar techniques (using surrogate mothers of another species) might be used to clone extinct species. Anticipating this possibility, tissue samples from the last bucardo (Pyrenean Ibex) were frozen in liquid nitrogen immediately after it died in 2000. Researchers are also considering cloning endangered species such as the giant panda, ocelot, and cheetah. The "Frozen Zoo" at the San Diego Zoo now stores frozen tissue from the world's rarest and most endangered species.
In 2002, geneticists at the Australian Museum announced that they had replicated DNA of the Thylacine (Tasmanian Tiger), extinct about 65 years previous, using polymerase chain reaction. However, on February 15, 2005 the museum announced that it was stopping the project after tests showed the specimens' DNA had been too badly degraded by the (ethanol) preservative. On 15 May 2005 it was announced that the Thylacine project would be revived, with new participation from researchers in New South Wales and Victoria.
In January 2009, for the first time, an extinct animal, the Pyrenean ibex mentioned above was cloned, at the Centre of Food Technology and Research of Aragon, using the preserved DNA of the skin samples from 2001 and domestic goat egg-cells. (The ibex died shortly after birth due to physical defects in its lungs.) One of the continuing obstacles in the attempt to clone extinct species is the need for nearly perfect DNA. Cloning from a single specimen could not create a viable breeding population in sexually reproducing animals. Furthermore, even if males and females were to be cloned, the question would remain open whether they would be viable at all in the absence of parents that could teach or show them their natural behavior.
Cloning endangered species is a highly ideological issue. Many conservation biologists and environmentalists vehemently oppose cloning endangered species—mainly because they think it may deter donations to help preserve natural habitat and wild animal populations. The "rule-of-thumb" in animal conservation is that, if it is still feasible to conserve habitat and viable wild populations, breeding in captivity should not be undertaken in isolation.
In a 2006 review, David Ehrenfeld concluded that cloning in animal conservation is an experimental technology that, at its state in 2006, could not be expected to work except by pure chance and utterly failed a cost-benefit analysis. Furthermore, he said, it is likely to siphon funds from established and working projects and does not address any of the issues underlying animal extinction (such as habitat destruction, hunting or other overexploitation, and an impoverished gene pool). While cloning technologies are well-established and used on a regular basis in plant conservation, care must be taken to ensure genetic diversity. He concluded:
Category:Molecular biology Category:Cryobiology Category:Applied genetics
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.