- Order:
- Duration: 0:46
- Published: 09 Feb 2009
- Uploaded: 27 Aug 2011
- Author: mrweebl
Meat is animal flesh that is used as food. Most often, this means the skeletal muscle and associated fat and other tissues, but it may also describe other edible tissues such as organs and offal. Early hunter-gatherers depended on the organized hunting of large animals such as bison and deer. Several breeds of sheep were established in ancient Mesopotamia and Egypt by 3500–3000 BC. and several breeds were established by 2500 BC. Modern domesticated cattle fall into the groups Bos taurus (European cattle) and Bos indicus (zebu), both descended from the now-extinct aurochs.
Domestic pigs, which are descended from wild boars, are known to have existed about 2500 BC in modern-day Hungary and in Troy; earlier pottery from Jericho and Egypt depicts wild pigs. Pork sausages and hams were of great commercial importance in Greco-Roman times.
Other animals are, or have been raised or hunted for their flesh. The type of meat consumed varies much in different cultures, changes over time, and depends on different factors such as the availability of the animals and traditions. Horses are still commonly eaten in countries such as France or Japan. Horses (and other large mammals as reindeers) were hunted during the Late Paleolithic in western Europe. Dogs are widely consumed in China, Vietnam, the Philippines and South Korea. Dogs are also occasionally eaten in the Arctic regions. Historically, dog meat has been consumed in various part of the world, such as Hawaii, Japan, Switzerland and Mexico. Cats are consumed in Southern China, Peru and certain rural parts of Switzerland. Guinea pigs are raised for their flesh in the Andes. Whales and dolphins are still being hunted, partly for their flesh, by aboriginal communities in Alaska, Siberia, Canada, by the Faroe Islands, Greenland, Iceland, Saint Vincent and the Grenadines and by two small communities in Indonesia.
Modern agriculture employs a number of techniques, such as progeny testing, to make animals evolve rapidly towards having the qualities desired by meat producers. For instance, in the wake of well-publicised health concerns associated with saturated fats in the 1980s, the fat content of UK beef, pork and lamb fell from 20–26 percent to 4–8 percent within a few decades, both due to selective breeding for leanness and changed methods of butchery.
Even though it is a very old industry, meat production continues to be shaped strongly by the rapidly evolving demands of customers. The trend towards selling meat in pre-packaged cuts has increased the demand for larger breeds of cattle, which are better suited to producing such cuts. Even more animals not previously exploited for their meat are now being farmed, especially the more agile and mobile species, whose muscles tend to be developed better than those of cattle, sheep or pigs. as well as nonmammals, such as the crocodile, emu and ostrich. Another important trend in contemporary meat production is organic farming which, while providing no organoleptic benefit to meat so produced, meets an increasing demand for numerous reasons.
Genetic engineering techniques can shorten breeding programmes significantly because they allow for the identification and isolation of genes coding for desired traits, and for the reincorporation of these genes into the animal genome. To enable such manipulation, research is ongoing () to map the entire genome of sheep, cattle and pigs. although this is not yet practical on a commercial scale.
The composition of the diet, especially the amount of protein provided, is also an important factor regulating animal growth. Ruminants, which may digest cellulose, are better adapted to poor-quality diets, but their ruminal microorganisms degrade high-quality protein if supplied in excess. Because producing high-quality protein animal feed is expensive (see also Environmental impact below), several techniques are employed or experimented with to ensure maximum utilization of protein. These include the treatment of feed with formalin to protect amino acids during their passage through the rumen, the recycling of manure by feeding it back to cattle mixed with feed concentrates, or the partial conversion of petroleum hydrocarbons to protein through microbial action. In Australia, for instance, where the soil contains limited phosphate, cattle are being fed additional phosphate to increase the efficiency of beef production. Also in Australia, cattle and sheep in certain areas were often found losing their appetite and dying in the midst of rich pasture; this was at length found to be a result of cobalt deficiency in the soil.
Growth hormones, particularly anabolic agents such as steroids, are used in some countries to accelerate muscle growth in animals. and have other effects on the composition of the muscle flesh. Where castration is used to improve control over male animals, its side effects are also counteracted by the administration of hormones. The feeding of antibiotics to certain animals has been shown to improve growth rates also. Even between animals of the same litter and sex there are considerable differences in such parameters as the percentage of intramuscular fat.
Muscle proteins are either soluble in water (sarcoplasmic proteins, about 11.5 percent of total muscle mass) or in concentrated salt solutions (myofibrillar proteins, about 5.5 percent of mass). There are several hundred sarcoplasmic proteins. Most of them – the glycolytic enzymes – are involved in the glycolytic pathway, i.e., the conversion of stored energy into muscle power. The two most abundant myofibrillar proteins, myosin and actin, are responsible for the muscle's overall structure. The remaining protein mass consists of connective tissue (collagen and elastin) as well as organelle tissue. or intramuscular fat, which contains considerable quantities of phospholipids and of unsaponifiable constituents such as cholesterol. while white meat contains more broad fibres that tend to work in short fast bursts. Several forms of meat are high in vitamin K2, which is only otherwise known to be found in fermented foods, with natto having the highest concentration. The fat content of meat can vary widely depending on the species and breed of animal, the way in which the animal was raised, including what it was fed, the anatomical part of the body, and the methods of butchering and cooking. Wild animals such as deer are typically leaner than farm animals, leading those concerned about fat content to choose game such as venison. Decades of breeding meat animals for fatness is being reversed by consumer demand for meat with less fat.
Red meat, such as beef, pork, and lamb, contains many essential nutrients necessary for healthy growth and development in children. Nutrients in red meat include iron, zinc, vitamin B12, and protein. (See Section Issues of Meat for more details.)
The table in this section compares the nutritional content of several types of meat. While each kind of meat has about the same content of protein and carbohydrates, there is a very wide range of fat content. It is the additional fat that contributes most to the calorie content of meat, and to concerns about dietary health.
Attesting to the long history of meat consumption in human civilizations, ritual slaughter has become part of the practice of several religions. These rituals, as well as other pre-industrial meat production methods such as these used by indigenous peoples, are not detailed here. This section will instead provide an overview of contemporary industrialized meat production in dedicated slaughterhouses from cattle, sheep and pigs.
Draining as much blood as possible from the carcase is necessary because blood causes the meat to have an unappealing appearance and is a very good breeding ground for microorganisms. The exsanguination is accomplished by severing the carotid artery and the jugular vein in cattle and sheep, and the anterior vena cava in pigs.
During the first day after death, glycolysis continues until the accumulation of lactic acid causes the pH to reach about 5.5. The remaining glycogen, about 18 g per kg, is believed to increase the water-holding capacity and tenderness of the flesh when cooked. Rigor mortis sets in a few hours after death as ATP is used up, causing actin and myosin to combine into rigid actomyosin and lowering the meat's water-holding capacity, causing it to lose water ("weep"). In muscles that enter rigor in a contracted position, actin and myosin filaments overlap and cross-bond, resulting in meat that is tough on cooking – hence again the need to prevent pre-slaughter stress in the animal.
Over time, the muscle proteins denature in varying degree, with the exception of the collagen and elastin of connective tissue, and rigor mortis resolves. Because of these changes, the meat is tender and pliable when cooked just after death or after the resolution of rigor, but tough when cooked during rigor.
Meat is a typical base for making sandwiches. Popular varieties of sandwich meat include ham, pork, salami and other sausages, and beef, such as steak, roast beef, corned beef, pepperoni, and pastrami. Meat can also be molded or pressed (common for products that include offal, such as haggis and scrapple) and canned.
The correlation of meat consumption to increased risk of heart disease is controversial. Some studies fail to find a link between red meat consumption and heart disease (although the same study found statistically significant correlation between the consumption of processed meat and cancer), while another study, a survey ,conducted in 1960, of 25,153 California Seventh-Day Adventists, found that the risk of heart disease is three times greater for 45-64 year old men who eat meat daily, versus those who did not eat meat. In another study in 2010 involving over one million people who ate meat found that only processed meat had an adverse risk in relation to coronary heart disease. The study suggests that eating 50g (less than 2oz) of processed meat per day increases risk of coronary heart disease by 42%, and diabetes by 19%. Equivalent levels of fat, including saturated fats, in unprocessed meat (even when eating twice as much per day) did not show any deleterious effects, leading the researchers to suggest that "differences in salt and preservatives, rather than fats, might explain the higher risk of heart disease and diabetes seen with processed meats, but not with unprocessed red meats."
A 2009 study by the National Cancer Institute revealed a correlation between the consumption of red meat and increased mortality from cancer and cardiovascular diseases. This study has been criticized for using an improperly validated food frequency questionnaire, which has been shown to have low levels of accuracy.
In response to changing prices as well as health concerns about saturated fat and cholesterol, consumers have altered their consumption of various meats. A USDA report points out that consumption of beef in the United States between 1970–1974 and 1990–1994 dropped by 21%, while consumption of chicken increased by 90%. During the same period of time, the price of chicken dropped by 14% relative to the price of beef. In 1995 and 1996, beef consumption increased due to higher supplies and lower prices.
A recent study by the Translational Genomics Research Institute showed that nearly half (47%) percent of the meat and poultry in U.S. grocery stores were contaminated with S. aureus, with more than half (52%) of those bacteria resistant to antibiotics.
Several studies published since 1990 indicate that cooking muscle meat creates heterocyclic amines (HCAs), which are thought to increase cancer risk in humans. Researchers at the National Cancer Institute published results of a study which found that human subjects who ate beef rare or medium-rare had less than one third the risk of stomach cancer than those who ate beef medium-well or well-done. While eating muscle meat raw may be the only way to avoid HCAs fully, the National Cancer Institute states that cooking meat below creates "negligible amounts" of HCAs. Also, microwaving meat before cooking may reduce HCAs by 90%.
Nitrosamines, present in processed and cooked foods, have been noted as being carcinogenic, being linked to colon cancer. Also, toxic compounds called PAHs, or Polycyclic aromatic hydrocarbons, present in processed, smoked and cooked foods, are known to be carcinogenic.
Various forms of imitation meat have been created to satisfy people wishing to reduce or eliminate meat consumption for health, environmental, or ethical considerations, but who still wish to taste the flavor and texture of meat. They are typically some form of processed soybean, (tofu, tempeh), but they can also be based on wheat gluten or even fungus (quorn).
In vitro meat, also known as cultured meat, is animal flesh that has never been part of a complete, living animal. Several research projects are currently experimentally growing in vitro meat, but no meat has yet been produced for public consumption. The goal is to grow fully developed muscle organs, but the first generation will most likely be minced meat products.
The UN Food and Agriculture Organization (FAO) has estimated that direct emissions from meat production account for about 18% of the world's total greenhouse gas emissions. The FAO figure accounts for the entire meat production cycle - clearing forested land, making and transporting fertiliser, burning fossil fuels in agricultural machinery, and the front and rear end emissions of cattle and sheep. In tracking food animal production from the feed through to the dinner table, the inefficiencies of grain fed meat, milk and egg production range from a 4:1 energy input to protein output ratio up to 54:1, in the opinion of Roger Segelken.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.