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A series of papers (Chambers and Quiggin, 1996, 1997, 1998, 2001; Quiggin and Cham-
bers, 1998a, 1998b) and a monograph (Chambers and Quiggin, 2000) have explored the
fundamental theory of state-contingent production correspondences. This paper develops
the state-contingent properties of the most frequently used representations of stochastic
production in the agricultural-economics literature. Particular attention is paid to the
cases of multiplicative and additive uncertainty and to the convolution of multiplicative
and additive uncertainty embodied in the Just-Pope stochastic production function.

In what follows, we first present a brief review of state-contingent technologies and their
associated cost functions. Then we apply that theory to the standard representation of
production uncertainty in the agricultural economics literature—the stochastic production
function. After that we consider in turn the state-contingent properties of additive pro-
duction uncertainty, multiplicative production uncertainty, and the Just-Pope stochastic
production function. We propose a generalization of the Just-Pope technology that has
desirable state-contingent characteristics. Our substantive results close with a comparison
of cost functions based upon state-contingent technologies with cost functions based on a

parametrized distribution representation of production uncertainty.

1 State-Contingent Technologies!

Following Chambers and Quiggin (1996, 1997, 2000), the stochastic technology is rep-
resented by a state-contingent input correspondence. To maximize comparability with
existing agricultural-economic research on production under uncertainty, we restrict our-
selves to the case of a single stochastic output. One can extend the current analysis to the
case of multiple stochastic outputs.

The crucial concept, due originally to Arrow and Debreu, is that production under
uncertainty can be represented by differentiating outputs according to the state of nature
in which they are realized. This approach is analogous to the Arrow-Debreu treatment
of goods differentiated by time and place of delivery as a particular form of multi-output
production.

The set of states of nature may be either finite and discrete or infinite and continuous.



Chambers and Quiggin (1998) focus on the continuous case to demonstrate that the cost
function is well-defined under uncertainty, and that duality is, therefore, applicable. For
ease of exposition, however, attention in the present paper is confined to the discrete case.
One can extend the results derived below to the case of continuous probability distributions
and to mixtures of discrete and continuous distributions.

Let the states of nature be given by the set Q = {1,2,...,5}, let x € RY be a vector
of inputs committed prior to the resolution of uncertainty, and let z € %7 be a vector
of state-contingent outputs. So, if state s € ) is realized (picked by ‘Nature’), and the
producer has chosen the ex ante input-output combination (x, z), then the realized or ez
post output is 2 corresponding to the sth element of z.

In most analyses of production under uncertainty, it is assumed that the state-contingent
vector of outputs is generated by a vector of inputs directly controlled by the producer and
a random variable that it beyond the control of the producer. Let the random variable
be denoted by € €R®. Then the stochastic production function specification requires that

stochastic output be related to inputs by the production function f: RY x £ — R,
(1) 2s < f(xe5), s€EL.

For simplicity, f is taken as increasing in €,.2 This case will be examined in the present
paper. But it is important to note that it is a restrictive representation of the options
available to producers facing uncertainty.

More generally, the technology can be represented by a continuous input correspon-
dence, X : 7 — R, which maps state-contingent outputs into input sets that are capable

of producing that state-contingent output vector. Formally,
X (z) = {x € RY : x can produce z}.

We impose the following axioms on X (z):
X.1 X(0s) = RY (no fixed costs), and Oy ¢ X (z) for z > 05 and z # Oy (no free lunch).
X27zZ<z= X (z)CX(z)
X3x>xeX(z)=x' € X(z).
X.4 X (z) is closed for all z € R7 .



The first part of X.1 says that doing nothing is feasible, while the second part of
X.1 says that realizing a positive output in any state of nature requires the committal
of some inputs. X.2, free disposability of state-contingent outputs, says that if an input
combination can produce a particular vector of state-contingent outputs then it can always
be used to produce a smaller vector of state-contingent outputs. X.3 implies that inputs
have non-negative marginal productivity. X.4 is a technical assumption that ensures the
existence of the cost function that we develop below.

Dual to the input correspondence is the cost function, defined, for the case where all

inputs are purchased at competitive prices w, as

c(w,z) = ming{wx :x € X (z)} weRY,

if there exists an x € X (z) and oo otherwise. Mathematically, c¢(w,z) is equivalent to
the multi-product cost function familiar from non-stochastic production theory (Cham-
bers, 1988; Fire, 1988). Under the presumption that the input correspondence satisfies
properties X then the cost function satisfies:

C.1. ¢(w,z) is continuous on §Ri and positively linearly homogeneous, non-decreasing,
concave, and continuous on RV, ;

C.2. Shephard’s Lemma;

C.3. c(w,z) >0, ¢(w,0s) =0, and c(w,z) > 0 for z >0g, z # Og;

Cd. z° > z= c(w,z°) > c(w,z).

Moreover, by standard duality theorems (Fére, 1988)
X (z) = Nweo {x:Wx >c(W,2z)}.

Following Chambers and Quiggin (2000, Chapter 4), for z € R%, we define the cost
certainty equivalent output, denoted by e (z) € R, as the maximum non-stochastic output

that can be produced at cost ¢(w, z), that is,

e (z) = sup{e : c(w,el”) < ¢(w,z)},



where 1° denotes an S—dimensional vector of ones. Let Z denote the mean of z. The

absolute production risk premium, p° (z) € R, is defined implicitly by:
(2) c(w,z) =c(w,(z = p°(2))17) = c(w,e* (2)1%)
so that

p(z)=2—€(z).

The absolute production risk premium measures the cost of removing production un-
certainty for a cost minimizer. If p®(z) > 0, it is more costly to produce the mean of z
with certainty than it is to produce z. Typically, one thinks of technologies as always
involving an absolute risk premium that is positive. More generally this need not be the
case. The technology is inherently risky at z if the absolute production risk premium is
positive there, and not inherently risky otherwise.

An alternative measure of the cost of removing uncertainty is the relative production

risk premium

Properties C.1 and C.4 guarantee that e®(z) is a complete function representation of

the cost function in the sense that
e (z) > e (z) & c(w,z) > c(w,z).

It is useful to have classes of technologies that are easily characterized in terms of either
the production risk premium or the certainty equivalent. The state-contingent technology
displays constant absolute riskiness if the cost certainty equivalent output responds to
increasing output with certainty by increasing by that same amount, so that for all z and

te i
(3) e’ (z+t15) =e“(z) +t.

Geometrically, constant absolute riskiness ensures that isocost contours are parallel to one

another in the direction of the equal-output vector.

4



The technology displays constant relative riskiness if for all z,v € R, :
(4) € (vz) = ve(z)
and equivalently
P (vz) =vp‘(z), veR,.
By (3), (4), C.1, and C.4:

Lemma 1 The cost function satisfies constant absolute riskiness if and only if it is BD-
translation homothetic in z. The cost function satisfies constant relative riskiness if

and only if it is homothetic in z.2

2 Stochastic production functions as state-contingent
technologies

The state-contingent input correspondence associated with (1) is

X(z) = {xwzs< f(xes5), s€}
== ﬂsEQ {X s S f (ngs)}

= ﬂsEQX (28;58)

where X (2, £,) may be interpreted as the ex post input set associated with the production
function for a given realization of the random variable.

The dual cost structure for the stochastic production function specification defined,
c(w,z) = Min {Wx 'X € Ngea X (2s; 83)} ,
satisfies
(5) c(w,z) > Max{c(w,z1;€1),...,c(W,z5;€5)} .

where ¢ (w,zs; ;) is the ex post cost function dual to X (2s;€5). There can exist instances

where the inequality in (5) is strict (Chambers and Quiggin, 1998, 2000). In what follows,
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however, we focus on the special case
(6) ¢(W,2) = Maz {e(W,z1521) 0,6 (W25 55)}

The imposition of restrictions such as constant absolute riskiness or constant relative
riskiness may be necessary in order to yield either tractable estimation procedures or
tractable analytic results. Hence, it is important to consider the implications of these
restrictions for the familiar case of a stochastic production function. Here we want to
determine the additional structure that imposing either constant absolute riskiness or
constant relative riskiness imposes upon technologies described by (6). We have (the proof

is in the appendix):

Result 1 Technologies of the class (6) satisfy constant absolute riskiness if and only if the

ex post cost functions can be expressed as
c(W,2p;6) = C(W,2x — V(L)) .

Technologies of the class (6) satisfy constant relative riskiness if and only if the ex

post cost functions can be expressed as

_ ~ 2k
c(W,2p;6r) = C <W —) )

T (k)

Several additional observations should be made at this juncture. First, the stochastic
production function specification involves a strong a prior: functional restriction on the
interaction between random factors and controllable inputs which does not appear to
have been empirically validated. The most common justification for the stochastic error
term is that it captures the effect of random inputs, such as rainfall and other climatic
conditions, on an otherwise deterministic production process. Therefore, the error term
conceptually can be viewed as an input aggregate consisting of these random inputs. This
specification requires that the marginal rates of substitution between the stochastic inputs
be independent of the controllable inputs. More formally, the stochastic inputs must be
weakly separable from the controllable outputs.

Second, regardless of the degree of continuity or smoothness placed upon the stochastic
production function, the cost function dual to this technology is not everywhere difter-

entiable in outputs. Therefore, in most cases, it will be difficult to employ traditional
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methods of analysis, e.g., equating marginal cost to marginal benefit, which typically rely
on smoothness with such technologies.

Third, and associated directly with the nondifferentiability in state-contingent outputs,
is the fact that the output sets associated with the stochastic production function are cubes
in state-contingent output space. Figure 1 illustrates in the case of two states of nature.
Figure 1 implies that there is no substitutability between state-contingent outputs. Hence,
the technology associated with the stochastic production function may be referred to as
‘Leontief-in-outputs’, ‘fixed-output-proportions’ or ‘output-cubical’.

As is well known from the study of multi-input, multi-output technologies under cer-
tainty, Leontief-in-outputs technologies have somewhat pathological properties. Kohli has
considered such technologies, which he refers to as input-price nonjoint, in detail and shown
that the revenue functions dual to them are linear in output prices implying that revenue
maximizing supplies are completely inelastic. In the case of decisionmaking under uncer-
tainty, the parallel result is that changes in the distribution of the output price have no

effect on the mix of state-contingent outputs as long as input use is held constant.

2.1 Additive uncertainty
Consider the special case
f(xes) = g(x) + e
For this specification,
X (2) = Nsea {x 125 — €5 < g (%)} .
If g (x) is nondecreasing in each of the variable inputs under the producer’s control,

X(z) = {x:Max{z —¢e1,..,28 —es} < g(x)}
= Xy (Maz{z1 —€1,....,25 —€s}),

where

Xg(@)={x:9(x)>q}.



Therefore,
c(W,zk;er) = ¢g (W2 — €k)
and
c(w,z) =cy (W,Maz{z1 —¢c1,...,25 — €s})

where ¢, is the cost function dual to X,;. This cost structure corresponds to the cost

structure isolated in the first part of Result 1.

Corollary 1.1 The stochastic production function with additive uncertainty is character-

ized by constant absolute riskiness.

As a consequence of Corollary 1.1, we may derive the well-known result that risk-averse
individuals facing a stochastic production function with an additive error structure always
choose the same input combination as risk-neutral individuals facing the same technology.
This result is well-known for expected-utility preferences. Here we verify it for general
preferences of the sort described by Yaari (1969) and Quiggin and Chambers (1998), which
includes expected-utility as a special case. Let W : #% — R be a continuous preference
structure that is strictly increasing in state-contingent net returns. Suppose that there
is no price uncertainty, and normalize the price of the stochastic input to one. Then the

producer’s objective function is

Maz, {W (21 — ¢y (W,Maz {z1 — €1,...,25 —€5}) .., 25 — ¢g (W,Maz {z1 —e1,...,29 —€s}))}.

A producer with this objective function will always operate at a point of economic and
technical efficiency given by the kinked point on his optimal isocost contour (recall Figure

1). That is, he will choose the state-contingent outputs so that
21— 61 =2s— €5, &€

If he did not operate in this fashion, he could always costlessly raise at least one ex post

output. Visually, this implies that all producers, regardless of their risk preferences, share
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a common expansion path that is parallel to the non-stochastic production vector, i.e.,
Zs = 21+ Eg — E].

Thus, the producer’s objective function can be expressed solely in terms of the first

state-contingent output as

Maz, {W (21 —cg (W,z1 —€1),21 + 62— €1 — ¢4 (W,21 —€1), .., 21+ €5 — €1 — ¢g (W,21 —€1))}.
Presuming that W and ¢, are smoothly differentiable, therefore, yields the first-order
condition

(1 - c; (w,2q — 81)) ZWS (y) <0, =z >0.

SEQ

For an interior solution, the producer’s optimally chooses the first state-contingent output
so that the marginal cost of producing it equals one. Recall that the additive structure of
the production function in the random variable implies that any time the producer increases
one state-contingent output, he increases all other state-contingent outputs by the same
amount. Therefore, each time he increases one state-contingent output, he increases his ex
post output with certainty by that same amount. Therefore, an increase in the first state-
contingent output brings with it a sure return of a dollar, and the producer will continue to
expand his output until the marginal cost of doing so reaches a dollar regardless of his risk
attitudes. Risk neutral, risk averse, and risk lovers will all choose the same state-contingent
output mix and correspondingly the same mix of inputs.

This property is not characteristic of the entire class of technologies exhibiting constant
absolute riskiness. Consider,

c(w,z)=1In (Z cs (W) exp (zs)> .

SEQ

This technology satisfies constant absolute riskiness, but a risk-averse individual with
expected-utility preferences and a risk-neutral individual generally choose different opti-
mal state-contingent output vectors. The ‘irrelevance of risk attitudes’ property emerges,
therefore, not from the presence of constant absolute riskiness alone but from the convo-
lution of constant absolute riskiness with the stochastic production function’s inability to

permit substitution between state-contingent outputs.
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2.2 Multiplicative Uncertainty

Now consider
f(xes)=h(x)es, s€,

where it is assumed that ¢, > 0 for all s € ). The associated state-contingent input

correspondence is

X(z) = N {x s < h(x)}

The associated cost function can be represented as

c(w,z)=c" <W,Max {ﬁ, ,Z—S}>
&1 Es

where ¢” is the minimal cost function associated with the nonstochastic production function

h. By Result 1:

Corollary 1.2 The stochastic production function with multiplicative uncertainty is char-

acterized by constant relative riskiness.

As in the additive uncertainty case, an economically rational individual, who is also
the residual claimant, will always locate at the outer vertex of her optimal isocost contour.

Regardless of her risk preferences, her expansion path, therefore, is defined by

€s
zs = —21, S€.
€1

The relative riskiness of the producer’s optimal state-contingent production bundle, thus,
is not the subject of economic choice.

Producer decisionmaking, therefore, reduces to choosing the optimal portfolio consisting
of a safe asset and a risky asset that in state s always returns i—l times what it would
return in state 1. Geometrically, therefore, the producer’s potential net returns vectors are
spanned by the fixed vector given by

(7) Zs = 8—821, s€N)

€1
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and the certain output vector. Figure 2 illustrates in the two state case. Committing inputs
to produce the state-contingent output vector incurs a non-stochastic cost of c(w,z1, 22)
and, assuming the price of the output is one, brings with it a stochastic return of (21, 22).
The cost, therefore, can be illustrated by point A in Figure 2, drawn on the negative
reflection of the certainty output vector, while the stochastic return is illustrated by point
B. The stochastic net return, in turn, is given by point C which is the vector sum of A and
B. Trivially, all possible state-contingent net returns are spanned by these two vectors. The
multiplicative uncertainty model is, therefore, just a simple application of basic portfolio
analysis. Standard results from portfolio choice theory, therefore, apply directly.

For example, a basic result is that a risk-averse (regardless of the degree of risk aversion)
individual with expected-utility preferences will always hold some of the risky asset if
its expected return is even slightly larger than the safe asset’s return. Here, the direct
consequence of this theorem is that as long as marginal cost at the origin is suitably small,
a risk averter (regardless of the degree of risk aversion) will produce a positive stochastic
output. Other basic portfolio-choice results, for example, those relating to changes in the
holding of the risky asset in response to wealth changesin wealth, also have exact analogues
here in terms of production changes.

Because the more general state-contingent technology with constant relative riskiness

Es

does not require that stochastic outputs always be produced in the fixed proportions =

its analysis does not reduce to a special case of the standard portfolio model. For example,

consider the case of technology whose state-contingent cost function is

c(w,2) = W)Y B (2ez)?,

s€) teQ)
where ¢ (w) is positively linearly homogeneous and concave. This technology satisfies
constant absolute riskiness. It can be verified, for example, that optimal state-contingent
output proportions are not fixed for a risk-neutral individual facing such a technology. The
risk-averse producer, therefore, does more than just pick the size of his investment in the

risky asset, he also chooses its composition in response to his subjective view of the world.
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2.3 Just-Pope production technology

Recognizing the many shortcomings of the multiplicative and additive uncertainty specifi-
cations, Just and Pope suggested a specification of stochastic production that has become
the model of choice for most agricultural economists investigating decisionmaking under
production uncertainty. Although their arguments were not cast in state-contingent terms,
they can be reinterpreted in those terms as recognizing the problems with the two tech-
nologies discussed in the preceding sections. In both cases, the producer’s expansion paths
in state-contingent output space are linear and independent of the producer’s attitudes
towards risk. When matched with the stochastic production function’s inability to en-
compass the possibility of substitution between state-contingent outputs, this linearity
predetermines stochastic decisionmaking, leading, as Just and Pope observed, to unrealis-
tic restrictions on producer choice.

The Just-Pope technology can be recognized as the additive combination of a non-
stochastic technology with a multiplicative uncertainty specification. The Just-Pope ap-
proach includes additive uncertainty and multiplicative uncertainty as special cases. It
resolves the problems associated with linearity of the producer’s expansion paths, but
not the inability of the stochastic production function to permit substitutability between
state-contingent outputs.

More formally, the Just-Pope formulation sets
f(xes) =g (x)+h(x)es.

Hence, in the case where g (x) = 0, the Just-Pope formulation reduces to the multiplicative
uncertainty and constant relative riskiness special case, while in the case where h (x) = h
(a constant function) it reduces to the additive uncertainty case.

The state-contingent input correspondence associated with the Just-Pope specification

18

X (2) = Neea {x 19 () + h (x) e, > 2}
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Let

" (w,h) = Minyg{wx :h(x)=h}
?(wg) = Ming{wx:g(x)> g}

¢ (wih,g) = Ming{wx:h(x) = h,g(x) > g}
and note that
" (w,h,g) > Maz {c" (w,h), (w,g)} .
The ex post cost functions for the Just-Pope technology are derived by

c(wzsies) = Mine{wx:g(x)+h(x)es 2 25}
= Minnga (WX ig+ he, 2 2, h(x) = h,g (x) > g}
= Minpg{Min, {wx :h(x)=h,g(x)>g}:g9+ hes > 2}
= Minp, {chg (w,h,g): g+ hes > zs}

= Miny {chg (w,h, zs — hss)} .

Because ¢ (w,h, g) need not be everywhere differentiable in h and g, the ex post cost
functions associated with the Just-Pope technology need not be smoothly differentiable in
the ex post output.

The potential nondifferentiability of the Just-Pope cost function and of cost functions
associated with the stochastic production function, in general, is important for a number
of reasons. Most obviously, it implies that, although Shephard’s lemma applies for the
Just-Pope specification, one cannot easily rely on it to characterize factor demands and
costs econometrically. Notice, in particular, that econometric estimation of ¢?/ (w,h, g)
and the associated factor demands can require highly nonlinear econometric techniques.
Proper identification of the parameters of the production structure requires identifying

both ¢ (w,h) and ¢? (w,g) in estimation.

2.4 Generalized Just-Pope technologies

When viewed from a state-contingent perspective, the Just-Pope technology seems in-

tractable. In this section, we offer an alternative specification of the state-contingent
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technology that captures the essence of the Just-Pope contribution, but which is tractable
in state-contingent terms.

The Just-Pope specification is a mix of a non-stochastic technology and a technology
that satisfies constant relative riskiness. Thus, we want to specify a technology which is a
mixture of a non-stochastic technology and one satisfying constant relative riskiness, but
which also leads to a differentiable cost function.

The best place to start the search for such a technology is with an alternative repre-
sentation of the state-contingent technology. The state-contingent output correspondence,

Z: RY — R7, dual to the state-contingent input correspondence is defined by
Z(x)={z:x€X (z)}.
For the Just-Pope specification, we, therefore, have

Z(x) = {z:2zs<gx)+h(x)es, s€0}

= Xse {Zs L s S Q(X) + h(X)gs}

which can be visualized as an S-dimensional cube in state-contingent output space. Visu-
ally, it is easiest to consider the Just-Pope technology in two dimensions. Notice that it
consists of two parts: the first is associated with the non-stochastic part of the technol-
ogy given by g (x). Under the assumption that the random vector € has mean zero, this
corresponds to mean output, and we represent this by point A in Figure 3. The other
component, assuming h > 0 and € has zero mean, can be represented by point B in Figure
3. The slope of the ray connecting the origin and point B is given by i—; Then the Z (x)
that corresponds to these two points is arrived at by taking their vector sums to end at
the point C. Everything falling within the rectangle with vertices at C and the origin then
belongs to the state-contingent output set.

Now to see how the output set responds to a change in x, notice that increasing the
input vector increases the mean output. This can be visualized as the mean sliding out
from A to A’ along the certain-output vector. Similarly we can visualize increasing the
input vector as sliding the stochastic, constant relative risky, output component out from

B to B’. The new state-contingent output set is given by everything falling in the rectangle
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with outer vertex at point C’. As is apparent there is no reason to expect the resulting
expansion path to be linear. However, because the state-contingent output set continues to
be described by a cube, the associated cost function will not be everywhere differentiable
in state-contingent outputs.

The nondifferentiability of the cost function emerges from the role that inputs are
forced to play in this production process. The production function formulation does not
allow input activity to be allocable toward different state-contingent outputs. Moreover,
the Just-Pope formulation, because it is essentially the sum of two production functions,
manifests this nondifferentiability problem by requiring that the mean output and the
random output are both determined by the same input level. In short, inputs cannot
be differentially allocated to solely mean increasing activities and variance controlling
activities. The model may be made more realistic, but also more complicated by a finer
specification of inputs. Therefore, it seems simpler to make explicit the possibility of
allocating inputs to different state-contingent outputs.

Our proposed generalization of the Just-Pope formulation effectively mixes a technology
exhibiting constant relative riskiness and the ability to substitute state-contingent outputs
with a technology which is not inherently risky at all possible state-contingent outputs.

More formally, we have
Zx)={Z2°x")+=z(x")Z": f(x°,x") < x}.

Here 7' C §Ri is a fixed reference set in state-contingent output space and z : % — R, |
is a real-valued function that scales the reference set up or down depending upon input
utilization. Output correspondences assuming the form, z (x!) Z*, are referred to as output
homothetic (Fire and Primont, 1995; Chambers and Quiggin, 2000). Z° (x°) is a gener-
alized Schur-convex (see next paragraph) state-contingent output correspondence. The
input quantities x° and x! represent the effective allocation of inputs to the activities rep-
resented by the technologies Z° and 2Z'. In the Just-Pope model, inputs are not allocable
so that

F(x°,x") = max{x®,x'}.
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The opposite polar case is that of allocable inputs, where
fxo,xh) =x°+x',

In the remaining analysis, we will focus on this latter case. However, the analysis is easily
extended to general families of technologies such as the CES class for which the allocable
(linear) and Just-Pope (maximin) specifications are polar cases, or to general differentiable
f

Let m € R be a vector of probabilities. For this vector of probabilities, let <, denote
a partial ordering of §Ri that orders state-contingent output vectors with the same mean.

The notation

/
Z <,Z

means that Y,comszs = Zsemrsz;, and that z is less risky in the Rothschild-Stiglitz sense
than z’. A state-contingent output correspondence, Z (x), is said to be generalized Schur-

convex (Chambers and Quiggin, 1997) if
z=,2 €Z(x)=>z€eZ(x).

The special case of Schur convexity applies if all the 7 are equal. Schur-convexity may be
visualised by thinking of a symmetric output set which has the fair-odds line tangent to
the boundary of Z (x) where Z (x) intersects the certainty output vector. A non-stochastic
technology, which in state-contingent terms is a cube with its vertex on the certainty
output vector, trivially satisfies this tangency condition.

The cost function associated with the generalized Just-Pope technology can be derived

as

c(w,z) = Mingxo {Wx:2€2°(x°)+ 2 (x') 7", x°+x' <x}
= Mingxoxt gog {Wx 1 2°€2° (x°),2' € 2 (x') Z',x° +x' <x,2°+2' =z}
= Ming » {Ming {wx’: 2°€Z° (x°)} + Mina {wx' :2' € 2 (x') Z'} : 2° + 2' = z}
= Mingo g (¢ (w,2°) + ¢ (wim (2") : 2+ 2 = 2}
= Ming. {¢ (w,2°) +c! (wm(z—2°))}
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In this derivation, ¢° is the cost function dual to the generalized Schur convex output
correspondence. It has the property that z°=<, .z implies ¢® (w,z°) < ¢ (w,z”). To see
why, recognize that by the definition of generalized Schur convexity if an input combination
can produce z”, then it can also produce z°. Therefore, the minimal cost of producing the
latter can never be greater than the minimal cost of producing the former.

c! is the cost function dual to z (x!) Z!. It has been written as a function of a function
m: R — R, that is positively linearly homogeneous in the state-contingent inputs, i.e.,
m(\z') = Am (z'), A > 0. This is a standard property of output-homothetic production
correspondences (Chambers and Quiggin, 2000, Chapter 4).

We close this section by demonstrating that the generalized Just-Pope technology is,
indeed, a combination of a technology that exhibits constant relative riskiness and a tech-
nology that involves no production uncertainty. To do so, we show that a risk-neutral indi-
vidual facing such a technology will always choose z° to be on the certainty-output vector
and z' to be on a ray along which the relative risk premium (relative to ¢! (w,m (z!)) )
does not change. A risk-neutral individual facing this technology solves

Mazx {Z s (204 21) — & (w,2°) — ' (w,m ( z1>>} .
s€Q

Clearly, the problem is separable so that a risk-neutral individual solves two independent

problems
(8) Zﬂsz;’ — &’ (w,z°%)
s€EQ
and
(9) Zﬂsz; —c (W,m (zl)) .
s€EQ

For any z°, generalized Schur convexity implies that the point (Zseg Wsz;’) 15 can be
no more costly than z° because it has the same mean and is less risky than z° in the
Rothschild-Stiglitz sense. Therefore, (Zseg Wsz;’) 15 always at least weakly dominates z°
for a risk-neutral individual.

Now consider (9). Since the cost function is homothetic in state-contingent outputs,

1

the solution, say z', will always lie on a fixed ray from the origin. The cost certainty
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equivalent output for that point (in terms of ¢! (w,m (z'))) is given by

e“(2) = suwp{c:em(1) <m(s)}
m (2')
m (1)’

where we have exploited the positive linear homogeneity of m. Now consider any other

point on this same ray, call it Az'. Its cost certainty equivalent output is given by

Hence, the technology exhibits constant relative riskiness as claimed.
To construct a generalized Just-Pope technology, all that is needed is combine a con-
stant relative risky technology along with a generalized Schur convex technology along the

lines suggested above. For example, the technology associated with

c(W,z):H;j)n{c ZZﬁst 2027) %—kcl (W)Zﬂsexp(zs—z‘s’)}

sEQ tEQ SEQ
is generalized Just-Pope. Suitable choice of functional specifications permit approximation

of a generalized Just-Pope technology to an arbitrary order.

2.5 The parametrized distribution approach to stochastic technologie

A common response to the difficulties associated with stochastic production function tech-
nologies is to ignore the technology and to focus attention instead on the cumulative
probability distribution of output that is jointly generated from the stochastic production
function and the distribution of the error structure. This is the approach pioneered by
Mirrlees. Hart and Holmstrom refer to it as the parametrized distribution approach.

The first requirement for this approach is the specification of a probability distribution
over the states of nature @ =(my, mo....mg). For a given probability vector 7, and a random

output z, define the cumulative distribution function F(e;z,m): R — [0,1] by

F(t;z,m) Zﬂ's

{sys <t}
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and assume that the producer cares only about the cumulative distribution function of
output and not about the particular states of nature in which high and low outputs occur.

Neither the general state-contingent technology or the general preference structures
described above require the existence of well-defined subjective probabilities. Hence, the
requirement that they exist and are objectively known to the researcher a prior: restricts
the range of technologies and problems which can be studied using the parametrized dis-
tribution formulation. The more general state-contingent technology, however, makes no
use of probabilities in its definition.

The cumulative distribution can be characterized by the central moments of the distri-

bution

p = Elz]

P = (Elz—p)" ]

In general, the sequence of moments required to characterize a cumulative distribution
function is infinite. However, finite-dimensional specifications can be obtained in several
ways. If the cumulative distribution function is derived from a discrete probability distrib-
ution over S states, it can be characterized uniquely by its first S moments. Alternatively,
if parametric assumptions about the distribution are made (normal, uniform, triangular,
and so on), a finite set of moments may provide sufficient statistics to characterize the dis-
tribution. Finally, structure can be imposed on producer preferences to ensure that they
are expressible in terms of a finite subset of the moments (e.g. mean and standard devi-
ation). This alternative, in essence, requires a prior: that there be a conjugacy between
the moments chosen and the producer’s preferences over state-contingent returns.®

For any input correspondence, X (z), and any finite set of moments,u', ...u*, we may
consider the parametrized-distribution representation of the cost function for the moments

(10) Mwopt, ™) = min {wx :p"(z) 2p" m =1,.... M}
XE Zz

The choice between the state-contingent representation c(w,z) and the parametrized-

distribution representation c¢™ (w,u!,...u*) is logically independent of whether the asso-

ciated technology is representable as a Leontief-in-outputs stochastic production function
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or as a more general state-contingent production set. The relationship between the state-
contingent and parametrized-distribution representations of production under uncertainty
is similar to that between structural and reduced forms in econometrics. Moreover, just
as in econometrics, there is an inherent identification problem. For example, in the case
of a stochastic production function, multiple stochastic production functions and error
structures can correspond to a single parametrized distribution representation (Mirrlees).
The structural information that is lost in the passage to the reduced forms includes any
relevant information about the state of nature, such as the level of rainfall and average
temperature. Empirically, this means that generally it will be impossible to identify es-
timates of characteristics of the technology, for example, marginal rates of substitution
between inputs, from estimates of the parameters of the parametrized distribution.

We may develop this analogy further. Since the number of potentially distinguishable
states of nature is very large, empirical modelling of state-contingent production requires
the imposition of structural restrictions. The hypotheses of constant absolute riskiness
and constant relative riskiness, discussed in this paper, are examples of such restrictions.
Another set of possible restrictions may be generated by consideration of the econometric
literature on lag structures where, as in the present case, it is necessary to represent a
potentially infinite-dimensional set of possible structures with a finite set of parameters.
Or alternatively, restrictions may be generated by considering the theoretical literature on
nonlinear aggregation.

Within the parametrized-distribution representation, the choice of M, the number of
moments, effectively determines the level of a nonlinear aggregation of the state-contingent
outputs. If the selected moments, p!,..u*, fully characterize the distribution of state-
contingent output, then information about them is equivalent to having exact information

about z. Thus, in this case, (10) must correspond exactly to ¢(w, z) in the sense that

(11) c(w,z) =c" (w.p' (2),..u" (2)).

for all z. Hence, problems involved in either specification must be at least implicitly
reflected in the other. On the other hand, if p!,...u™ do not fully characterize the distrib-

ution, then requiring (11) to hold globally places restrictions on the underlying technology
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that can be identified using general results on nonlinear aggregation (Lau).
If the underlying state-contingent cost function ¢(w, z) is differentiable in w and z, the
)

parametrized-distribution representation ¢™(w,u!,...u*) will be differentiable in w and

pt..pM. A superficially appealing feature of the parametrized-distribution representation
is that, in some regions, ¢ (w,u!, ...u™) may be locally differentiable even though c(w, z)
is not everywhere differentiable.

The Just-Pope technology may be used to illustrate these points. Assuming without
loss of generality E[e] =0, any output distribution g(x) + h(x)e is characterized by its
mean pu' = g(x) and standard deviation p? = h(x)o, where o is the standard deviation of

€. Hence,

02(W7:u17,u2) = Chg (Whu’l?%)

> maz{d(w), o (w,22))

where ¢9, " and ¢ are as defined above.

Depending upon the prevailing input prices, the levels of the moments, and the forms
of g and h, this cost structure can be locally differentiable. However, for the case of Just-
Pope technology and one variable input, ¢?(w,u!, u?) is not everywhere differentiable in
moments. Even with multiple inputs, ¢*(w,u!, u?) is not everywhere differentiable if the
technology is input-separable in the sense that there exists a well-defined aggregate input.

Moreover, for a wide range of problems involving non-linear payment structures, in-
cluding crop insurance and price support schemes, producer preferences will depend upon
more than the just the first and second moments. Therefore, to reasonably approximate
producer preferences it will generally be necessary to consider higher moments. For sim-
plicity, consider the third moment p*, representing skewness. Denote the third moment of

€ by (. The three-moment cost function for the Just-Pope technology is

3 12 3y ) 1 :/L_2 :u_?’
¢ (wpl ) = min v ch () 2 g (0 = 2 g 00 = &
> max {ch (W,[,L1> , 7 <W,%2> , 7 <W,%3> } .
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This cost function is not everywhere differentiable in its moments because the second and
third moments cannot be varied independently.

Here an analogy with the literature on flexible functional forms is perhaps relevant.
Flexible functional forms are often characterized in terms of second-order Taylor series
approximations around a particular point. Second-order approximations are usually con-
sidered sound in economics because most comparative-static results of general interest
involve only first or second partial derivatives of objective or indirect objective functions.

When € has mean zero, the Just-Pope technology can be interpreted as a first-order
Taylor series approximation of a general f (x,65) around the mean of . This allows it
to accomodate effects associated with the mean and dispersion. It is, therefore, possible
to generalize the Just-Pope technology by extending the Taylor-series approximation to
a higher order. However, if that order is M, a straightforward extension of the previous
arguments shows that the associated cost function still retains the ‘max’ form above, and
is never everywhere differentiable in the (M + 1)th moment. More generally, with a Just-
Pope representation such that u™ = g¢,,(x), m = 1,2, ..., M, with each g,, differentiable, a
sufficient condition for ¢ (w,u!,...u*) to be differentiable at an interior solution is that
the associated Jacobian matrix Vxg have rank M.” Thus, as noted above, a finer disaggre-
gation of inputs makes the stochastic production function more flexible, but empirically it
also requires a close correspondence between the number of inputs and the number of mo-
ments considered. In the end, this remains an ad hoc substitute for an explicit specification
of the state-contingent properties of the underlying technology.

Perhaps the most telling criticism of the moment-based approach to the specification of
cost functions is also the simplest. It diverts attention away from the quantities of natural
economic interest, which are the state-contingent outputs, and focuses attention instead
on characteristics of the distribution, which for most, will have the vaguest of intuitive
connections to the underlying economic phenomena. In essence, this argument reduces to

which specification of the producer’s objective function is the most informative and most in

line with the general corpus of economic theory. Expected utility of net returns illustrates
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the point well. There are two alternatives

S
mzax {Z TsU (pszs —C (Wv Z))} ’

s=1

and
s
1 MY M 1 M
m&x{;ﬂsu(pszs(u,...u ) (W, ))},

where z4 (,qu, LM ) corresponds to the realization of the stochastic process when summa-
rized in terms of its moments. Our position is that the former is the most informative to

economists. Statisticians, on the other hand, may have a predilection for the latter.

3 Concluding comments

The central claim of Chambers and Quiggin (2000) is that the state-contingent production
framework provides the most realistic and tractable representation of problems involving
production under uncertainty. Because the state-contingent framework is more general
than other approaches, to make this claim good, it remains to show that the concepts
found useful in alternative frameworks, such as those based on stochastic production func-
tions, may be transferred or generalized to the state-contingent framework. It is also
necessary to consider whether the problems of inflexibility and non-differentiability associ-
ated with particular stochastic production functions may be resolved simply without losing
the important insights that have been gained from them.

Taking the second issue first, we have discussed generalizations of the additive, multi-
plicative, and Just-Pope stochastic production functions. These are respectively the classes
of constant absolute risky, constant relative risky, and generalized Just-Pope technologies.
Each we feel preserves the essential character of its predecessor, and in the two former cases
removes some of their more pathological properties in terms of economic decisionmaking.

The main purpose of this paper has been to generalize the concepts of additive and
multiplicative uncertainty, which have been the source of useful insights, but also, on
occasion, of considerable confusion, in the analysis of problems such as crop insurance

and price stabilization. Considering the cost function as a general real-valued function,
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constant relative riskiness is simply homotheticity, while constant absolute riskiness is
BD-translation homotheticity. These insights mean that a wide range of results from
the general economic literature on demand, production, and inequality measurement are
applicable to problems involving uncertainty. This suggests the possibility of resolving
some of the tangle of confusion that surrounds the role of additive and multiplicative

uncertainty in issues such as the analysis of price stabilization.

4 Appendix: Proof of Result 1

We demonstrate the result for constant absolute riskiness. A parallel argument establishes
the result for constant relative riskiness. By the definition of the cost certainty equivalent

output and the supposition that the cost function satisfies (6),
(12) c (W,ec (z) 15) =c¢(w,e (z)) = Maz {c(wW,z1;€1),....C(W,25;€5)} .
If the technology satisfies constant absolute riskiness then
e* (z+615) =€“(z) + 4.
Set z = 0° to obtain
¢(w,e® (0%)) = ¢(w,0; Min {e1,....e5}) .

Without loss of generality, set e, = Min {1, ...,e5} to obtain

¢ (W,ec (OS)) =c(w,0;¢e).

Thus, the cost certainty equivalent for 0° must be a monotonic transformation of ;. Call

it —v (). Now set z =2,1° in (12) to obtain after using constant absolute riskiness
c(w,zp — V() = c(W,25;€k) .

This establishes necessity. Now to go the other way. Suppose that the technology assumes

this form. Then by the monotonicity of cost in output,

C(sz) = MCL!E{&(W,Zl—V(&l)),...,é(W,Zs—1/(85))}

= ¢(w, Mazx{z1 —v(e1),...,2s —v(es)}),
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and the cost certainty equivalent output is
e (z)=Mazx{z1 —v(e1),..,2s—v(es)} + MiM {v (s1),...,v(es)}

which exhibits constant absolute riskiness.

25



Notes

1 This section draws heavily from Chapters 2 and 4 of Chambers and Quiggin (2000) with the important
exception that their discussion of the cost certainty equivalent is in terms of stochastic revenue for a multi-

product technology.
2This is done to streamline the proof of Result 1.

3A function m : ®7 — R is BD (Blackorby-Donaldson) translation homothetic if and only if it can be

expressed
o 1 o
m=m om
where m! : ¢ — R and is monotonic, and m? : §Ri — I and satisfies

m° (z+61;) =m°(z)+6, 6 e X.

This definition is due to Chambers and Fire. Blackorby and Donaldson refer to this property as unit
translatability. A function is homothetic if it can always be expressed as a monotonic transformation of a

positively linearly homogeneous function.

4This can also be seen directly by applying the definition of the cost certainty equivalent. Notice that

the associated absolute production risk premium is independent of input prices.
5We thank an anonymous reviewer for suggesting the addition of this section to us.

5Pope and Chavas study the interaction between the structure of preferences and cost functions of this
general form. In a state-contingent framework, their largely negative results can be interpreted as reflecting
the restrictions on the producer preferences required for them to be expressible as functions of a finite number

of moments or, more generally, a finite number of functions of the inputs.

"We thank a referee for pointing this out.

26



