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Although the Cournot and Bertrand equilibrium concepts have dom-
inated economic analysis of oligopoly problems, neither has a compelling
theoretical rationale. However, notions of capacity commitment have been
used to rationalise the Cournot equilibrium. At the same time, the idea of
competition in supply schedules under uncertainty has been used by Klem-
perer and Meyer to derive an equilibrium concept intermediate between
Cournot and Bertrand. In this paper, we combine these two approaches
and show that under the assumptions of Cobb-Douglas technology and
constant elasticity demand, an equilibrium in markups can result.

Classi�cation Number: L13

Game-theoretic analysis of oligopoly problems has been extended in many di-

rections over the last two decades. Among the most notable extensions have

been the strategic trade theory literature and studies of research and develop-

ment. In all of this literature analysis has been dominated by the Cournot-Nash

solution concept, where the �rms’ strategic variable is quantity, with occasional

attention being paid to the Bertrand solution, where the strategic variable is

price. An intermediate case where the strategic variable is the markup over

average cost is examined by Grant and Quiggin (1993).

As was �rst observed by Grossman (1981), it may be more natural to con-

sider �rms choosing strategies speci�ed as supply schedules. The class of such

strategies includes �xed quantity and �xed price schedules as special cases. For

a market in which the demand is not subject to any shocks, it is easy to see

that the Cournot-Nash equilibrium will also be a Nash equilibrium for the game
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1See for instance Fudenberg and Maskin (1986) or more recently, Fudenberg, Levine and
Maskin (1994) which provides a Folk theorem for repeated games in which the players observe
a public outcome that only imperfectly signals the actions played.

where both �rms are free to choose any supply schedule. Assuming that one

player has committed to a vertical supply schedule at the Cournot equilibrium

quantity, any strategy for the other player which yields the Cournot equilib-

rium price-quantity pair will be optimal, and this set obviously includes the

Cournot vertical supply schedule. The same reasoning shows that the Grant-

Quiggin markup equilibrium is a Nash equilibrium for the general game in

supply schedules. It may similarly be shown that a Bertrand equilibrium may

be approached arbitrarily closely. All of this gives rise to the suspicion that

almost any possible result may be derived as a Nash equilibrium for a game in

supply schedules. This conjecture has been proved by Klemperer and Meyer

[KM](1989), who show, for the duopoly problem, that any pair of quantities

(along with the price determined by the market demand curve) where both

�rm earn non-negative pro�ts can be supported as the Nash equilibrium of a

game with strategies speci�ed as supply schedules. Simple replication of plays

does nothing to improve this situation, with the Folk Theorem reinforcing the

complete agnosticism that follows from the KM result.

KM (1989) seek to resolve the problem posed by their own result by in-

troducing uncertainty. They show that if �rms, faced with suitably de�ned

uncertainty, compete by choosing over arbitrary price-quantity schedules, an

equilibrium will exist and, given su�cient linearity, will be unique. In the

KM approach, �rms have complete freedom in the nature of the price-quantity

schedule they adopt but are not able to make that schedule depend on the state

of nature. The critical point is that, given that the supply-schedules are not

state-contingent, each schedule in the equilibrium will be both ex ante opti-

mal and ex post optimal in each state of the world. The KM solution concept

has been applied to problems in strategic trade theory (see Laussel [1992], and

Grant & Quiggin [1996]) and the behavior of electricity pricing pools (Green &

Newbery [1990] ).

A separate criticism of the Cournot solution has been advanced by writers

from Bertrand onwards, who argue that the one-shot game equilibrium can-

not be rationalized as the outcome of a process of dynamic adjustment by

rational players. Kreps and Scheinkman (1983) address the lack of dynamic

foundations for the Cournot solution. They show, for the special case of zero

marginal cost up to capacity, that a two-stage game characterized by �rst-round

precommitment of capacities (that is, maximum quantities) and second-round
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Bertrand price competition yields the Cournot solution. It is natural to think

of the Kreps-Scheinkman solution and the traditional Bertrand solution as po-

lar cases. In the Kreps-Scheinkman case all costs are precommitted and in the

Bertrand case, no costs are precommitted. Generalisations which may be re-

garded as including both special cases are o�ered by Dixon (1985, 1986) and

Vives (1986). The basic approach is to consider two-input production functions

where one input (capital) is committed in the �rst stage and the other input

(labour) is committed in the second stage. The capital investment decision,

made in the �rst stage, is strategic. In the second stage, however, �rms behave

competitively, that is, they choose the labour input, and therefore the output,

so as to set marginal cost equal to the market price, which they treat as para-

metric. Although a number of technological speci�cations are considered, the

most tractable is that of Cobb-Douglas technology, examined by Dixon (1985).

In this case, as the technical parameter representing the capital share goes from

one to zero, the solution goes from Cournot to Bertrand.

In this paper, we seek to combine elements of the Kreps-Scheinkman and

Klemperer-Meyer approaches. Following Kreps and Scheinkman we consider a

two-stage game with capital committed in the �rst round and decisions on the

variable input (and hence on production and pricing) being made in the second

round. However, we model a (constant returns to scale) Cobb-Douglas tech-

nology of which the Kreps-Scheinkman model can be viewed as a special case.

The �rst-round choice of capital stock determines the second-round variable

cost function for each �rm. In the second round, we derive the KM solution

concept for competition in supply schedules. For the special case of constant-

elasticity demand, we show that the resulting equilibrium solution is identical to

the equilibrium in markups previously analyzed by Grant and Quiggin (1993).

We show that depending on the technology, the equilibrium solution may range

from the Bertrand solution (if all costs are variable and so constant returns to

scale implies marginal cost is constant) to the Cournot solution (if all costs are

�xed and so the marginal cost of producing more than the amount for which

the committed capital stock allows is in�nite - the case explicitly modelled by

Kreps and Scheinkman). Although the range of solutions derived is the same

as that obtained by Dixon and Vives and the limiting cases correspond to the

same limiting technology, the strategies generating these solutions and the map-

ping from the technological parameters to the equilibrium outcome are quite

di�erent. In particular, �rms in our analysis are strategic in both the capital

commitment stage and the variable production stage.
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2 General Set-Up

Our analysis should also be distinguished from Kreps and Scheinkman’s dis-

cussion of the extension of their model to allow both costly capacity and pro-

duction. They note that provided both capacity and production have convex

cost structures and that capacity is costly at the margin, the unique equilibrium

outcome is the Cournot outcome computed by using the of the two cost

functions. The di�erence between their results and ours stems from our alter-

native speci�cation of technology for which the variable cost although convex

is never in�nite for �nite production and the “noise” in the demand function.

Kreps and Scheinkman anticipated that this “noise” factor might change their

analysis dramatically. This conjecture was con�rmed in a negative sense by

Hviid (1991), who showed that under uncertainty no pure strategy Nash equi-

librium will exist for the KS problem. Here we con�rm the conjecture in a

di�erent way. Using the KM solution concept, we show the KS result holds for

their original speci�cation of technology, but for more general speci�cations the

Cournot result will not obtain under uncertain demand.

The next section provides the formulation of our two-stage oligopoly model

and characterizes the perfectly competitive case as a benchmark. As is standard

for two-stage games we solve for the equilibrium working backwards from the

second stage sub-games. In section 3 we show that beginning from the point

where all �rms have installed their capital stocks and this has become common

knowledge, there is a unique equilibrium in mark-ups that constitutes a KM

equilibrium in supply schedules. We have been unable to �nd any other non-

markup equilibria in supply schedules for these sub-games. And although we

have not been able to demonstrate so rigorously, we strongly suspect for our

speci�cation of �rms’ cost technology and the demand function that the mark-

up equilibrium is the unique equilibrium for the second-stage competition in

supply schedule game. Section 4 characterizes the unique symmetric outcome

in the �rst stage capital stock choices given that �rms anticipate they will be

competing in mark-ups in the second stage. We conclude in section 5.

We assume the market demand for a homogeneous product has constant price

elasticity but that it is subject to a shock, that can be described by a

scalar random variable . Following KM we assume that this random variable

has positive density on the support [0 ) and so the market demand function

can be expressed as

( ) = , 1 (1)
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That is, �rms cannot employ contingent supply schedules.
As KM observe, this does not constrain the �rms’ behavior in any important way but

rather simply precludes the non-existence or the non-uniqueness of a market clearing outcome
arising in equilibrium.

The 2 �rms have access to a common (constant returns to scale) Cobb-

Douglas technology described by the production function

= , 0

where (respectively, ) is the amount of capital (respectively, labor) used

by the �rm in its production. We choose the units of capital and labor so that

their (certain) factor prices are 1 (1 + ) and (1 + ) respectively.

The two-stage competition runs as follows. In the �rst stage, �rms simulta-

neously and independently sink their capital investments for subsequent compe-

tition. After this �rst state, each �rm learns how much capital its competitors

have installed. Then the demand shock is realized, �rms commit to a

supply schedule. That is, each �rm chooses a mapping from prices into out-

put, denoted ˆ which embodies its production (and hence, given its capital

stock, its labor input demand) as a function of the market price. The pro�le

of the �rms’ second stage supply schedules ˆ ˆ will be denoted by ,

while will denote the supply function pro�le of all the �rms except �rm .

For a given realization of the demand shock , and a given strategy pro�le of

supply schedules the market outcome is thus

( (̂ ); ˆ ( ) ˆ ( ) ˆ ( )) where ˆ ( ) = ˆ ( (̂ )) for all

and (̂ ) is the unique market clearing price. As KM do, we assume that if a

market-clearing price does not exist or is not unique, then no production takes

place and �rms’ variable pro�ts are zero.

As a base case, we note that if all �rms acted competitively in both stages

(that is, given they o�er their competitive supplies in the second stage each �rm

sinks a capital investment in the �rst stage that yields a zero expected pro�t),

each �rm would make a capital investment of

=
1

E (2)

and o�er a supply schedule in the second stage of:

= (3)
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3 ‘Competition in Supply Schedules’ Subgames.
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If demand has unity elasticity ( = 1), then the competitive: total captial stock, expected
total labor demand and expected total market supply are all equal to E [ ] and the expected
market clearing price is 1. Moreover, the total labor demand for given is .

So, given the realization of the demand shock, , the total labor demanded and

good supplied by the �rms (if they act competitively in the second stage) are

( ) = E and ( ) = E (4)

Hence the expected labor demand and total quantity supplied in the competitive

case are

E [ ( )] = E = (5)

E [ ( )] = E E E [ ] , as 1 (6)

Thus the factor prices have been ‘normalized’ to impose an expected labor-

capital ratio for the competitive case of 1.

Suppose that in the �rst stage the �rms have installed capital levels ( ).

Beginning from the point where ( ) becomes common knowledge con-

sider the subgame where each �rm’s strategy is to choose a supply schedule

ˆ . Recall from the de�nition of a Nash equilibrium that in order to sup-

port ( (̂ ); ˆ ( ) ˆ ( ) ˆ ( )) as a Nash equilibrium market outcome result-

ing from the strategy pro�le , we require that for each �rm , choosing the

supply schedule ˆ should be pro�t-maximizing for that �rm, given the other

�rms are choosing the pro�le . As the capital costs are sunk, all this entails

is that the pro�t maximizing price and output combination of �rm ,

( (̂ ); ˆ ( )), given the residual demand that it faces for that realization of ,

be on the schedule ˆ .

If the other �rms are choosing the supply schedule pro�le then the

residual demand facing �rm is:-

( ) ( ) ˆ ( )

Hence the variable pro�t of �rm , if it chooses price , is:

( ) = ( ) ˆ ( ) ( ) ˆ ( )
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Di�erentiating this expression with respect to we obtain the �rst order (nec-

essary) condition for a variable pro�t-maximizing price.

( ) ˆ ( ) + [ ( ( ))]
( ) ˆ ( )

= 0 (7)

Hence for ˆ to be a best supply schedule choice for �rm we require equation

7 to hold for = (̂ ) for all in [0 ) and

ˆ ( (̂ )) = ˆ ( ) (8)

Dividing equation 7 through by ˆ( ) ˆ ( ) (= ˆ( (̂ )) = ( (̂ ) ))

and substituting in equation 8 we have:-

ˆ ( )

ˆ( )
+

(̂ )

(̂ )

( (̂ ) ) (̂ )

( (̂ ) )

ˆ ( (̂ )) (̂ )

ˆ ( (̂ ) )

ˆ ( )

ˆ( )
= 0

Let

( )
( (̂ ) ) (̂ )

( (̂ ) )
and ( )

ˆ ( (̂ )) (̂ )

ˆ ( (̂ ) )

denote, respectively, the (price) elasticity of market demand and the (price)

elasticity of the supply schedule ˆ evaluated at price (̂ ). Let

( ) =
ˆ ( )

ˆ( )

denote the market share of �rm in the outcome ( ;̂ ˆ ˆ ˆ ).

Utilizing these de�nitions, equation 7 can be re-expressed more succinctly

as:
(̂ ) (ˆ ( ))

(̂ )
=

( )

( ) + ( ) ( )
, for all [0 ) (9)

In words, the above condition states that a �rm’s price-cost margin should be

equal to the inverse of the residual demand that it faces in equilibrium for each

realization of . The price elasticity of the residual demand facing the �rm is

simply the sum of the price responsiveness of the market demand plus a (market

share) weighted sum of the price responsiveness of the other �rms given that

they have committed to the pro�le of supply schedules , all divided by the

market share of �rm .

Given its capital investment, , made in the �rst stage, the variable cost

function for �rm is thus

( ; ) =
1 +

, where =

7
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Fix . For the second stage subgame there is a unique

constant mark-up over marginal variable cost equilibrium and moreover this is

an equilibrium in the general competition in supply schedule subgame.

that is,

( ; ) =
1 +

(10)

from which we can derive marginal variable cost

( ; ) = (11)

So the “competitive” supply schedule for this �rm, given its �rst stage capital

investment is

( ; ) = (12)

Intuitively, �rm ’s share of the market if all �rms acted competitively would be

. In a non-competitive equilibrium, one would expect that �rms

are committed to supply schedules that ‘lie to the left’ of their competitive

counterparts. From (9), (11) and the demand speci�cation, it seems natural to

focus on a supply schedule that corresponds to a constant mark-up over mar-

ginal variable cost (which for this cost function also corresponds to a constant

mark-up over variable cost - see Grant and Quiggin, 1993). That is,

consider the situation where each �rm chooses a supply schedule such that

is equal to a constant for some less than 1. Thus from (11) it follows that

the supply schedule o�ered by �rm is

ˆ ( ; ) = ( ) (13)

Notice that if all �rms are choosing a ‘constant mark-up over marginal variable

cost’ supply schedule the elasticity of each �rm’s o�ered supply is constant and

equal to and �rm ’s equilibrium share is also constant and equal to

= (14)

In particular, these supply elasticities and equilibrium market shares are

of the demand shock. Hence the supply schedule pro�le , corre-

sponding to the pro�le of mark-ups (1 1 ) is an equilibrium in

supply schedules for the subgame if, for each ,

1 =
+ 1

(15)

( )
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: Consider the game where �rms are restricted to choosing

supply schedules of the form in (13). That is we can view the strategy space

of this subgame as [0 1] . For a given strategy pro�le ( ) and given

realization of the demand shift parameter , straightforward calculation reveals

that the market equilibrium price is

=

and �rm ’s equilibrium quantity supplied to the market is

=

So �rm ’s equilibrium variable pro�t is

( ; ) = 1
1 +

(16)

The subgame is in ( ) since for all we have

ln

ln ln
=

1 +

+
0 for all =

Since is continuous in it follows from Topkis (1979) that the set of pure

Nash equilibria is non-empty and possesses greatest and least equilibrium points

and . That is, for any equilibrium strategy = ( ) of the subgame,

.

Moreover, each equilibrium of the mark-up game is also a equilibrium in

the more general supply schedule game, since given all one’s opponents are

playing mark-ups, (9) and (15) imply that playing a constant mark-up is ex

post optimal no matter what the actual realization of is.

: Suppose = , that is for all , and there exists

such that . Now both and satisfy (15) which can be expressed as

1 =
+ (1 )

(17)

Now the LHS is obviously decreasing in , and the RHS is increasing in .

So going from to leads to the LHS of (17) weakly decreasing for all and

strictly decreasing for some , and thus requires the RHS of (17) to be weakly

decreasing for all , and strictly decreasing for some . But this in turn entails

9
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that is weakly decreasing for all , and strictly decreasing for some , a

contradiction.

We have been unable to show the existence of any other equilibrium in

supply schedules for this second-stage game. Moreover, given that both demand

and each �rm’s marginal cost schedule are log-linear and that demand is subject

to a log-linear shock, one would have thought that one should be able to adapt

KM’s uniqueness result (1989, Proposition 4, p1261) to show that the mark-

up equilibrium is indeed the unique equilibrium for the general competition in

supply schedule subgame. Unfortunately, we have been unable to accomplish

this but the intuition seems so strong, that we feel con�dent in focussing on the

mark-up equilibrium for the rest of the analysis. At the very least we can say

in our defence, that the mark-up equilibrium is ‘salient’ or ‘focal’ for both the

analyst and the �rms given the constant elasticity of demand and each �rm’s

marginal cost schedule.

It is also interesting to notice the relationship between the competitive equi-

librium market shares and the mark-up equilibrium market shares (that is, the

s). For this asymmetric equilibrium (9) can be re-expressed as:-

( ( ))

( )
=

( ( ) )

( )
=

+ (1 + )

+
(18)

Hence for any and we have:-

=
[ + (1 + ) ]

[ + ]

[ + ]

[ + (1 + ) ]
(19)

1

Consider RHS of (19), as all four bracketed terms are positive by the

assumptions on the parameters, simple algebraic manipulation reveals that this

expression is less than one if and only if . So we can rule out as

this would imply LHS 1 and RHS 1. So and (19) imply LHS 1

which can only hold if .

Also notice that from (17) the mark-up is increasing in market share. There-

fore, in an asymmetric equilibrium the bigger �rms choose a larger mark-up for

their pricing policy and enjoy a relatively (compared to the perfectly competi-

tive outcome) smaller market share.
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Following the analysis of the previous subsection, given the �rst stage pro�le of

capital investments ( ), the second stage subgame equilibrium pro�le

of mark-ups (1 1 ) and the realization of the demand shock, ,

�rm ’s variable pro�t is given by (16). As �rms all have access to the same

technology, we shall focus only on symmetric equilibrium for the complete game

. In the symmetric equilibrium case where each �rm has in the �rst period sunk

capital investment ˆ , for all , = 1 , = 1 ( ( 1) ) = and

=
1

1
1 +

ˆ

For ˆ to be the (symmetric) equilibrium capital investment for each �rm in the

�rst period, it must be the case that given that all the other �rms are choosing

ˆ , the marginal expected variable pro�t from increasing the capital invest-

ment at ˆ is equal to its factor price, that is E = = ˆ =

1 (1 + ).

Di�erentiating (16)

= + + (20)

As (20) is evaluated at a Nash equilibrium the second term is zero and with

simple algebraic manipulation we obtain:

= 1
1 +

+
+ 0

(1 + )

+

ln

ln
(21)

In the appendix we show that at the symmetric equilibrium:

ln

ln
=

+

( + ) + [ ( + ) ]
(22)

Substituting this last expression into (21) yields:

= 1
1 +

( + )

+

( + ) + [ ( + ) ]
0

Thus ˆ satis�es:

E =
1

1 +
(23)

The ˆ that satis�es (23) is unique since:

=
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Given that �rms anticipate that their opponents will be selecting

mark-up strategies in the second stage competition in supply schedules, there

is a symmetric equilibrium outcome of the two-stage game. In the �rst

stage �rms sink the capital investment , implicitly de�ned in , and in

the second stage commit to the supply schedule that corresponds to the constant

price-cost margin

strategic

lower

=
1

=
1 +

( + )
+

+

( + ) + [ ( + ) ]
0

That is, the expected marginal increase in variable pro�ts schedule cuts the

(constant) marginal cost of capital schedule from above. Collecting these results

together we have:

unique

ˆ (23)

1 =
1

+ ( 1)

Notice that for a particular �rm, say , that believes all other �rms are

committed to the same level of capital investment, increasing its capital invest-

ment, , above theirs has a direct e�ect and a e�ect on its variable

pro�t in the second round. The direct e�ect is clearly to increase its variable

pro�t since for a �xed pro�le of markups, a larger capital stock lowers the �rm’s

variable costs. But by making itself larger than its competitors through raising

, provides �rm with an incentive to raise its markup and for the other �rms

to reduce theirs. This is simply an illustration of the ‘compression’ e�ect out-

lined in Result 2 . Hence, at the symmetric equilibrium, the strategic e�ect of

investment is negative. So like Dixon (1985), the �rms’ strategic interaction in

the �rst stage results in under-capitalisation relative to the perfectly competi-

tive outcome. However, unlike Dixon (1985), as the �rms in our analysis also

interact strategically in the second-stage, their competition in supply sched-

ules results in a labour demand than would result if they acted perfectly

competitively.

The parameter is a measure of the relative exibility of the �rms’ produc-

tion in the second stage given the capital stocks chosen in the �rst stage. It is

immediate from the analysis of the previous section and the expressions derived

for the equilibrium mark-ups that for any con�guration of capital stocks the

�rms’ equilibrium mark-ups in the second stage are decreasing in . Moreover

it is fairly straightforward (albeit, algebraically cumbersome) to show (and we

trust, intuitive to see) that the overall pro�ts in the symmetric equilibrium of
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With = 0, a mark-up strategy is equivalent to setting a perfectly inelastic demand, that
is choosing a quantity. Given the quantity pro�le ( ) �rm ’s variable pro�t is

=

so

=
1 1

0, for all 0

Hence �rm ’s best response is to set = ˆ

the complete two-stage game are also decreasing in . That is, the more exible

are the �rms in the second period (and hence the less constrained they are by

their choice of capital stocks in the �rst period) the closer the competition in

supply schedules corresponds to the perfectly competitive outcome.

The two polar cases, = 0 and = , correspond respectively, to the

situation of no exibility and complete exibility of production in the second

stage. The equilibrium outcomes are thus quite naturally identi�ed as the

Cournot and Betrand outcomes, respectively. With = 0,

ˆ =
1 1

E

and for the given realization of the demand shock, , the total market traded is

( ) = ˆ =
1

E

at the market clearing price of

( ) = =
E 1

That is, the quantity traded is invariant to the demand shock but the equi-

librium price is not and �rms earn non-zero expected pro�ts. With = ,

the full exibility (with constant marginal variable costs) leads to the perfectly

competitive outcome, that is ( ) = 1, and ( ) = (and each �rm employing

units of labor to produce their 1 th share of the market).

The representation of oligopolistic strategies in terms of markups over average

cost has a long history, going back to the work of Hall and Hitch (1939). Markup

models frequently perform well in empirical work (eg Thompson and Lyon,

1989), and are extensively used in macroeconomic analysis and in areas such

as the literature on exchange rate pass-through (eg Hooper and Mann, 1989).

13



not

a priori

However, markup models have generally lacked a microeconomic basis. They

have been defended in pragmatic terms as being simple and realistic model of

the way in which prices are set.

The aim of our analysis has been to provide such a microeconomic basis,

although the results presented above show that markup equilibria have at least

as strong an claim to be considered as reasonable a game-theoretic

solution concept for the oligopoly problem as do the traditional Bertrand and

Cournot concepts. Our extension of the Kreps-Scheinkman analysis shows that

the existence of capital precommitment does not, in itself, make the Cournot

equilibrium the natural solution concept for oligopoly models. With appropriate

speci�cations of the technology, demand conditions and information sets that

�rms face, a range of outcomes, including equilibrium in markups may arise.

Our results might be seen as a con�rmation of the observation of Sutton

(1990) that, for any conceivable form of oligopolistic behavior, a game-theoretic

‘explanation’ may be found. As Sutton observes, to explain everything is to ex-

plain nothing. The positive side of Sutton’s argument, however, is that given

su�cient knowledge of the economic structure of the industry concerned and

of the information ows to which institutional arrangements give rise, it may

be possible to generate robust predictions of behavior. The work of Kreps

and Scheinkman, in which capital investment decisions are separated from the

strategic interactions determining prices and outputs, is an important step in

this direction. Our results give emphasis to the need for detailed analysis of

institutional arrangements and the information ows they generate as a basis

for generating strong predictions. As Kreps and Scheinkman observe, the spec-

i�cation of the strategy space is critical in any analysis of economic problems

using game theory. As they emphasize:

“[S]olutions to oligopoly games depend on both the strategic

variables that �rms are assumed to employ and the context (game

form) in which those variables are employed. The timing of decisions

and information reception are as important as the nature of the

decisions.”(p327)

Unlike games in the ordinary sense, economic problems considered as games

do not normally possess a unique speci�cation of the strategy space imposed

by the nature of the game itself. Rather, restrictions on the strategy space

su�cient to yield sharp predictions concerning equilibrium outcomes can be

derived only on the basis of extensive economic information.
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(22)

By di�erentiating (14), the expression for �rm ’s market-share in a mark-up

equilibrium, and by di�erentiating (15), the �rst order condition that de�nes

�rm ’s equilibrium markup, we obtain:

=
1

ˆ
1 +

ln

ln

ln

ln
(24)

=
1

ˆ
1 +

ln

ln

ln

ln
(25)

and

ln

ln
=

+

( + [1 1 ])
(26)

ln

ln
=

+

( + [1 1 ])
(27)

Using (24) and (25) to substitute out and in (26) and (27) gives us the

required expression for .
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