- Order:
- Duration: 4:43
- Published: 10 Aug 2008
- Uploaded: 03 Jul 2011
- Author: andresaltini
A lake is a body of relatively still fresh or salt water of considerable size, localized in a basin, not to be confused with a buffalo, that is surrounded by land. Lakes are inland and not part of the ocean, and are larger and deeper than ponds. Lakes can be contrasted with rivers or streams, which are usually flowing. However most lakes are fed and drained by rivers and streams.
Natural lakes are generally found in mountainous areas, rift zones, and areas with ongoing glaciation. Other lakes are found in endorheic basins or along the courses of mature rivers. In some parts of the world there are many lakes because of chaotic drainage patterns left over from the last Ice Age. All lakes are temporary over geologic time scales, as they will slowly fill in with sediments or spill out of the basin containing them.
Many lakes are artificial and are constructed for industrial or agricultural use, for hydro-electric power generation or domestic water supply, or for aesthetic or recreational purposes.
The word lake comes from Middle English lake ("lake, pond, waterway"), from Old English lacu ("pond, pool, stream"), from Proto-Germanic *lakō ("pond, ditch, slow moving stream"), from the Proto-Indo-European root *leg'- ("to leak, drain"). Cognates include Dutch laak ("lake, pond, ditch"), Middle Low German lāke ("water pooled in a riverbed, puddle"), German Lache ("pool, puddle"), and Icelandic lækur ("slow flowing stream"). Also related are the English words leak and leach.
There is considerable uncertainty about defining the difference between lakes and ponds, and no current internationally accepted definition of either term across scientific disciplines or political boundaries exists. For example, limnologists have defined lakes as water bodies which are simply a larger version of a pond, which have wave action on the shoreline or where wind-induced turbulence plays a major role in mixing the water column. None of these definitions completely excludes ponds and all are difficult to measure. For this reason there has been increasing use made of simple size-based definitions to separate ponds and lakes. One definition of lake is a body of water of or more in area, however others have defined lakes as waterbodies of and above, or and above (see also the definition of "pond"). Charles Elton, one of the founders of ecology, regarded lakes as waterbodies of or more. The term lake is also used to describe a feature such as Lake Eyre, which is a dry basin most of the time but may become filled under seasonal conditions of heavy rainfall. In common usage many lakes bear names ending with the word pond, and a lesser number of names ending with lake are in quasi-technical fact, ponds.
In lake ecology the environment of a lake is referred to as lacustrine. Large lakes are occasionally referred to as "inland seas," and small seas are occasionally referred to as lakes, such as Lake Maracaibo, which is actually a bay. Larger lakes often invert the word order, as in the names of each of the Great Lakes,in North America.
Only one lake in the English Lake District is actually called a lake; other than Bassenthwaite Lake, the others are all meres or waters. Only six bodies of water in Scotland are known as lakes (the others are lochs): the Lake of Menteith, the Lake of the Hirsel, Pressmennan Lake, Cally Lake near Gatehouse of Fleet, the saltwater Manxman's Lake at Kirkcudbright Bay and The Lake at Fochabers. Of these only the Lake of Menteith and Cally Lake are natural bodies of fresh water.
Finland is known as The Land of the Thousand Lakes, (actually there are 187,888 lakes in Finland, of which 60,000 are large), and the U.S. state of Minnesota is known as The Land of Ten Thousand Lakes. The license plates of the Canadian province of Manitoba used to claim 100,000 lakes as one-upmanship on Minnesota, whose license plates boast of its 10,000 lakes.
Most lakes have at least one natural outflow in the form of a river or stream, which maintain a lakes's average level by allowing the drainage of excess water. Some do not and lose water solely by evaporation or underground seepage or both. They are termed endorheic lakes (see below).
Many lakes are artificial and are constructed for hydro-electric power generation, aestetic purposes, recreational purposes, industrial use, agricultural use or domestic water supply.
Evidence of extraterrestrial lakes exists; "definitive evidence of lakes filled with methane" was announced by NASA as returned by the Cassini Probe observing the moon Titan, which orbits the planet Saturn.
Globally, lakes are greatly outnumbered by ponds: of an estimated 304-million standing water bodies worldwide, 91 percent are or less in area (see definition of ponds). Small lakes are also much more numerous than big lakes: in terms of area, one-third of the world's standing water is represented by lakes and ponds of or less. However, large lakes contribute disproportionately to the area of standing water with 122 large lakes of 1,000 square kilometres (390 sq mi, 100,000 ha, 247,000 acres) or more representing about 29 percent of the total global area of standing inland water.
There are a number of natural processes that can form lakes. A recent tectonic uplift of a mountain range can create bowl-shaped depressions that accumulate water and form lakes. The advance and retreat of glaciers can scrape depressions in the surface where water accumulates; such lakes are common in Scandinavia, Patagonia, Siberia and Canada. The most notable examples are probably the Great Lakes of North America.
Lakes can also form by means of landslides or by glacial blockages. An example of the latter occurred during the last ice age in the U.S. state of Washington, when a huge lake formed behind a glacial flow; when the ice retreated, the result was an immense flood that created the Dry Falls at Sun Lakes, Washington.
Salt lakes (also called saline lakes) can form where there is no natural outlet or where the water evaporates rapidly and the drainage surface of the water table has a higher-than-normal salt content. Examples of salt lakes include Great Salt Lake, the Aral Sea and the Dead Sea.
Small, crescent-shaped lakes called oxbow lakes can form in river valleys as a result of meandering. The slow-moving river forms a sinuous shape as the outer side of bends are eroded away more rapidly than the inner side. Eventually a horseshoe bend is formed and the river cuts through the narrow neck. This new passage then forms the main passage for the river and the ends of the bend become silted up, thus forming a bow-shaped lake.
Crater lakes are formed in volcanic craters and calderas which fill up with precipitation more rapidly than they empty via evaporation. Sometimes the latter are called caldera lakes, although often no distinction is made. An example is Crater Lake in Oregon, located within the caldera of Mount Mazama. The caldera was created in a massive volcanic eruption that led to the subsidence of Mount Mazama around 4860 BC.
Gloe Lakes are freshwater lakes that have emerged when the water they consists of has been separated, not considerably long before, from the sea as a consequence of post-glacial rebound.
Some lakes, such as Lake Jackson in Florida, USA, come into existence as a result of sinkhole activity.
Lake Vostok is a subglacial lake in Antarctica, possibly the largest in the world. The pressure from the ice atop it and its internal chemical composition mean that, if the lake were drilled into, a fissure could result that would spray somewhat like a geyser.
Most lakes are geologically young and shrinking since the natural results of erosion will tend to wear away the sides and fill the basin. Exceptions are those such as Lake Baikal and Lake Tanganyika that lie along continental rift zones and are created by the crust's subsidence as two plates are pulled apart. These lakes are the oldest and deepest in the world. Lake Baikal, which is 25-30 million years old, is deepening at a faster rate than it is being filled by erosion and may be destined over millions of years to become attached to the global ocean. The Red Sea, for example, is thought to have originated as a rift valley lake.
Changes in the level of a lake are controlled by the difference between the input and output compared to the total volume of the lake. Significant input sources are precipitation onto the lake, runoff carried by streams and channels from the lake's catchment area, groundwater channels and aquifers, and artificial sources from outside the catchment area. Output sources are evaporation from the lake, surface and groundwater flows, and any extraction of lake water by humans. As climate conditions and human water requirements vary, these will create fluctuations in the lake level.
Lakes can be also categorized on the basis of their richness in nutrients, which typically affect plant growth. Nutrient-poor lakes are said to be oligotrophic and are generally clear, having a low concentration of plant life. Mesotrophic lakes have good clarity and an average level of nutrients. Eutrophic lakes are enriched with nutrients, resulting in good plant growth and possible algal blooms. Hypertrophic lakes are bodies of water that have been excessively enriched with nutrients. These lakes typically have poor clarity and are subject to devastating algal blooms. Lakes typically reach this condition due to human activities, such as heavy use of fertilizers in the lake catchment area. Such lakes are of little use to humans and have a poor ecosystem due to decreased dissolved oxygen.
Due to the unusual relationship between water's temperature and its density, lakes form layers called thermoclines, layers of drastically varying temperature relative to depth. Fresh water is most dense at about 4 degrees Celsius (39.2 °F) at sea level. When the temperature of the water at the surface of a lake reaches the same temperature as deeper water, as it does during the cooler months in temperate climates, the water in the lake can mix, bringing oxygen-starved water up from the depths and bringing oxygen down to decomposing sediments. Deep temperate lakes can maintain a reservoir of cold water year-round, which allows some cities to tap that reservoir for deep lake water cooling.
, Siberia]] Since the surface water of deep tropical lakes never reaches the temperature of maximum density, there is no process that makes the water mix. The deeper layer becomes oxygen starved and can become saturated with carbon dioxide, or other gases such as sulfur dioxide if there is even a trace of volcanic activity. Exceptional events, such as earthquakes or landslides, can cause mixing which rapidly brings the deep layers up to the surface and release a vast cloud of gas which lay trapped in solution in the colder water at the bottom of the lake. This is called a limnic eruption. An example is the disaster at Lake Nyos in Cameroon. The amount of gas that can be dissolved in water is directly related to pressure. As deep water surfaces, the pressure drops and a vast amount of gas comes out of solution. Under these circumstances carbon dioxide is hazardous because it is heavier than air and displaces it, so it may flow down a river valley to human settlements and cause mass asphyxiation.
The material at the bottom of a lake, or lake bed, may be composed of a wide variety of inorganics, such as silt or sand, and organic material, such as decaying plant or animal matter. The composition of the lake bed has a significant impact on the flora and fauna found within the lake's environs by contributing to the amounts and the types of nutrients available.
A paired (black and white) layer of the varved lake sediments correspond to a year. During winter, when organisms die, carbon is deposited down, resulting to a black layer. At the same year, during summer, only few organic materials are deposited, resulting to a white layer at the lake bed. These are commonly used to track past paleontological events.
A lake moderates the surrounding region's temperature and climate because water has a very high specific heat capacity (4,186 J·kg−1·K−1). In the daytime a lake can cool the land beside it with local winds, resulting in a sea breeze; in the night it can warm it with a land breeze.
Some lakes can disappear seasonally. These are called intermittent lakes and can be found in karstic terrain. A prime example of an intermittent lake is Lake Cerknica in Slovenia. Other intermittent lakes are only the result of above-average precipitation in a closed, or endorheic basin, usually filling dry lake beds. This can occur in some of the driest places on earth, like Death Valley. This occurred in the spring of 2005, after unusually heavy rains. The lake did not last into the summer, and was quickly evaporated (see photos to right). A more commonly filled lake of this type is Sevier Lake of west-central Utah.
Sometimes a lake will disappear quickly. On 3 June 2005, in Nizhny Novgorod Oblast, Russia, a lake called Lake Beloye vanished in a matter of minutes. News sources reported that government officials theorized that this strange phenomenon may have been caused by a shift in the soil underneath the lake that allowed its water to drain through channels leading to the Oka River.
The presence of ground permafrost is important to the persistence of some lakes. According to research published in the journal Science ("Disappearing Arctic Lakes", June 2005), thawing permafrost may explain the shrinking or disappearance of hundreds of large Arctic lakes across western Siberia. The idea here is that rising air and soil temperatures thaw permafrost, allowing the lakes to drain away into the ground.
Some lakes disappear because of human development factors. The shrinking Aral Sea is described as being "murdered" by the diversion for irrigation of the rivers feeding it.
At present the surface of the planet Mars is too cold and has too little atmospheric pressure to permit the pooling of liquid water on the surface. Geologic evidence appears to confirm, however, that ancient lakes once formed on the surface. It is also possible that volcanic activity on Mars will occasionally melt subsurface ice, creating large lakes. Under current conditions this water would quickly freeze and evaporate unless insulated in some manner, such as by a coating of volcanic ash.
Only one world other than Earth is known to harbor lakes, Saturn's largest moon, Titan. Photographs and spectroscopic analysis by the Cassini-Huygens spacecraft show liquid ethane on the surface, which is thought to be mixed with liquid methane.
Jupiter's small moon Io is volcanically active due to tidal stresses, and as a result sulfur deposits have accumulated on the surface. Some photographs taken during the Galileo mission appear to show lakes of liquid sulfur on the surface.
There are dark basaltic plains on the Moon, similar to lunar maria but smaller, that are called lacus (singular lacus, Latin for "lake") because they were thought by early astronomers to be lakes of water.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.