Archive

Posts Tagged ‘Rossiter-McLaughlin’

This just in…

March 25th, 2010 1 comment

With HAT-P-13c rapidly coming ’round the mountain, there was a very timely update on astro-ph last night. Josh Winn and his collaborators have obtained an additional slew of radial velocities which (1) demonstrate using the Rossiter-McLaughlin effect that the inner planet b’s orbit is likely well aligned with the stellar equator, (2) modify the orbital parameters, including the period of the outer massive planet, and (3) hint at a third body further out in the system.

How do these updates affect the unfolding story?

The Rossiter-McLaughlin measurement gives an estimate of the angle λ = -0.9°±8.5°, which is the angular difference between the sky-projected orbital angular momentum vector and sky-projected stellar spin vector. A non-intuitive mouthful. If we’re viewing the star edge-on, then λ = -0.9° amounts to a determination that the planet’s orbital plane is well-aligned with the star’s equator. (See this post for a discussion of what can happen if the star’s rotation axis is tipped toward the Earth). The good news from the measurement is that it’s a-priori more likely that planets b and c are coplanar — that happy state of affairs which will permit direct measurements of planet b’s interior structure and tidal quality factor. If, on the other hand, the planets b and c have a large mutual inclination, then b’s node will precess, and measurement of a small value for λ will occur only at special, relatively infrequent, times during the secular cycle. A close to co-planar configuration also increases the likelihood that the outer planet can be observed in transit.

With their beefed-up data set of out-of-transit Doppler velocities, Winn and his collaborators are able to get a better characterization of the planetary orbits. The best-fit orbital period and eccentricity of the outer planet are slightly modified when the new data are included. The best-guess center of the transit window for c has “slipped” to April 28, 2010, with a current 1-σ uncertainty of 2 days.

The later date, however, is not an excuse for procrastination! Measuring the TTV for this system is a giant opportunity for the whole ground-based photometric community, and a definitive result will require lots of good measurements of lots of transits starting now (or better yet, last month.) I’ll weigh in in detail on this point, along with the challenge posed by Mr. D very shortly…

Retrograde

August 18th, 2009 1 comment


Turn your world upside-down and you’re looking at a very different planet. Antarctica, ringed by the vast exapse of the Southern Ocean, draws all the attention. Viewed from beneath, I think Earth might better resemble the habitable planets that are out there in the local galactic neighborhood, waiting to be found.

Speaking of upside-down planets, last week brought a curious back-to-back development. Three separate papers (one, two, three), posted to astro-ph on two successive days, presented strong Rossiter-McLaughlin-based evidence that both WASP-17b and HAT-P-7b are on severely misaligned, potentially retrograde orbits around their parent stars. Winn et al.’s data for HAT-P-7 are a near-exact inversion of the familiar sawtooth produced by well-behaved hot Jupiters such as HD 209458b or HD 189733b. It would appear that Dr. Kozai exerted a heavy hand during HAT-P-7b’s early days:

The HAT-P-7 system is alarmingly compact. The star is roughly 80% larger than the Sun, and the orbit of the transiting planet is only about four times larger than the star itself. It looks, in fact, when drawn to scale and tilted to the proper inclination, like a schematic cartoon of a transiting system.

Remarkably, HAT-P-7 lies in the Kepler field, and was the subject of a teaser-like “brevia” published in Science a few weeks ago. In the folded Kepler light curve for HAT-P-7b it’s easy to see the phase function of the orbiting planet, along with the primary transit and the secondary eclipse. The well-resolved depth of the secondary eclipse indicates that the spacecraft is performing up to spec and will be able to detect the transits of Earth-sized planets orbiting Sun-sized stars.

Interestingly, a near-perfectly inverted Rossiter-McLaughlin waveform doesn’t necessarily mean that the planetary orbit is retrograde, but rather only that the angle between the planet’s orbital angular momentum vector and the sky-projected spin axis of the star is close to 180 degrees. If the star’s polar axis is pointing nearly in our direction, then the planetary orbit is close to polar. The small vsin(i) for HAT-P-7 provides a piece of evidence that HAT-P-7b’s orbit might in fact be close to polar.

The McLaughlin-Rossiter effect

March 6th, 2009 5 comments

The visible universe contains of order 30,000,000,000,000,000,000,000 planets, and so this web log’s rather single-minded focus on HD 80606b (a staggering eight out of the nine most recent posts) is likely starting to wear a little thin, even for the Kid606 fan base. One more post, though, and then I’ll move along.

First, I was jazzed to get an e-mail from Mauro Barbieri (of 17156, etc. fame) reporting that two Italian amateur observers (Alessandro Marchini from Siena, Tuscany, and Giorgio Corfini, from Lucca, Tuscany) got discovery photometry of the HD 80606b transit on Feb. 13th/14th. Their light curves are of quite high quality, and, like all the European observations show the leisurely egress from transit:

Excellent work!

A few long-time readers may recall that in the transit fever post from several years ago, I tried on a “tough guy” persona with regards to partial transits:

The transit detection problem is tough in part because it’s extraordinarily easy for systematic effects to seemingly conspire to produce an apparent signal. I would not feel confident in announcing a transit until I’ve seen multiple full-transit light curves. On the other hand, though, the false alarms play an important role. They get observers out on the sky, and spur the collection of enough data to truly rule out an event.

This hard-line attitude resulted from catching numerous infections of ingressia in which a time-series seems to show a transit starting just as observations are ending:

ingressia

and egressia in which a transit seems to be ending just as observations are starting:

egressia

With HD 80606b, however, it’s perfectly certain that we’re not dealing with a virulent case of egressia. The transit did occur and that it will occur in the future. This confidence stems both from the fact that there are at least seven independent photometric data sets showing the egress, and from the fact that the French-Swiss team (Moutou et al. 2009) observed the transit spectroscopically via the Rossiter-McLaughlin effect.

The Rossiter-McLaughlin effect arises when a transiting planet occults part of a rotating star. When a planet passes in front of the oncoming limb, it blocks out blue-shifted light, whereas it blocks out red-shifted light when covering the outgoing limb. The resulting distortions in the spectra are interpreted as a positive and then negative shift in the radial velocity of the star. The amplitude of this effect is thus due both to the spin velocity of the star as well as to the total flux blocked out during transit:

schematic diagram showing rossiter effect

Moutou et al.’s detection of the Rossiter-McLaughlin effect for HD 80606b provided drop-dead confirmation of the transit, and also hinted that the planetary orbital plane is not aligned with the equator of the star (which is not surprising, given the probable history of the ’606 system). Here’s a re-working of the diagram from the Moutou et al. paper that takes the London and Arizona photometry into account (you may want to make your browser window wider):

Illustrator .ai file for above image

The Arizona and London photometry rule out transits longer than ~12 hours, which strengthens Moutou et al.’s conclusion that the system is far from having the stellar equator aligned with the orbital plane.

Earlier this week, I was having an e-mail conversation with Bruce Gary, who runs the Amateur Exoplanet Archive (a.k.a. AXA). The AXA is a repository for photometric transit data from small telescopes, and a first stop for anyone interested in the detection of planets via transit timing.

Bruce wrote:

By the way, does the Rossiter-McLaughlin effect refer to the Dean McLaughlin who speculated about Mars, and who worked at the Univ Michigan Observatory in the late 1950s & early 1960s?

A bit of ADS sleuthing reveals that the two McLaughlins are one and the same. In 1924, Richard Rossiter and Dean McLaughlin simultaneously published the first measurements of spin-orbit alignment in eclipsing binary systems. Both men were at the University of Michigan — Rossiter as an assistant professor and McLaughlin as a 23-year old graduate student. McLaughlin used the famous eclipsing binary Algol to measure the time-dependent radial velocity skew in the brighter star of the system during the partial eclipse. His paper, “Some Results from a Spectroscopic Study of the Algol System”, makes a nice read today, and has garnered 45 citations since 2000. Its single figure shows the now-familiar effect, albeit with a factor-of-a-thousand increase in the scale of the y-axis:

McLaughlin remained at the University of Michigan during a productive career that ended with his untimely death in 1965. He seemed to have had a sensibility that was quite in line with oklo.org. Consider, for instance, this abstract from 1944:

Bruce later wrote back with small-world anecdote:

As I was finishing high school my father counseled me to not choose astronomy for a profession because Dean McLaughlin’s two boys were in his Ann Arbor High School English class and their clothes gave the impression that the McLaughlins were a poor family! That influenced my decision to enter the University of Michigan’s School of Engineering, but after a year my childhood hobby won out and I switched to Literature, Science and Arts so I could major in astronomy.

Nice!