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Price Stabilization and the Risk-Averse Firm

This paper develops a firm-level welfare analysis of two types (complete and partial) of
mean-preserving price stabilization for producers with general risk-averse preferences fac-
ing a stochastic technology represented by a state-contingent production correspondence.
Following Sandmo, producer preferences are defined over ex post profit or net returns. Spe-
cial cases of the model that follows include models based upon expected-utility preferences
and a stochastic production function, models based upon mean-variance preferences and
a stochastic production function, models based upon generalized expected utility prefer-
ences and a stochastic production function, the preceding preferences with non-stochastic
production, as well as risk-neutral behavior. Hence, at the firm level, the model can rea-
sonably be characterized as encompassing the cases considered in the existing Sandmovian
literature.

The primary goal of the paper is to develop an analytically simple and tractable ap-
proach to the welfare analysis of price stabilization for risk-averse firms facing a stochastic
price and production environment. The crucial analytical tool used in achieving this goal
is the indirect objective function of the firm capturing the interaction between technology
and preferences.

In what follows, we first present our model and notation. After that, we formally define
our notion of price stabilization. It includes as special cases among others, the notions of
price stabilization used by Sandmo, Quiggin and Anderson (1979, 1981)Eeckhoudt and
Hansen, Holt, and Finkelshtain and Chalfant. Because we are interested in results that
cover the entire spectrum of aversion to risk, we consider two special cases of preferences
that bracket the range of preferences for risk-averse individuals, risk-neutral preferences
and completely risk-averse preferences. We consider general risk-averse preferences in the
penultimate section, and the final section concludes. Results developed for a number of
special cases, including those analyzed by Oi, Sandmo, Blandford and Currie, Quiggin and
Anderson (1979, 1981), Eeckhoudt and Hansen, and others, can be derived as corollaries

of our general results.



The Model and Notation

Uncertainty is modelled by ‘Nature’ making a choice from a finite set of states Q =
{1,2,...,5}. We denote by 1 the S—dimension vector of ones. The state-contingent pro-
duction technology, following Chambers and Quiggin (2000), is modelled by a continuous
input correspondence, X : 7 — RY, which maps vectors of state-contingent outputs, z,

into inputs capable of producing them
X (z)= {X € §RJX : x can produce z} Z € §Ri

The scalar zs € R, denotes the exr post or realized output in state s. To maximize
comparability with the existing literature, we only consider the case of a scalar stochastic
output. In addition to continuity, the input correspondence satisfies:!

X.1 X(0s) =RY, and Oy ¢ X (z) for z > Os and z+0s.

X227z > z= X(z) C X(z).

X3MXEZ)+ 1 - MNX(EH) S XN+ (1-Mz') 0<A<1,

Individual producers face stochastic output prices, p € §Ri +, and non-stochastic input
prices, w € RV, . Producers have no ability to affect either the stochastic output prices

they face or the input prices. Their preferences are defined over ex post income,? y € R,
Ys = Psis — WX,

Their evaluation of these ex post incomes is given by a continuous and nondecreasing

certainty equivalent function, e : R — R satisfying Aczél’s agreement property

e(pl)=p,peR.
By standard duality theorems (Fare, 1988), there is a cost function dual to X (z) and
defined

c(w,z) =min{wx:x € X (z)}

if X (z) is nonempty and oo otherwise. The cost function satisfies:
C.1. ¢(w, z) is positively linearly homogeneous, non-decreasing, concave, and continu-

ous in w;



C.2. Shephard’s Lemma;

C.3. c(w,z) >0, ¢(w,0s) =0, and c(w,z) > 0 for z >0g, z # Og;

C.4. c¢(w,z) is convex and continuous on 7, .

For analytic convenience, we typically strengthen C.4 to permit differentiability of the
cost structure.

The indirect certainty equivalent (ICE) is defined

(1) I(w,p) =sup{e(pz—c(w,z)1)}.

Chambers and Quiggin (2001) prove that under these assumptions on the technology,
I (w,p) is continuous in (w,p), nondecreasing in p, and nonincreasing and quasi-convex
in w. For convenience we shall typically strengthen those properties to include differen-
tiability in p and assume that there exists a unique solution to (?7), which we refer to as

the state-contingent supply vector and denote by

2 (w,p) = arg max {¢ (pz—c (. ) 1)}

Generally, one expects that risk-averse individuals will, to some degree, try to balance
price uncertainty against production uncertainty in an attempt to smooth their income
distribution. Accordingly, we say that an individual self insures in the neighborhood of p

if for all s and &

(2) [zs (W, p) — 2k (W, P)] (ps — px) < 0.

Self insurance requires that there be a negative correlation between state-contingent prices
and supplies. If there is a perfect inverse correlation between prices and state-contingent
incomes, income is nonstochastic. The individual has completely self insured. As shown
below, complete self insurance can emerge under appropriate assumptions on the producer’s
risk aversion.

Given a vector of probabilities 7, a function f : R®° —  is said to be generalized
Schur concave if v <,v’' implies f (v) > f(v'), where the notation v <,v’ means that

v and v’ have the same mean and v is less risky than v’ in the sense of Rothschild



and Stiglitz (Chambers and Quiggin, 1997). A function, f, is generalized Schur convex
if —f is generalized Schur concave. Examples of functions which are generalized Schur
concave include the risk-averse expected utility functional, the risk-neutral expected utility
function, the linear mean-variance preference function, linear mean-standard deviation,

and maximin, or completely risk averse, preferences

e(y)=min{y,....ys}.

Maximin preferences are generalized Schur concave for all possible probability vectors. A

function is differentiable and generalized Schur concave if and only if

(3) <f8 t)_4 (V)> (vs —vr) <0,

Mg Uk

for all s,t where subscripts on functions denote partial derivatives (Marshall and Olkin;

Chambers and Quiggin, 1997).

Defining Price Stabilization and Assessing its Conse-
quences

In this section, we take perhaps two obvious steps. We formally define our notion of
price stabilization, and we introduce a general criterion for price stabilization to be welfare
improving.

The indirect certainty equivalent provides an ideal vehicle by which to examine the
welfare effects of price stabilization. To state the obvious, consider two price distributions
p’ and p'. Then if p' is more stable, in some sense, than p°, the producer gains from the

more stable prices if and only if
I(w,p')>1(w,p°).
To make this definition operational and meaningful, a definition of what it means for p® to

be more stable than p! is needed. Many studies (e.g., Finkelshtain and Chalfant, Sandmo)

have focused on the case of stabilization at the mean of the price distribution:

p' = (Z ﬂsp(i) L

SEQ



Here w € §Ri ., is an objectively defined vector of probabilities. We refer to stabilization at
the mean of the distribution as complete stabilization.

Given a set of objectively defined probabilities, one can easily conceive of situations
where one price distribution, which is not degenerately stochastic, is more stable than an-
other price distribution. Figure 1 illustrates. There, the line passing through p® has slope
given by the relative probabilities of the two states of Nature (the fair-odds). Complete
stabilization of p° is illustrated by the degenerate price distribution defined by the inter-
section between the fair-odds line and the 45° ray emanating from the origin. (We refer to
the 45° ray as the bisector.) Price distributions lying on the same fair-odds line as p° but
closer to the bisector are more stable than the latter in the sense that they have the same
mean, but their distribution is less spread out.

Figure 2 illustrates the difference between the cumulative probability distributions for
p! and p°. Both have the same mean, but the latter (solid line) has more weight in the
lower tail than the former. This is what we will take as our operating definition of a more
stable price distribution. More formally, we will say that p' is more stable than p° given
the probability vector 7, denoted p' <, p°, if they have the same mean and p' is less
risky than p° in the sense of Rothschild and Stiglitz. Because the degenerate distribution
with the mean occuring with probability one dominates all probability distributions in the
Rothschild-Stiglitz sense, complete stabilization is an important polar case.

The type of price-brand stabilization considered theoretically by Eeckhoudt and Hansen
and empirically by Holt as well as others represents a special case of this type of stabiliza-
tion. Our definition of price stabilization, however, does not encompass several traditional
methods of price stabilization in the United States and Europe. For example, establish-
ing minimum guaranteed prices through either a support-price or target-price mechanism
truncates the lower tail of the price distribution faced by producers. Hence, such schemes
are mean enhancing and not mean preserving, and thus inevitably involve implicit price
subsidization as well as price stabilization. We leave the consideration of mean-enhancing
price stabilization mechanisms to future work.

With this definitiion of stabilization in hand, it then follows that the producer benefits



from a more stable price distribution if and only if
p' <= p"=1I(w,p')>1I(w,p’).
This observation leads to our first result:

Proposition 1 If I (w,p) is generalized Schur concave (convex), then the producer always

benefits (always loses) from a more stable price distribution.

One case where this proposition obviously applies is the Sandmovian model, where
production is non-stochastic, and preferences are of the expected-utility form. More gen-
erally, notice that if production is nonstochastic, then ¢ (w,z) degenerates to the usual
single-output, nonstochastic cost function, which we denote by ¢ (w,z), where z is now a

scalar non-stochastic output. Clearly,
p' - p’= 2 (w,p")p' — ¢ (w,2 (w,p")) 1 = 2 (w,p°) p° — ¢ (W2 (w,p°)) L.

Thus, for arbitrary generalized Schur concave preferences

I (W,p1> > e (z (W,p0 p' —¢ (W,z (W,p0>> 1)
> e(z(w,p”)p’ — ¢ (w,z (w,p"))1)
= I(w,p"),

where the first inequality follows by the optimality of z (w,p!) for price distribution p!.

Corollary 2 If preferences are generalized Schur concave and production is nonstochastic,

the producer always benefits from price stabilization.

Corollary 77 extends the original Sandmovian result to the entire class of generalized
Schur concave preferences. These include among others such non expected utility mod-
els as linear mean-standard deviation preferences, completely risk averse preferences, and
rank-dependent expected utility models as well as the risk-averse expected utility class of
preference functionals. Iit is difficult to establish general conditions under which I (w,p)

is generalized Schur concave globally when production is stochastic because the producer’s



arbitrage activities across states of Nature, in the quest of self insurance, routinely coun-
terbalance price and production risk. Hence, the operational content of Proposition 77 is
limited for stochastic production structures.

However, the observation that generalized Schur concavity, in a local sense, is the under-
lying determinant of welfare gains and losses from price stabilization or not is important
because it yields an operational method for determining whether the producer benefits
from stabilization. Any price distribution p! such that p' <, p° can be constructed from
p’ by a sequence of mean preserving pairwise contractions of p° (Marshall and Olkin).
Hence, in determining whether the producer benefits or loses from price stabilization, it
suffices to restrict attention to mean-preserving pairwise contractions of p°. This basic
observation, drawn from the literature on majorization and inequality measurement, when
coupled with basic duality relationships provides a foundation for much of what follows.

To illustrate, take a price distribution, p°, and choose two indexes s and k such that
2 — p}] > 0. Now consider, moving from p° to a more stable price distribution p' by

slightly decreasing p? and increasing p} in a mean preserving manner, i.e.,
Tk
0__ 0
bp; = ——0py,
s

with 6p} > 0 but arbitarily small. The distribution that results from this pairwise con-
traction is more stable than the original distribution and the resulting welfare change is

proportional to

(4) |:Ik: (vao) Is (vao)

— } 5py.

Tk Mg

. c e L(wp®) Is(wopP)
Hence, the producer only gains from the more stable distribution if o

>0,

Ts

and by the choice of indexes

Mg Tk

By (?7), functions satisfying (?77) over their entire domains are generalized Schur concave.
The type of stabilization considered by Eeckhoudt and Hansen and others, which in-
volves lowering the upper bound of the price distribution and raising the lower bound, is

the special case where the two indexes are chosen so that s corresponds to the highest price

7



in the p° distribution and k corresponds to the lowest price. For this type of stabilization,
often referred to as price-band stabilization, the local pairwise comparison yields global

results.

Risk-neutral Preferences

We first consider the polar reference case of risk-neutral preferences

e(y) =) s

Producers prefer complete stabilization of prices at a mean price of p if and only if there

exists no price distribution p such that
pl =z pand I (w,p) > I (w,pl).

This last condition can be satisfied only if the producer chooses to produce a completely
non-stochastic production vector when prices are stabilized. To understand why, consider
any small mean preserving pairwise change of p in the neighborhood of pl. Using (77),

the producer’s welfare change is proportional to

Ik: (va)]-) IS (Wvﬁ]-) 6 0
- Pis
Mk Mg

which applying the envelope theorem to (??7) in the case of risk-neutral preferences gives

Hence, if the producer does not stabilize production in the face of stabilized prices, there

always exists a feasible, mean-preserving, destabilizing price change that raises welfare.

Lemma 3 If a risk-neutral producer does not stabilize production in the presence of com-
pletely stabilized prices, there always exists a beneficial departure from complete price sta-

bilisation.

Generally, we do not expect producers facing no price uncertainty, but production un-

certainty, to stabilize production. Hence, a natural conclusion is that, generally speaking,

8



risk-neutral producers will never prefer complete price stabilization to some price uncer-
tainty. In the presence of a non-stochastic price p, an optimal interior solution for a

risk-neutral producer must satisfy

(6) Tsp—cs(w,2) =0 Vp

Chambers and Quiggin (1997, 2000) have identified a nontrivial class of stochastic tech-
nologies for which risk-neutral producers facing no price uncertainty always stabilize pro-
duction. It is the class of generalized Schur convex cost structures. For generalized Schur
convex cost structures (??7) will hold at 21. More generally, if the cost structure is gener-

alized Schur convex in a neighbourhood of 21, where z is such that

p— Z cs(w,z1)

production will be stabilized when prices are stabilized. The converse is also true. Suppose

therefore that (??7) holds and consider any price distribution p with > _, msps=p. We have

SEQ

(proof in the Appendix):

Lemma 4 If (7?7) holds and p is stochastic price vector with expected price p, the optimal

output vector z will be stochastic.
Combining the lemmas, we conclude:

Proposition 5 No risk-neutral producer prefers complete stabilization for all price distri-

butions

We now turn our attention to partial stabilization. Consider moving from p° to a more
stable price distribution p' by making a small pairwise mean preserving change of p, and
ps, assuming without loss of generality that p? > p?. Applying (??) and using the envelope
theorem in (?7) in the case of risk-neutral preferences shows that the producer gains from

this form of price stabilization if and only if

(7) [21 (w,p") — 25 (W.P")] (P} — pk) 2 0.



Hence, a risk-neutral producer gains if she self insures in a neighborhood of p°. More
generally a risk-neutral producer gains from partial stabilization if there exists two states

of nature sastifying (?77).

Proposition 6 A risk-neutral producer who self insures in a neighborhood of p° gains

from partial price stabilization.

Because a risk-neutral producer is indifferent to income risk,if she self insures, it is as
a consequence of a risk-free responses to the stochastic technology she faces. She does not
self insure because of risk concerns, but rather as a result of comparing the rate at which
state-contingent outputs substitute for one another in the state-contingent technology to
her marginal returns in each state of Nature. This arbitraging behavior across states
of Nature can lead a risk-neutral firm to self insure in the neighborhood of some price
distributions. In other words, the optimal reponse to the technology outweighs her natural
indifference to risk, and leads her to self insure.

Some more insight can be gathered yb using the first-order conditions to substitute out

the state-contingent output prices in (?7) to obtain

) cs (w,z(w,p’)) e (w,z(w,p’)) > 0.

(8) [zk (W, po) — Zs (W, p’ . p
It is now apparent that for a risk-neutral individual to self insure, she must choose a state-
contingent supply vector that would be in the risk aversely efficient set in the absence of
price uncertainty (Peleg and Yaari; Chambers and Quiggin, 2000). As defined by Peleg
and Yaari and extended by Chambers and Quiggin (2000), the risk aversely efficient set
consists of all the state-contingent supplies that might be rationally picked by an individual
with generalized Schur concave preferences. As demonstrated in Chambers and Quiggin
(2000), the defining structural characteristic of the risk aversely efficient set is expression
(?7).

Generally, there is no reason to expect an arbitrary price vector to be distributed in

this fashion, and thus in general one does not expect a risk-neutral individual to gain from

partial price stabilization. Notice, in particular, that (?7) implies that generalized Schur

10



convex technologies satisfy

<CS (Wv Z) . Ck (Wv Z)

Mg Tk

)(zk—zs)g()

for all s and k. Hence, risk-neutral individuals facing a Generalized Schur convex cost

structure can never strongly satisfy (?7),® and, therefore, we conclude.

Proposition 7 A risk-neutral producer who faces a Generalized Schur convex cost struc-

ture does not gain from partial stabilization.

The O1 Result

A classic result from nonstochastic economic theory is Oi’s famous result on the desirability
of price instability derived from his analysis of the supply curve. At this point, it is perhaps
worthwhile to emphasize that when production is stochastic, the notion of a supply curve
has to be interpreted with a caution. Well-defined notions of state-contingent supply curves
exist, they are simply the graph of the state-contingent supply function over ps. But this
curve gives the way in which output varies with ps provided that state s occurs. It does
not give a stable supply function over the entire price distribution. If one wants to be
able to depict a supply curve that gives the response of output to the price distribution,
there seem to be several alternatives. One alternative is to obtain a vector of realized
supplies (say from cross-section data), graph them against the observed supply prices, and
then ‘connect the dots’. This certainly represents a schedule of supply. However, because
each observed supply corresponds to an ex post realization from the vector of optimal
state-contingent supplies, each of which generally depends upon the entire p distribution,
there is no reason to expect that this supply curve slopes upward or that it has any of
the theoretical properties that permit the welfare evaluation of different schemes for price
stabilization.

A simple, familiar example illustrates. Suppose that stochastic production is charac-
terized by a stochastic production function, g (x,65), where as usual ¢, is a random scalar
representing the random elements affecting production that are beyond the producer’s

control. Choose indexes, without loss of generality, so that the realization of these random

11



elements (say across a particular cross section) are ranked from ‘worst’ to ‘best’
€1 < ... < é&g,

and assume, also as usual, that the production function is increasing in these random
elements. It follows immediately as a consequence of this construction that regardless of
the distribution of p, holding input use fixed, supply is higher in states with higher indexes
and lower in states with lower indexes. Because the rank ordering of state-contingent
outputs, holding input use fixed, is determined by the rank ordering of these stochastic
elements and not by the producer’s allocation of inputs, there is no reason, apart from
fortuitous accidents, to expect the connect-the-dots approach to yield a positively sloped
supply curve in this case. If s > k and ps < pg, this supply curve is negatively sloped over
that region regardless of how the two producers allocated the fixed input bundle. In fact,
if one expects any regularity at all to emerge, one intuitively expects a negatively sloped
curve as good production states, ceteris paribus, would correspond to low price states.
Hence, we pursue another alternative, which is to suppose that there exists a supply

mapping S : 8. — R such that, for all p,

zs(p, W) =5(ps, W)

If this condition is satisfied, we say that the producer’s supply curve is state-independent.
Obviously, this limits the range of technologies that can be considered. Our next lemma,
which follows from applying a standard duality mapping to the ICE under the assumption

of risk neutrality, identifies that class of state-contingent technologies:

Lemma 8 A risk-neutral producer has a state-independent supply curve iof and only if the

cost function is of the additively separable Generalized Schur convex form:

c(w,z) = Z TsC(W, 25)

where ¢ : R, — R, is a convex non-stochastic cost function.
An immediate consequence of this lemma is that proposition 7?7 is the generalization of

the Oi result to generalized Schur convex cost structures which are not additively separable.

12



Maximin Preferences

We now consider the polar case of complete aversion to risk given by the certainty equiv-

alent

e(y)= Min{ys,....ys}.

Chambers and Quiggin (2000, 2001) have established that producers facing this type of
preferences and a strictly increasing cost structure completely self insure and, thus, have

indirect preferences that are characterized by a sure profit function of the form*

(9> I(va)zsup {T_C<W7£7'“7L>}'
r n Ps

We first consider whether this most risk-averse class of producers would prefer complete
stabilization at the mean price. As before, the condition that is required for the producer

to prefer complete stabilization here is that there exists no price distribution p such that
pl =z pand I (w,p) > I (w,pl).

Consider a small pairwise spread around pl. Applying the envelope theorem to I (w,pl)

as defined in (?7) establishes that the associated welfare change is proportional to

Ck (Wv z (Wvﬁ]-)) Cs (Wv z (Wvﬁ]-))

- 5])]{3.
Tk Mg
So long as
Ck (Wv Z (Wvﬁ]-)) 7£ Cs (Wv Z (Wvﬁ]-))
Tk Mg ’

for any k and s, there exists a feasible destabilization of prices that leads to a welfare
improvement.
For there to be no potential for improving welfare by a small departure from stable

prices, it must, therefore, be true that

Ck (Wv z (Wvﬁ]-)) Cs (Wv z (Wvﬁ]-))

Tk Mg
for all £ and s. Recalling (?7) now establishes that a producer with maximin preferences

prefers complete stabilization of prices over small departures from stabilization if and only

13



if in the absence of price uncertainty she chooses a state-contingent output vector that is
on the expansion path for a risk-neutral producer facing no price uncertainty. But this

requires that there exist a price p such that
Tep = ¢k (W, 2z (W,pl)).

Summing these conditions establishes
p— > ci(w,z(wpl))=0.

The producer’s first-order condition for an interior maximum for (??) for perfectly stabi-

lized prices requires
p—> cs(w,z(w,pl))=0.

Combining these equalities establishes that p = p, or in other words the producer must

choose exactly the same state-contingent output vector as a risk-neutral individual facing

p. Thus,

Proposition 9 A producer with completely risk averse preferences prefers complete price
stabilization over small departures from complete stabilization if and only if in the ab-
sence of price uncertainty she makes exactly the same production choices as a risk-neutral

individual.

Proposition 7?7 shows what appears to be a somewhat paradoxical result. That is,
the most risk-averse producers generally prefer some price uncertainty to complete sta-
bilization. However, it is easily explained. The most risk averse producers, if given the
flexibility to do so, always choose their state-contingent output vector to completely self-
insure. That is there will exist a perfect inverse correlation between their state-contingent
output choices and state-contingent output prices. When that price uncertainty is re-
moved, they would also want to remove all of their production uncertainty as well, and
given the flexibility to do so, they would. Their interest, as with all risk averters, is in
income risk and not price or production risk by themselves. Because we start at a point

where prices and hence state-contingent supplies are equalized, the mean-preserving price

14



change leads to no change in revenue, but the associated change in the state-contingent
output mix which is proportional to the relative probabilites will permit the producer to
lower cost, and hence increase sure profit, unless the relative probabilities are proportional
to the state-contingent rate of transformation.

It may seem implausible that there exist classes of technologies for which a completely
risk averse individual would produce in the same manner as a risk-neutral individual in
the face of stabilized prices. However, such a class can be found in those technologies
with generalized Schur convex cost structures. Chambers and Quiggin (1997, 2000) have
shown that in the absence of price uncertainty, a risk-neutral individual facing a generalized
Schur-convex cost structure produces the nonstochastic output level which maximizes sure

profit. Hence,

Corollary 10 A completely risk-averse individual facing a generalized Schur convex cost
structure always prefers completely stabilized prices over small departures from complete

stabilization.

Because a nonstochastic production technology is a polar case of a generalized Schur

convex cost structure, we also conclude as a further corollary:®

Corollary 11 A completely risk-averse individual facing a nonstochastic production tech-
nology always prefers completely stabilized prices over small departures from complete sta-

bilization.

Now consider, moving from p to a more stable price distribution p! by making a small
pairwise mean preserving change of pp and ps, assuming without loss of generality that
2 > p). Applying (?7?) locally to (??7) shows that the producer with maximin preferences
gains from this form of price stabilization if and only if

Ck (Wv z (Wv pO)) N Cs (Wv z (Wv pO))

> 0.
piﬂ—k pgﬂ—s

which requires

¢ (W,z(w,p%) /Tk _ pi
cs(w.z(w,p%))/ms P2
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at the producer equilibrium. Hence, a sufficient condition for a producer with maximin

preferences to gain from partial stabilization is that

ci (w2 (w,p) /i |
e (w2 (w,p) /7,

Because p? > p? implies for these preferences that zj (w,p°) — zs (w,p") > 0, it follows

that the producer gains from partial stabilization if

(10) <Ck: (w,z(w,p") ¢ (W,Z(W,po))> (2 (w,0°) — 2 (w,p%)) > 0.

Tk Mg

Hence,

Proposition 12 A producer with maximin preferences gains from partial stabilization if

he faces a generalized Schur convex cost structure.

We generalize this result in the next section to generalized Schur concave preferences.

Generalized Schur-concave Preferences

As noted earlier, both risk neutrality and complete aversion to risk are consistent with
generalized Schur concavity of the preference structure. In fact, as Chambers and Quig-
gin (2002) demonstrate, risk neutrality and complete aversion to risk are the polar cases
of preferences which are risk-averse in the sense of Yaari. Thus, they offer convenient
benchmarks from which to speculate about what happens for general risk averse prefer-
ence structures and technologies. Proposition 7?7 demonstrates that risk-neutral producers
benefit from partial stabilization of prices if the stochastic technology they face leads them,
for a given price distribution, to choose a state-contingent supply vector that is consistent
with self insurance. In the preceding section, we have just seen that completely risk averse
producers, who optimally completely self insure, will gain from partial price stabilization
if they face a generalized Schur convex cost structure.

Our first result in this section generalizes these observations about risk-neutral and
completely risk averse individuals and self insurance to the case of smooth generalized Schur
concave preferences to show that a simple correlation condition is sufficient to determine

whether a producer gains or loses from partial stabilization (proof in the Appendix).

16



Proposition 13 Suppose that the producer has a smooth generalized Schur concave cer-

tainty equivalent and that at an optimal solution

(2s — 21) (pszs — prze) <0,

all s and t. If the producer optimally self insures, he always benefits from partial stabilization
of prices. If the producer does not self insure, there always exists a destabilization of prices

which improves the producer’s welfare.

The maintained hypothesis of Proposition ?? requires that there exist a negative cor-
relation between the state-contingent revenues and the state-contingent supplies. If this
condition is satisfied, then whether the producer gains or loses from price stabilization
depends entirely upon his self insuring behavior. To understand why this condition is crit-
ical in linking self insurance and gains from stabilization, notice that it implies that if the
producer self insures, then his revenue is positively correlated with the stochastic output

price, i.e.,

(ps - pt) (pszs - ptzt) 2 O,

all s and t. Now suppose that the individual does self insure. Then, ceteris paribus,
any small pairwise contraction of the price distribution raises mean income by attaching
a higher price to a high production state and a lower price to a low production state.
If the inverse correlation condition is satisfied and state-contingent revenue is positively
correlated with the stochastic price, it also reduces the riskiness of the stochastic revenue
distribution by raising revenue in the low revenue state and decreasing it in the high
revenue state. Hence, even without any adjustment on her part, the producer receives a
higher expected return with less risk from the pairwise contraction. She must be better off.
If the producer does not self insure, then just the opposite intuition applies, destabilization
leads to a higher mean and less risky revenue vector, and the risk-averse producer is thus
worse off.

Notice that Proposition ?? requires that there be an inverse correlation between state-

contingent supply and state-contingent revenue. This is done for the sake of concreteness

17



in stating results. It’s an easy corollary to Proposition 77 that if

(2s — 21) (pszs — prze) <0,

for any s and t, the welfare effect of a mean-preserving pairwise contraction of the price
distribution thus hinges upon whether the producer self insures for those two states of
Nature. We leave the exact statement of the result to the reader. It follows immediately
that local stabilization can be either welfare enhancing or welfare reducing under more
general conditions than laid out in Proposition ?7.

Our next task is to show that the maintained hypothesis in Proposition ?? is not
vacuous in the sense that it will apply for an important class of models, i.e., producers
with generalized Schur concave preferences and generalized Schur convex cost structures.
Generalized Schur convex cost structures are of particular interest because as pointed out
by Chambers and Quiggin (2000), they are an appropriate generalization of nonstochastic
production models in a state-contingent framework. They provide cost advantages for
producing a nonstochastic state contingent output, but they do not force the producer to
produce nonstochastically if it is not to his advantage. In particular, suppose that the

technology is generalized Schur convex for all possible probability vectors,®
c(w,z) = c¢(wmazs{z1,...,2s}).

With this cost structure and strictly monotonic certainty equivalent, a rational producer
will always choose a non-stochastic output of the form z1.” Hence, this class of model
encompasses those used in many previous studies of stabilization under uncertainty such
as those of Blandford and Currie and Quiggin and Anderson (1979, 1981).

We have

Proposition 14 If the certainty equivalent is generalized Schur concave and the cost struc-

ture 1s generalized Schur convex, then at an interior solution

(2s — 21) (pszs — prze) <0,

for all s and t.
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Proposition 7?7 and Proposition 77 together imply the following generalization of Propo-

sition 77

Corollary 15 Suppose the certainty equivalent is generalized Schur concave and the cost
structure is generalized Schur convex. If the producer optimally self insures, he always
benefits from partial stabilization of prices. If the producer does not self insure, there

always exists a destabilization of prices which improves the producer’s welfare.

Concluding comments

The purpose of the present paper has been to present a systematic treatment of the welfare
effects of partial or complete mean-preserving price stabilization at the firm level. In
future work, a similar approach will be applied to the analysis of supply response, mean-

enchancing price stabilization, and to the stabilization of market prices using buffer stocks.
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Proofs Not in Text

Proof of Lemma 7?7: We first prove the result for the case S = 2. Assume without loss

of generality that for some 6 >0

pp = p—0
T

p = p+—6
T2

Now define the following perturbation in the optimal state-contingent supply vector z ()

A\ = z— 12y

m

22 (A) = 2+ A,
A > 0. The associated welfare perturbation for a risk-neutral individual is:
S — )\%cl (w,21) + Aea(w,21) =6A = 0
1

by (??). For the general case, observe that pl <, p, and therefore pl can be constructed
from p by a sequence of mean preserving pairwise contractions.

Proof of Lemma ??: If: Under the stated condition,

I(w,p) = max {Zﬂspszs — Zﬂsé(w, zs)}
= Zﬂ's max {pszs — ¢(W, 25)}

= Zﬂ—sv (ps, W),

with v (ps, w). convex. State-independence then follows by an application of the envelope
theorem.

Only if: By the envelope theorem,
IS (W7 p) = ﬂ—SS (psv W) 9

so that I (w,p) must be additively separable in p. Moreover, from this expression and the

convexity of I in p it follows that

<Is (W, p) L (va)> (ps — pi) > 0.

Mg Tk
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Hence, I (w,p) must be additively separable and generalized Schur convex in p,. whence
I(w.p)=> 7 (psW),

with v convex. By duality,

C (W, Z) = Ssup {Z MsPss — Z TsU (p87 W)}

= Zﬂ's sup {pszs - v (psv W)}
s p

= Zﬂsé(w, 2s).
S

Proof of Proposition 13: Applying the envelope theorem to (?7) gives for a pairwise

contraction of p° (again choosing indexes as before without loss of generality so that
p.—p > 0)

(11) {

erzk (W,p°)  eszs (w,p")

0
opg..
Uy Ts

Suppose the producer self insures so that (z; — 2x) < 0 and thus by assumption (pszs — pr2k) >
0. Generalized Schur concavity of the preference function then ensures by (77)

E - e_k S 07
Mg Mk
which along with the fact the producer self insures, zs — 2 < 0, then establishes
€s5%s (Wv pO) €Llk (Wv pO)
Ts Tk

<0

— ?

demonstrating that the self insuring producer gains from this pairwise contraction.
Now suppose that the producer does not self insure. There must, therefore, exist at

the optimum at least one pair of states of Nature such that
(pg - pg) (ZS (va()) — %k (va())) > 07

and by assumption plz; — phzr < 0 (again choosing indexes without loss of generality so
2 — p > 0). Now consider a mean-preserving contraction of the price distribution p°
involving these two prices. Generalized Schur concavity of the certainty equivalent and the
fact that plzs — plzi < 0 imply

€L €
e _E <y
Mk Mg

21



and then recognizing that z, (w,p°) — 21 (w,p°) > 0 gives the conclusion.

Proof of Proposition ??7: Assume without loss of generality that ps > p;. Now

suppose that (pszs — pr2z:) < 0. By the generalized Schur concavity of preferences (77), it

then follows that

€ €
i > =
Mg Tt

and the first-order conditions for an interior solution require for each z
Ps€s — Cs E e; = 0.
t

Combining the inequality with these equalities implies

Cs S Ct

- 9
DsTs DiTty

whence by the fact that that ps > py,

Cs Ct
= > —,
Mg Uk

and generalized Schur convexity of the cost structure then implies

zs — 2 > 0,

Supposing that p; > p but that (pszs — pr2:) > 0 and proceeding in a similar fashion

establishes that z, — 2 < 0.
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Notes

! These properties are discussed in detail in Chambers and Quiggin (2000, Chapter 2). Note, in particular,
that they correspond to standard properties placed on input correspondences associated with nonstochas-
tic technologies (Fare, 1988). They also generalize the representation of production uncertainty usually

considered in the literature.

2This ‘net returns’ objective function is used in much of the literature on price stabilization. However,
Newbery and Stiglitz (1981) and writers drawing on their work use a ‘separable effort’ objective function.
These objective functions are discussed by Chambers and Quiggin (2000). The two coincide in the case of

risk-neutral and maximin preferences or, more generally, the case of constant absolute risk aversion.

3Chambers and Quiggin (1997, 2000) show that this lack of self insurance implies that state-contingent
supplies satisfy what they refer to as a probabilistic law of supply.

4Tf both costs and preferences are not strictly monotonic, it is easy to show that the producer can be
indifferent between situations where production is economically efficient and situations where production
is not economically efficient in the following sense. The producer can choose to produce at points, where
because of the weak monotonicity of preferences, he would forego the chance to costlessly raise some state-
contingent outputs. In such cases, general results on stabilization are much harder to state than when costs
are strictly monotonic. Hence, when considering this class of weakly monotonic preferences, we restrict

attention to strictly monotonic cost structures.

5Because completely risk-averse preferences are generalized Schur concave, Corollary ?? is also a corollary

to Proposition 1.

5The reader will recognize that this production structure is the mirror image of the completely risk-averse

preference structure.

Tt is interesting to note that an individual with weakly increasing certainty equivalent, such as charac-
terizes maximin preferences, risk concerns may lead them to choose a technically inefficient production point
to introduce enough instability in state-contingent output to perfectly balance the price variation. A person

with maximin preferences always behaves in this manner.
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