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1. Numerical Model

We begin with the primitive hydrodynamic equations of motion in two dimensions,

assuming hydrostatic equilibrium:

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v (1)

∂v

∂t
= −v · ∇v − 1

ρ
∇p (2)

∂

∂t

(
e
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)
− p

ρ
∇ · v. (3)

We use the equation of state for an ideal gas: p = (γ − 1)e = ρCV T , where R is the specific

gas constant and the adiabatic constant γ = 1.4 for a diatomic gas. (We actually use a

value of γ = 1.389, appropriate for molecular hydrogen at 900 K.) Setting the specific heat

capacity to CV = R/(γ − 1), we can substitute

T =
1

CV

e

ρ
(4)

into equation (3) to obtain the hydrodynamic equations in terms of the dynamical variables

T,v, and ρ:

∂T

∂t
= −v · ∇T − (γ − 1)T∇ · v (5)

∂v

∂t
= −v · ∇v − RT

ρ
∇ρ−R∇T (6)

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v. (7)

In order to obtain a model appropriate to planetary atmospheric flows, we add a thermal

forcing term to (5) and a Coriolis term to (6), obtaining the equations of hydrodynamic

motion on an irradiated, rotating sphere:

∂T

∂t
= −v · ∇T − (γ − 1)T∇ · v + frad (8)

∂v

∂t
= −v · ∇v − RT

ρ
∇ρ−R∇T − 2Ωrot sin θ(n̂× v) (9)

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v, (10)

where frad gives the thermal forcing, Ωrot is the angular frequency of the planet’s rotation,

θ is the latitude, and n̂ is a unit vector normal to the planet’s surface.
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We calculate frad using a one-layer, two-frequency radiative transfer scheme. We take

the mean opacity for incident stellar radiation to be k1, while the mean opacity for outgoing

long-wave radiation is k2. In this greatly simplified model, a thin layer of the atmosphere

with thickness dz and at a pressure depth p will absorb a flux equal to

dF =

(
k1F∗(p)

cos α
+ k2σT 4

night − k2σT 4

)
ρ dz, (11)

where F∗(p) is the incident stellar flux at a pressure depth p, α is the zenith angle of the

star, Tnight is the temperature of the layer being modeled in the absence of solar heating.,

and σ = 5.67 · 10−8 W m−2 K−4 is the Stefan-Boltzman constant. Tnight is the result of the

combination of the intrinsic planetary flux due to tidal heating and the heating supplied by

the atmosphere at high optical depth, and is calculated using a one-dimensional radiative

transfer code. Energy conservation requires that dF = ρCpfraddz, so the thermal forcing

must be

frad =

(
1

Cp

) (
k1F∗(p)

cos α
+ k2σT 4

night − k2σT 4

)
. (12)

We may approximate F∗(p) by ignoring the variation in k1 with temperature and pres-

sure; this gives

F∗(p) = F∗(0)e
− k1p

g cos α . (13)

But F∗(0) is simply the flux at the top of the atmosphere, which is given by

F∗(0) = (1− A)

(
L∗

4πa2

)
cos α, (14)

where A is the Bond Albedo, L∗ is the stellar luminosity, and a is the distance between the

star and the planet. Then the thermal forcing is

frad =

(
1
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) (
k1(1− A)

(
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4πa2

)
e−

k1p
g cos α + k2σT 4

night − k2σT 4

)
. (15)

With a little bit of algebraic manipulation, this can be placed in a more transparent form:

frad = β
(
T 4

eq − T 4
)
, (16)

where β = σk2/Cp and the equilibrium temperature Teq follows

T 4
eq =

(
k1

k2

)
T 4

ssx
sec α + T 4

night, (17)

with σT 4
ss = (1 − A)L∗/(4πa2) and x = exp(−k1p/g). The forcing that results from this

scheme strongly depends on the choice of k1, k2, and p. Motivated by many-layer radiative
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models of HD 209458 b, we choose k1 = 2 · 10−4 m2 kg−1, k2 = 4 · 10−4 m2 kg−1, and

p = 250(g/10 m s−2) mbar, where g is the acceleration due to gravity at the planet’s surface.

While we believe this model represents an improvement over earlier work, it is nev-

ertheless unable to account for a number of possibly important effects. Two-dimensional

hydrodynamics obviously cannot account for vertical atmospheric flows. Since the infrared

photosphere is well inside the radiative zone for the planets under consideration, it is likely

that convective effects are negligible. However, the inability of the model to account for

vertical expansion under heating could cause some error.

In our radiative model, we ignore the variation of opacities with temperature and pres-

sure, which is known to be significant. We furthermore do not consider the variation in

opacity with wavelength within the infrared regime; this implies that, for example, the 24

micron photosphere and the 3 micron photosphere occur at the same pressure level. Both of

these simplifications are likely to cause discrepancy between our predictions and observations.

Despite these shortcomings, this model represents a significant improvement over earlier

simulations in a number of areas. Shallow water models fail to model accurately the behavior

of gaseous flows on even a qualitative level; temperature waves redistribute heat far more

efficiently than is realistic. Since our code employs fully compressible hydrodynamics, we

are able to simulate heat transfer within atmospheric flows with far greater realism than is

possible using incompressible shallow-water dynamics.

Furthermore, our radiative scheme provides a more realistic model of the thermal forc-

ing than the Newtonian relaxation employed in earlier hydrodynamic simulations. While

Newtonian relaxation is a reasonable approximation when the temperature is close to the

equilibrium temperature, it becomes dramatically less accurate as the temperature pertur-

bations grow larger. In the forcing regimes expected on extrasolar planets, the Newtonian

approximation can overestimate the actual rate of temperature change by as much as a factor

of 3. Our radiative model therefore allows us to treat the stellar heating more accurately

than previous simulations; this is particularly important in cases where the thermal forcing

varies significantly with time, either due to non-synchronous rotation or to a highly eccentric

orbit.


