Name | RCA connector |
---|---|
Type | RF coaxial connector |
Designer | Unknown, but from Radio Corporation of America |
Design date | Early 1940s |
Diameter | (outer, typical) |
Cable | Coaxial |
Passband | Typically 0-100 MHz |
Physical connector | }} |
An RCA connector, sometimes called a phono connector or cinch connector, is a type of electrical connector commonly used to carry audio and video signals. The name "RCA" derives from the Radio Corporation of America, which introduced the design by the early 1940s to allow mono phonograph players to be connected to amplifiers.
They began to replace the older TRS connectors (also called jack plugs) for many other applications in the audio world when component high fidelity systems started becoming popular in the 1950s. However, mini TRS connectors (3.5 mm jacks) and sub-miniature (2.5 mm) jacks are predominant in personal stereo systems.
The connection's plug is called an RCA plug or phono plug, for "phonograph". The name "phono plug" is sometimes confused with a "phone plug" which refers to anything from a TRS connector plug to a British phone plug to an RJ14 registered jack plug.
In the most normal usage, cables have a standard plug on each end, consisting of a central male connector, surrounded by a ring. The ring is often segmented for flexibility. Devices mount the socket (female jack), consisting of a central hole with a ring of metal around it. The ring is slightly smaller in diameter and longer than the ring on the plug, allowing the plug's ring to fit tightly over it. The jack has a small area between the outer and inner rings which is filled with an insulator, typically plastic (very early versions, or those made for use as RF connectors used ceramic).
As with many other connectors, the RCA has been adopted for other uses than originally intended, including as a power connector, an RF connector, and as a connector for loudspeaker cables. Its use as a connector for composite video signals is extremely common, but provides poor impedance matching. RCA connectors and cable are also commonly used to carry S/PDIF-formatted digital audio, with plugs colored orange to differentiate them from other typical connections.
Connections are made by pushing the cable's plug into the female jack on the device. The signal-carrying pin protrudes from the plug, and often comes into contact with the socket before the grounded rings meet, resulting in loud hum or buzz if the audio components are powered while making connections. Continuous noise can occur if the plug partially falls out of the jack, breaking ground connection but not the signal. Some variants of the plug, especially cheaper versions, also give very poor grip and contact between the ground sheaths due to their lack of flexibility.
They are often color-coded, yellow for composite video, red for the right channel, and white or black for the left channel of stereo audio. This trio (or pair) of jacks can be found on the back of almost all audio and video equipment. At least one set is usually found on the front panel of modern TV sets, to facilitate connection of camcorders (through 3.5mm Jack to 3 RCA, also called Mini RCA or miniature jack plug leads), digital cameras, and video gaming consoles. Although nearly all audio-visual connectors, including audio, composite and component video, and S/PDIF audio can use identical 75 Ω cables, sales of special-purpose cables for each use have proliferated. Varying cable quality means that a cheap line-level audio cable might not successfully transfer component video or digital audio signals due to impedance mismatch and poor shielding quality (causing signal-to-noise ratio to be too low). Cables should meet the S/PDIF specification as defined by the international standard IEC 60958-3 for assured performance.
The male plug has a center pin which is 3.175 mm (1/8 inch) in diameter, and is surrounded by an outer shell which is 8.25 mm (1/3 inch) in diameter.
One problem with the RCA connector is that, when connecting the male into the female, the inner 'hot' (signal) connection is made before the 'cold' (screening) connection has been guaranteed. This often produces a loud buzz, and could possibly harm some equipment if it has not been switched off beforehand. Another problem with the RCA connectors is that each signal requires its own plug. Even the simple case of attaching a cassette deck may need four of them, two for stereo input and two for stereo output. In any common setup this quickly leads to a mess of cables and confusion in how to connect them, which is made worse if one considers more complex signals like component video (a total of three for video and two for analog audio or one for digital coaxial audio).
There have been attempts to introduce combined audio/video connectors for direct signals but in the analog realm none of these have ever become universal, except in Europe where the SCART connector is very successful. For a time the 5-pin DIN connector was popular for bi-directional stereo connection between A/V equipment, but it has been entirely displaced on modern consumer devices. Though RF modulators inherently transmit combined A/V signals in video applications, they depend on broadcast television systems and RF connectors which are not universal worldwide; RF signals are also generally inferior to direct signals due to protocol conversion and the RF limitations of the three major analog TV systems (NTSC, PAL and SECAM).
Nearly all modern TV sets, VCRs, and DVD players sold in Europe have SCART connectors, though sometimes supplemented by RCA and/or RF connectors and there are also SCART-RCA adapters. Outside Europe, separate RCA connectors are usually used, supplemented by RF connectors for backward compatibility and simplicity; though mini-DIN connectors are sometimes used for S-Video connections, composite video, component video, and analog audio (mono or stereo) all use RCA connectors unless RF is used. In the digital realm, however, combined A/V connectors are gaining ground; HDMI is commonly being used today, and DisplayPort is a potential competitor to HDMI.
For audio signals, an RCA connection is called unbalanced, and a true balanced connection is generally preferred in certain applications because it allows for the use of long cables while reducing susceptibility to external noise.
The word phono in phono connector is an abbreviation of the word phonograph, because this connector was originally created to allow the connection of a phonograph turntable to a radio receiver, utilizing the radio as an amplifier. This setup was present in most radios manufactured in the 1930s onward by the Radio Corporation of America (RCA), who later marketed a special turntable for 45 RPM records, the model 9JY.
Phonograph recordings are made with high frequencies boosted and the low frequencies attenuated: during playback the frequency response changes are reversed. This reduces background noise, including clicks or pops, and also conserves the amount of physical space needed for each groove, by reducing the size of the larger low-frequency undulations. This is accomplished in the amplifier with a phono input that incorporates standardized RIAA equalization circuitry.
In the 1980s, the phono input was widely available on consumer stereo equipment—even some larger boomboxes had them. By the 2000s only very sophisticated and expensive stereo receivers retained the phono input, since most users were expected to use digital music formats such as CD or satellite radio. Some newer low-cost turntables include built-in amplifiers to produce line-level (one volt) outputs; devices are available that perform this conversion for use with computers; or older amplifiers or radio receivers can be used. Nearly all DJ mixers have two or more phono inputs, together with two or more one-volt line inputs that also use RCA connectors.
This "phono input" designed for the millivolt signal from an unamplified turntable should not be confused with the modern standard one-volt line input and output that also uses RCA connectors and is found on video cameras, recorders and similar modern equipment.
In stereo audio applications there are combinations of either Black+Red or White+Red RCA connectors; in both cases, Red denotes Right. White or Purple may also be replaced by Black.
While these are the standard colors found on commercially made products, same-colored cables may also be used. For example, a red cable may be used instead of a yellow one, as there is no other difference between them.
align="right" | Composite | Yellow | |
Left/Mono | White | ||
Right | Red | ||
Center | Green | ||
Blue | |||
Right surround | Gray | ||
Left back surround | Brown | ||
Right back surround | Tan | ||
Subwoofer | Purple | ||
S/PDIF | Orange | ||
Y | Green | ||
PB | Blue | ||
PR | Red | ||
R | Red | ||
G | Green | ||
B | Blue | ||
H(Horizontal sync)/S(Composite Sync) | Yellow | ||
V(Vertical sync) | White |
Category:Audiovisual connectors Category:Coaxial connectors Category:Signal connectors
ar:موصل آر سي أي ca:Connector RCA cs:Cinch de:Cinch et:RCA pistikühendus es:Conector RCA fa:رابط آرسیای fr:Prise RCA gl:Conector RCA it:Connettore RCA lb:RCA-Stecker ms:Penyambung RCA nl:Tulpstekker ja:RCA端子 pl:Cinch pt:Conector RCA ru:RCA (разъём) su:Konéktor RCA fi:RCA-liitäntä sv:RCA-kontakt uk:RCA zh:RCA端子This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.