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ABSTRACT

Tidal dissipation within a short-period transiting extrasolar planet perturbed by a
companion object can drive orbital evolution of the system to a so-called tidal fixed
point, in which the apsidal lines of the transiting planet and its perturber are aligned,
and for which variations in the orbital eccentricities of both planet and perturber are
damped out. Maintenance of the fixed-point apsidal alignment requires the orbits of
both planet and perturber to precess at the same rate. Significant contributions to the
apsidal precession rate are made by the secular planet-planet interaction, by general
relativity, and by the gravitational quadrupole fields created by the transiting planet’s
tidal and rotational distortions. The precession arising from the planetary quadrupole
can be the dominant term, and is strongly dependent on the planet’s internal density
distribution, which is in turn controlled by the fractional mass of the planet incorporated
into a heavy-element core. The fixed-point orbital eccentricity of the inner planet is
therefore a strong function of the planet’s interior structure. We illustrate these ideas in
the specific context of the recently discovered HAT-P-13 exo-planetary system, and show
that one can already glean important insights into the physical properties of the inner
P = 2.91 d, M = 0.85MJup, R = 1.28RJup transiting planet. We present structural
models of the planet, which indicate that its observed radius can be maintained for a one-
parameter sequence of models that properly vary core mass and tidal energy dissipation
in the interior. We use an octopole-order secular theory of the orbital dynamics to
derive the dependence of the inner planet’s eccentricity, eb, on its tidal Love number,
k2b. We find that the currently measured eccentricity, eb = 0.021±0.009 implies 0.116 <
k2b < 0.425, 0M⊕ < Mcore < 120M⊕, and Qb < 300, 000. Improved measurement of
the eccentricity via transit and secondary eclipse timing, along with continued radial
velocity monitoring, will soon allow for far tighter limits to be placed on all three of
these quantities, and will provide an unprecedented probe into the interior structure of
an extrasolar planet.
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1. Introduction

The mounting detection rate for extrasolar planets inevitably produces a series of “firsts”.
Notable examples include 51 Peg b, the first Jovian-mass planet orbiting a main-sequence star
(Mayor & Queloz 1995), Upsilon Andromedae b, c, and d, the first multiple extrasolar planet
system (Butler et al. 1999), HD 209458 b, the first transiting planet (Charbonneau et al. 2000,
Henry et al. 2000), and Gliese 581 e, the first truly terrestrial-mass planet (Mayor et al. 2009).

The HAT-P-13 system (Bakos et al. 2009) presents an exoplanetary first that at first glance
seems to lie perhaps one notch down on the novelty scale. This system contains the first transiting
planet (HAT-P-13-b) that is accompanied by a well-characterized longer-period companion planet
(HAT-P-13-c).

Transiting planets in multiple-planet systems have, however, been eagerly anticipated by the
astronomical community. In configurations of this type, the planet-planet perturbations can lead to
a host of observational effects (largely involving precise timing of the transits) that will potentially
enable remarkable dynamical characterization of both the orbital and the planetary properties
(see, for example, the review of Fabrycky 2009). On this count, the HAT-P-13 system does not
disappoint. We show here that a combination of a tidal-secular orbital evolution model, coupled
with interior evolution models of the inner planet, can be used to probe the planet’s interior
structure and to measure its current tidal quality factor, Q. Using information currently available,
we outline this approach, and show that HAT-P-13-b has Q < 300, 000.

The plan of this paper is as follows. In section 2, we describe the dynamics of a system at
a tidal fixed point, and we outline the resulting connection between the interior structure of the
planet and its orbital eccentricity. In section 3, we give an overview of the system and describe our
interior evolution calculations. We show that, under the assumption of a tidal origin for the planet’s
inflated size, the observed planetary radius can be explained by a one-parameter sequence of models
within a two-parameter space delineated by planetary core-mass and planetary tidal luminosity. We
then summarize the prospects for improved measurement of the orbital eccentricity, and proselytize
the overall ramifications of our study.

2. A System at an Eccentricity Fixed Point

In a planetary system that resides far from a significant mean motion resonance, the non-
Keplerian portion of the orbital motion can be well described by secular terms in the planetary
disturbing function. In this paper, we focus on the particular circumstance in which a short-
period transiting planet on a nearly circular orbit receives perturbations from a relatively distant



– 3 –

companion planet lying on a significantly eccentric orbit. Due to the high eccentricity of the outer
body, classical Laplace-Lagrange theory (e.g. Murray & Dermott 1999) cannot be used. Systems of
this type are, however, well-described by the octopole-order secular theory presented in Mardling
(2007). This theory requires that (1) the eccentricity of the inner planet be much less than that
of the outer planet, and (2) that the mass of the inner planet be much less than that of the star.
The theory makes no strong demands, however, on either the mass of the outer planet or on its
eccentricity. If we assume coplanar orbits, the secular evolution generated by the planet-planet
interaction is given by:
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where the orbital elements take on their standard notation and specifically, k2b is the tidal Love
number, and Qb is the inner planet’s effective tidal dissipation parameter.

The inner planet experiences additional contributions to its precession from the quadrupole
potential that arises from the tidal and rotational bulges of the planet, and from the leading-order
effects of general relativity. As discussed in Raggozine & Wolf (2009), precession driven by the tidal
and rotational bulges of the star is unimportant, unless the rotational period of the star is short
(e.g. Prot . 10 days). Derivations of the planet-induced tidal and rotational precessions are given
in Sterne (1939), and are discussed in the planetary context by Wu & Goldreich (2002) and also,
extensively, by Raggozine & Wolf (2009). The relativistic advance has been discussed by many
authors, for an up-to-date discussion in the extrasolar planet context see, for example Jordan &
Bakos (2008). To linear order, we can treat the total precession of the inner planet as the sum of
the four most significant contributions:

$̇btotal = $̇bsecular + $̇btidal + $̇bGR + $̇brotational , (5)

where, assuming synchronous rotation,
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The eccentricity function, f2(eb) is given by
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Tidal dissipation occurs primarily within the inner planet, and leads to continual decrease of the
inner planet’s semi-major axis through
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When a system of the type modeled above is subjected to tidal friction, it evolves to a stationary
configuration or a “fixed point” within ∼ 3 circularization timescales (see Mardling 2007 for an in-
depth discussion). Formally, a secular fixed point can be characterized by simultaneously aligned
(or anti-aligned) apses and identical precession rates of the orbits. In other words, in the frame
that precesses with the orbits, the system in stationary. It then follows (in the limit of large Qb)
that when $̇btotal = $̇csecular, we have ėb = ėc = 0. When a fixed-point system is subjected to tidal
dissipation (that is, has a finite Qb) the eccentricities of both orbits decay slowly, and the system
remains quasi-stationary.

To second order in eccentricity, the tidal luminosity of a spin-synchronous planet is given by
(e.g. Peale & Cassen 1978)
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Note that if eb > 0 then the planet cannot be fully spin synchronized. Further, if the planet is a
fluid body, it will be unable to maintain a permanent quadropole moment, and will therefore not
reside in spin-orbit resonance. The pseudo-synchronization theory of Hut (1981); see also Goldreich
& Peale (1966) can be used to calculate the spin frequency (which for small eb approaches nb)
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The analysis of Levrard et al. (2007), furthermore, indicates that this spin asynchronicity of the
planet will cause the tidal luminosity to exceed that given by the above formula by a small amount.

The tidal Love number, k2b parameterizes the degree of central condensation in the fluid inner
transiting planet. The mass distribution in turn affects the total tidal luminosity through Equation
(11) and contributes to the orbital precession rate through $̇btidal. The quantity k2b therefore
provides an explicit connection between the interior sturcture and energetics of the planet on the
one hand, and the orbital dynamics on the other. If the density distribution, ρ(r), in a planet is
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available, then calculation of k2b is straightforward (Sterne 1939):1

k2b =
3− η2(RPl)
2 + η2(RPl)

, (13)

where η2(RPl) is obtained by integrating an ordinary differential equation for η2(r) radially outward
from η2(0) = 0.

r
dη2

dr
+ η2

2 − η2 − 6 +
6ρ
ρm

(η2 + 1) = 0 , (14)

where ρm is the mean density interior to r and RPl is the outer radius of the planet.

3. Application to the HAT-P-13 Planetary System

The theory discussed above finds an ideal application in the context of HAT-P-13. As discussed
in Bakos et al (2009, hereafter B09) this system was discovered in a wide-field photometric survey,
and was later confirmed and characterized with high-precision radial velocities. The system contains
an inner, transiting, jovian-mass planet, “b”, and an outer body, “c”, with Mc sin(ic) close to the
giant-planet brown dwarf boundary. The V = 10.65 G4V parent star, formerly best known as
GSC 3416-00543, was essentially unstudied prior to the photometric detection of its inner planet,
and so, as a result, all quoted planetary and stellar properties are drawn from the B09 discovery
paper. For reference, we note that B09 derive an inner planet mass of mb = 0.851+0.029

−0.046MJup, a
period Pb = 2.91626± 0.00001 days, and an eccentricity (measured from a fit to 32 radial velocity
measurements) of eb = 0.021±0.009. The outer companion has Mc sin(ic) = 15.2±1.0MJup, period
Pc = 428.5± 3.0 days, and eccentricity ec = 0.691± 0.018. To within the significant observational
uncertainty, the apsidal lines of the two planets are aligned. The parent star has M? = 1.22+0.05

−0.10M�,
and the planetary radius is R = 1.28± 0.079RJup.

The short orbital period and non-zero eccentricity of HAT-P-13b suggest that tidal circulariza-
tion should be highly effective over the presumed multi-Gyr age of the star. In this case, dissipative
secular evolution will have brought the system to a fixed point configuration, which to high accuracy
satisfies the constraint given by

$̇btotal(eb, k2b) = $̇csecular . (15)

We note that the system as currently characterized from the observations is fully consistent with
such a configuration.

Our approach is illustrated schematically in Figure 1, and operates as follows. For given MPl,
Teff and RPl (all of which are strongly constrained by the observations) we compute planetary
interior structure and evolution models with a descendant of the Berkeley stellar evolution code

1note that the quantity k2,1 defined in Sterne (1939) is the apsidal motion constant, that is, k2b/2 in our notation
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(Henyey et al. 1964). This program assumes that the standard equations of stellar structure apply,
and it has been used extensively in the study of both extrasolar and solar system giant planets (see
e.g. Pollack et al. 1996, Bodenheimer et al. 2003, Hubickyj et al. 2005, and Dodson-Robinson et al.
2008 for descriptions of the method and its input physics). Energy sources within the planet include
gravitational contraction, cooling of the interior, and tidal heating of the interior, which we assume
occurs at adiabatic depth. At the planetary surface, the luminosity is composed of two components:
the internal luminosity generated by the planet, Lint = dE/dt, and the energy absorbed from the
stellar radiation flux and re-radiated (insolation). Pure molecular opacities are used in the radiative
outer layers of the planet (Freedman et al. 2008). A given evolutionary sequence starts at a radius
of roughly 2 RJup and ends at an age of 4.5 Gyr. The resulting planetary radius is highly insensitive
to the chosen age. It is assumed that the planet arrived at its present orbital position during or
shortly after formation, that is, at an age of < 107 yr.

We used the code to delineate a range of plausible models for HAT-P-13b, all of which are
required to match the observed planetary mass, M = 0.85MJup, and the inferred planetary effective
temperature, Teff = 1649 K. Our models are divided into three sequences, which are required to
match the observed one-sigma lower limit on the planetary radius, RPl = 1.20RJup (sequence 1), the
best-fit radius RPl = 1.28RJup (sequence 2), and the one-sigma upper limit on the observed radius,
RPl = 1.36RJup (sequence 3). The structurally relevant unknown parameters are the planet’s solid
core mass, Mcore, and the total tidal luminosity, Lint = dE/dt. By computing a variety of models in
this 2-dimensional parameter space, we can pin down the (Mcore, Lint) pairs that generate planets
that satisfy a given choice of (MPl, RPl, Teff). A range-spanning aggregate of the models is listed
in Table 1.

Also listed in Table 1 are the tidal Love numbers, k2b (obtained from ρ(r) via Equations 13 and
14), the tidal quality factors, Qb (obtained from equation 11), and the fixed point eccentricities,
eb that enable the satisfaction of equation 15. Quoted errors on Qb and eb are obtained by using
B09’s reported uncertainties on the observed planetary and orbital properties, and adopting the
assumptions that the error distributions are both normally distributed and uncorrelated across
parameters.

Given our aggregate of models, we can consider the effect of the Love number, k2b on the
orbital architecture in more detail. If we completely ignore the orbital precession induced by
the planet’s tidal and rotational bulges, and adopt B09’s best-fit measurements of all relevant
orbital parameters other than eb, the equilibrium inner planet eccentricity is eeqb = 0.0336. We
verified with a fully numerical 3-body simulation (Chambers 1999), that includes the relativistic
precession, that this value is indeed an excellent approximation to the fixed-point eccentricity. If
we assume a Love number, k2b = 0.3, and include the precession due to planetary rotational and
tidal bulges, the equilibrium eccentricity drops to eeqb = 0.0161, a difference, ∆eb, that is eminently
detectable. Therefore, with the precise estimate of planet b’s eccentricity, that will emerge from
secondary transit timing and additional radial velocity measurements, it will be possible to make
solid inferences about planet b’s core mass and internal luminosity from direct measurement of
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the tidal Love number, k2b. In the context of this system, it is important to note that the orbital
precession of the planets is quite slow (∼ 10−3 deg/yr). As a result, k2b cannot be measured directly
from transit light curves, as described in (Ragozzine & Wolf, 2009), and must be inferred from the
equilibrium eccentricity.

To further illustrate this idea, we obtained a series of equilibrium eccentricity values as a
function of k2b. The results from these calculations are shown in figure 2. Modeling the errors as
described above, the mean trend of planet b’s eccentricity can be approximated by a fourth-order
polynomial as

eeqb ≈ 0.0334− 0.0985k2b + 0.188k2
2
b − 0.184k2

3
b + 0.069k2

4
b . (16)

The plotted errors of the equilibrium eccentricities are the standard deviations obtained from each
sample of eeqb ’s for a given k2b. We stress that these error bars will shrink very significantly with
improved observational measurements obtainable from photometry, timing, and radial velocity.

In addition to the mean trend and errors, specific regions in (eb, k2b) space, occupied by a
set of interior models with 0, 40, 80, and 120 M⊕ core masses (see Table 1) are also marked.
These regions are represented as four quadrilaterals overlaying the graph. The corners of each
quadrilateral correspond to the combination of the Love number for a given model, specific to
a radius of 1.2 RJup or 1.36 RJup, and 1-σ bounds on its equilibrium fixed point eccentricity as
determined by Equation 15. An increased core mass tends to lower the Love number. Accordingly,
the left-most quadrilateral on Figure 2 corresponds to the 120 M⊕ core model, while the right-most
quadrilateral represents the core-less model.

Recall again, that we have neglected the precession induced by the star’s tidal bulge and
rotation. While unlikely, if these effects shall turn out to be important, they will lead to a further
decrease in the equilibrium eccentricity of planet b. If the star rotates rapidly, a degeneracy will
appear with respect to probing the interior structure of planet b, as the star’s unknown Love
number, k2?, will enter the calculation. In addition, we are assuming a co-planar configuration.
The validity of this assumption will be tested by forthcoming transit timing measurements, and a
further clue will be provided by measurement of the alignment of the inner planet’s orbit with the
stellar equator via the Rossiter-McLaughlin effect.

Given the non-zero eccentricity of planet b, a natural question emerges: how long will planet b
remain slightly eccentric despite tidal dissipation? To answer this question, we performed a tidally
dissipated secular integration, similar to those discussed in Batygin et al. (2009) using an artificially
low tidal quality factor of Qb = 10 to speed up the proceedings. This integration revealed that the
e-folding time for planet b’s eccentricity is τ ≈ 5.78(Qb/10) × 105 years, or approximately 6 Gyr
for Qb = 105. As a consequence, we expect that the orbital configuration of the system has evolved
somewhat during the current lifetime of the star. This timescale also places the low values of Qb,
e.g. Qb < 10, 000, that are currently admitted by the observations into disfavor.
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4. Conclusion

Our analysis indicates that the HAT-P-13 system has the near-immediate potential to give
startlingly detailed information about the density structure and the efficiency of tidal dissipation
in the interior of an extrasolar planet. When high-precision (yet fully feasible) refinements of the
orbital parameters are obtained, we will gain a precise and accurate measurement of the tidal
quality factor, Qb, of HAT-P-13b – superior, in fact, to those that we currently have for the solar
system giant planets. Furthermore, it is seems reasonable to assume that additional examples of
systems that contain a transiting planet at a well characterized tidal fixed point will soon emerge
from the ongoing photometric and doppler velocity surveys.

We therefore encourage immediate observational effort to obtain an improved characterization
of the HAT-P-13 system, and we reiterate the importance of the wide-field surveys (such as HAT
Net) that can locate transiting planets orbiting the brightest available stars in the sky.

This research is based in part upon work supported by NASA Grant NNX08AH82G (PB) and
by the National Science Foundation CAREER program under Grant No. 0449986 (GL).
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Table 1: Stationary Orbital and Interior Models of HAT-P-13b
Core Mass (M⊕) R (RJup) dE/dt (erg/s) k2 Q e

0 1.20 3.49 ×1025 0.425 228561 ± 65014 0.0165 ± 0.0032
0 1.28 1.78 ×1026 0.38 42054 ± 14864 0.0143 ± 0.0036
0 1.36 5.6 ×1026 0.34 12875 ± 4396 0.0129 ± 0.0030

40 1.20 2.485 ×1026 0.297 30868 ± 8603 0.0195 ± 0.0036
40 1.28 8.45 ×1026 0.26 8924± 2798 0.0176 ± 0.0037
40 1.36 1.93 ×1027 0.228 3959 ± 1154 0.0162 ± 0.0034

80 1.20 1.028 ×1027 0.217 6810 ± 2049 0.0221 ± 0.0049
80 1.28 2.53 ×1027 0.187 3036 ± 929 0.021 ± 0.0041
80 1.36 4.96 ×1027 0.163 1535 ± 453 0.0193 ± 0.0038

120 1.20 3.25 ×1027 0.159 1967 ± 618 0.0246 ± 0.0046
120 1.28 6.88 ×1027 0.135 997 ± 273 0.0226 ± 0.0039
120 1.36 1.27 ×1028 0.116 563 ± 182 0.0216 ± 0.0042
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Fig. 1.— A representation of the orbital architecture of the HAT-P-13 system to scale. The inset
schematic illustrates the dependencies of k2b, Qb, $̇ and eb on the mass of the planet’s heavy
element core.

Fig. 2.— Stationary eccentricity of HAT-P-13b as a function of its Love number, k2b, with error
bars. Each blue dot represents the sample mean of the computed fixed point eccentricities. The
dashed lines are best-fit fourth order polynomials. The four parallelograms are the approximate
regions of the (eb, k2b) space occupied by each of the models presented in Table 1.


