- Order:
- Duration: 4:20
- Published: 10 Dec 2008
- Uploaded: 03 Jul 2011
- Author: ForeverC00l
MDMA (3,4-Methylenedioxymethamphetamine) – colloquially known as ecstasy, often abbreviated "E" or "X" – is an entactogenic drug of the phenethylamine and amphetamine class of drugs.
MDMA can induce euphoria, a sense of intimacy with others, and diminished anxiety. Many studies, particularly in the fields of psychology and cognitive therapy, have suggested that MDMA has therapeutic benefits and facilitates therapy sessions in certain individuals, a practice for which it had formally been used in the past. Clinical trials are now testing the therapeutic potential of MDMA for post-traumatic stress disorder (PTSD) and anxiety associated with terminal cancer.
MDMA is criminalized in most countries under a United Nations (U.N.) agreement, and its possession, manufacture, or sale may result in criminal prosecution, although some limited exceptions exist for scientific and medical research. MDMA is one of the most widely used recreational drugs in the world and is taken in a variety of contexts far removed from its roots in psychotherapeutic settings. It is commonly associated with dance parties (or "raves") and electronic dance music.
Regulatory authorities in several locations around the world have approved scientific studies administering MDMA to humans to examine its therapeutic potential and its effects.
Three neurobiological mechanisms for the therapeutic effects of MDMA have been suggested: "1) MDMA increases oxytocin levels, which may strengthen the therapeutic alliance; 2) MDMA increases ventromedial prefrontal activity and decreases amygdala activity, which may improve emotional regulation and decrease avoidance, and 3) MDMA increases norepinephrine release and circulating cortisol levels, which may facilitate emotional engagement and enhance extinction of learned fear associations."
The first phase-II double-blind randomized controlled clinical trial into the potential therapeutic benefits of using the drug as an augment to psychotherapy showed that most patients in the trial given psychotherapy treatment along with doses of MDMA experienced statistically significant reductions in the severity of their condition after two months, compared with a control group receiving psychotherapy and a placebo. The authors concludes "MDMA-assisted psychotherapy can be administered to posttraumatic stress disorder patients without evidence of harm, and it may be useful in patients refractory to other treatments."
The most common effects reported by users include:
A 2011 study carried out by Harvard Medical School and published in the journal Addiction found no signs of cognitive impairment due to ecstasy use, and that it did not decrease mental ability. The report also raised concerns that previous methods used to conduct that research on ecstasy had been flawed, and the experiments overstated the cognitive differences between ecstasy users and nonusers.
When they occur, these after subacute effects are typically reported to last up to 3 to 7 days, with the exception of depression, which in some cases has become chronic.
Upon overdose, the potentially serious serotonin syndrome, stimulant psychosis, and/or hypertensive crisis, among other dangerous adverse reactions, may come to prominence, the symptoms of which can include the following:
)]]
Some studies show that MDMA may be neurotoxic in humans. Other studies, however, suggest that any potential brain damage may be at least partially reversible following prolonged abstinence from MDMA. However, other studies suggest that SERT-depletion arises from long-term MDMA use due to receptor down-regulation, rather than true neurotoxicity. Depression and deficits in memory have been shown to occur more frequently in long-term MDMA users. However, some recent studies have suggested that MDMA use may not be associated with chronic depression.
One study on MDMA toxicity, by George A. Ricaurte of Johns Hopkins School of Medicine, which claimed that a single recreational dose of MDMA could cause Parkinson's Disease in later life due to severe dopaminergic stress, was actually retracted by Ricaurte himself after he discovered his lab had administered not MDMA but methamphetamine, which is known to cause dopaminergic changes similar to the serotonergic changes caused by MDMA. Ricaurte blamed this mistake on a labeling error by the chemical supply company that sold the material to his lab, but the supply company responded that there was no evidence of a labeling error on their end. Most studies have found that levels of the dopamine transporter (or other markers of dopamine function) in MDMA users deserve further study or are normal.
Several studies have indicated a possible mechanism for neurotoxicity in a metabolite of MDMA, through the reaction of Alpha-Methyldopamine, a principle metabolite, and Glutathione, the major antioxidant in the human body. One possible product of this reaction, 2,5-bis-(glutathion-S-yl)-alpha-methyldopamine, has been demonstrated to produce the same toxic effects observed in MDMA, while MDMA, and alpha-methyldopamine themselves have been shown to be non-neurotoxic. It is, however, impossible to avoid the metabolism of MDMA in the body, and the production of this toxic metabolite. Some studies have demonstrated possible ways to minimize the production of this particular metabolite, though evidence at this point is sparse at best.
There have been a number of deaths attributed to PMA, a potent and highly neurotoxic hallucinogenic amphetamine, being sold as ecstasy. PMA is unique in its ability to quickly elevate body temperature and heart rate at relatively low doses, especially in comparison to MDMA. Hence, a user believing he is consuming two 120 mg pills of MDMA could actually be consuming a dose of PMA that is potentially lethal, depending on the purity of the pill. Not only does PMA cause the release of serotonin but it also acts as a monoamine oxidase inhibitor, MAOI. When combined with an MDMA or an MDMA-like substance, serotonin syndrome can result. Combining MAO inhibitors with certain legal prescription and over the counter medications can also lead to (potentially fatal) serotonin syndrome.
David Nutt, a former chairman of the UK Advisory Council on the Misuse of Drugs, stated in the Journal of Psychopharmacology in January 2009 that ecstasy use compared favorably with horse riding in terms of risk, with ecstasy leading to around 30 deaths a year in the UK compared to about 10 from horse riding, and "acute harm to person" occurring in approximately 1 in 10,000 episodes of ecstasy use compared to about 1 in 350 episodes of horse riding. Dr. Nutt notes the lack of a balanced risk assessment in public discussions of MDMA: A telling review of 10-year media reporting of drug deaths in Scotland illustrates the distorted media perspective very well (Forsyth, 2001). During this decade, the likelihood of a newspaper reporting a death from paracetamol was in per 250 deaths, for diazepam it was 1 in 50, whereas for amphetamine it was 1 in 3 and for ecstasy every associated death was reported. A spokesperson for the ACMD said that "The recent article by Professor David Nutt published in the Journal of Psychopharmacology was done in respect of his academic work and not as chair of the ACMD."
The most carefully designed study so far was published in February 2011 in the journal Addiction, comparing the effect on cognitive skills in 52 ecstasy users against 59 very closely matched non-users. The study, performed by the group of Prof. Halpern of Harvard Medical School, eliminated potential confounding factors like the use of other drugs and history of drug-use. The study found no short and longterm differences in cognitive skills in the test group (users) versus the control group (non-users).
People taking any type of serotonin reuptake inhibitor (SRI) on a chronic basis commonly find that the psychedelic and entactogenic effects of MDMA are near fully abolished, leaving merely stimulation instead. Many people attempt taking a dose around 3 times as high and this appears to work as a remedy for the problem to some degree. In addition, upon discontinuation of the prolonged administration of the SRI in question, such individuals may still not be able to properly experience the full desired effects of MDMA at normal doses for anywhere from a few weeks to as long as several months.
There is a possible risk of experiencing serotonin syndrome if MDMA is combined with another serotonergic drug.
Commercial sassafras oil generally is a by-product of camphor production in Asia or comes from related trees in Brazil. Safrole is a precursor for the clandestine manufacture of MDMA (ecstasy), and as such, its transport is monitored internationally. Roots of Sassafras can also be steeped to make tea and were used in the flavoring of traditional root beer until being banned for mass production by the FDA. Laboratory animals that were given oral doses of sassafras tea or sassafras oil that contained large doses of safrole developed permanent liver damage or various types of cancer. In humans liver damage can take years to develop and it may not have obvious signs.
Safrole, a colorless or slightly black oil, extracted from the root-bark or the fruit of sassafras plants is the primary precursor for all manufacture of MDMA. There are numerous synthetic methods available in the literature to convert safrole into MDMA via different intermediates. One common route is via the MDP2P (3,4-methylenedioxy
: :
Relatively small quantities of essential oil are required to make large numbers of MDMA pills. The essential oil of Ocotea cymbarum typically contains between 80 and 94% safrole. This would allow 500 ml of the oil, which retails at between $20 and $100, to be used to produce an estimated 1,300 to 2,800 tablets containing approximately 120 mg of MDMA each.
MDMA acts as a releasing agent of serotonin, norepinephrine, and dopamine. It enters neurons via carriage by the monoamine transporters. and induces their release by reversing their respective transporters through a process known as phosphorylation. It also acts as a weak 5-HT1 and 5-HT2 receptor agonist, and its more efficacious metabolite MDA likely augments this action.
MDMA's unusual entactogenic effects have been hypothesized to be, at least partly, the result of indirect oxytocin secretion via activation of the serotonin system. Oxytocin is a hormone released following events like hugging, orgasm, and childbirth, and is thought to facilitate bonding and the establishment of trust. Based on studies in rats, MDMA is believed to cause the release of oxytocin, at least in part, by both directly and indirectly agonizing the serotonin 5-HT1A receptor. A placebo-controlled study in 15 human volunteers found that 100 mg MDMA increased blood levels of oxytocin, and the amount of oxytocin increase was correlated with the subjective prosocial effects of MDMA.
MDMA reaches maximal concentrations in the blood stream between 1.5 and 3 hours after ingestion. It is then slowly metabolized and excreted, with levels decreasing to half their peak concentration over approximately 8 hours. Thus, there are still high MDMA levels in the body when the experiential effects have mostly ended, indicating that acute tolerance has developed to the actions of MDMA. Taking additional supplements of MDMA at this point, therefore, produces higher concentrations of MDMA in the blood and brain than might be expected based on the perceived effects.
Metabolites of MDMA that have been identified in humans include 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxy-methamphetamine (HMMA), 4-hydroxy-3-methoxyamphetamine (HMA), 3,4-dihydroxyamphetamine (DHA) (also called alpha-methyldopamine (α-Me-DA)), 3,4-methylenedioxyphenylacetone (MDP2P), and N-hydroxy-3,4-methylenedioxyamphetamine (MDOH). The contributions of these metabolites to the psychoactive and toxic effects of MDMA are an area of active research. Sixty-five percent of MDMA is excreted unchanged in the urine (in addition, 7% is metabolized into MDA) during the 24 hours after ingestion.
MDMA is known to be metabolized by two main metabolic pathways: (1) O-demethylenation followed by catechol-O-methyltransferase (COMT)-catalyzed methylation and/or glucuronide/sulfate conjugation; and (2) N-dealkylation, deamination, and oxidation to the corresponding benzoic acid derivatives conjugated with glycine. The metabolism may be primarily by cytochrome P450 (CYP450) enzymes (CYP2D6 (in humans, but CYP2D1 in mice), and CYP3A4) and COMT. Complex, nonlinear pharmacokinetics arise via autoinhibition of CYP2D6 and CYP2D8, resulting in zeroth order kinetics at higher doses. It is thought that this can result in sustained and higher concentrations of MDMA if the user takes consecutive doses of the drug.
Because the enzyme CYP2D6 is deficient or totally absent in some people, it was once hypothesized that these people might have elevated risk when taking MDMA. However, there is still no evidence for this theory and available evidence argues against it. It is now thought that the contribution of CYP2D6 to MDMA metabolism in humans is less than 30% of the metabolism. Indeed, an individual lacking CYP2D6 was given MDMA in a controlled clinical setting and a larger study gave MDMA to healthy volunteers after inhibiting CYP2D6 with paroxetine. Lack of the enzyme caused a modest increase in drug exposure and decreases in some metabolites, but physical effects did not appear appreciably elevated. While there is little or no evidence that low CYP2D6 activity increases risks from MDMA, it is likely that MDMA-induced CYP2D inhibition will increase risk of those prescription drugs that are metabolized by this enzyme. MDMA-induced CYP2D inhibition appears to last for up to a week after MDMA exposure.
MDMA and metabolites are primarily excreted as conjugates, such as sulfates and glucuronides.
(top) and the (S)-enantiomer of MDMA]] MDMA is a chiral compound and has been almost exclusively administered as a racemate. However, an early uncontrolled report suggests that the (S)-enantiomer is significantly more potent in humans than the (R)-enantiomer indicate that the disposition of MDMA is stereoselective, with the S-enantiomer having a shorter elimination half-life and greater excretion than the R-enantiomer. For example, Fallon et al.
Over the following 65 years, MDMA was largely forgotten. Merck records indicate that its researchers returned to the compound sporadically. In 1927, Max Oberlin studied the pharmacology of MDMA and observed that its effects on blood sugar and smooth muscles were similar to ephedrine's. Researchers at Merck conducted experiments with MDMA in 1952 and 1959. The first scientific paper on MDMA appeared in 1958 in Yakugaku Zasshi, the Journal of the Pharmaceutical Society of Japan. In this paper, Yutaka Kasuya described the synthesis of MDMA, a part of his research on antispasmodics.
MDMA was being used recreationally in the United States by 1970. In the mid-1970s, Alexander Shulgin, then at University of California, Berkeley, heard from his students about unusual effects of MDMA; among others, the drug had helped one of them to overcome his stutter. Intrigued, Shulgin synthesized MDMA and tried it himself in 1976. Two years later, he and David Nichols published the first report on the drug's psychotropic effect in humans. They described "altered state of consciousness with emotional and sensual overtones" that can be compared "to marijuana, and to psilocybin devoid of the hallucinatory component".
Shulgin took to occasionally using MDMA for relaxation, referring to it as "my low-calorie martini", and giving the drug to his friends, researchers, and other people who he thought could benefit from it. One such person was psychotherapist Leo Zeff, who had been known to use psychedelics in his practice. Zeff was so impressed with the effects of MDMA that he came out of his semi-retirement to proselytize for it. Over the following years, Zeff traveled around the U.S. and occasionally to Europe, training other psychotherapists in the use of MDMA. Among underground psychotherapists, MDMA developed a reputation for enhancing communication during clinical sessions, reducing patients' psychological defenses, and increasing capacity for therapeutic introspection.
In the early 1980s in the U.S., MDMA rose to prominence as "Adam" in trendy nightclubs and gay dance clubs in the Dallas area. From there, use spread to raves in major cities around the country, and then to mainstream society. The drug was first proposed for scheduling by the Drug Enforcement Administration (DEA) in July 1984 and was classified as a Schedule I controlled substance in the U.S. on 31 May 1985.
In the late 1980s MDMA, known by that time as "ecstasy", began to be widely used in the UK and other parts of Europe, becoming an integral element of rave culture and other psychedelic-influenced music scenes. Spreading along with rave culture, illicit MDMA use became increasingly widespread among young adults in universities and later in high schools. MDMA became one of the four most widely used illicit drugs in the U.S., along with cocaine, heroin, and cannabis. According to some estimates as of 2004, only marijuana attracts more first time users in the U.S.
After MDMA was criminalized, most medical use stopped, although some therapists continued to prescribe the drug illegally. Later Charles Grob initiated an ascending-dose safety study in healthy volunteers. Subsequent legally-approved MDMA studies in humans have taken place in the U.S. in Detroit (Wayne State University), Chicago (University of Chicago), San Francisco (UCSF and California Pacific Medical Center), Baltimore (NIDA–NIH Intramural Program), and South Carolina, as well as in Switzerland (University Hospital of Psychiatry, Zürich), the Netherlands (Maastricht University), and Spain (Universitat Autònoma de Barcelona).
In 2010, the BBC reported that use of MDMA had decreased in the UK in previous years. This is thought to be due to increased seizures and decreased production of the precursor chemicals used to manufacture MDMA. The availability of legal alternatives to MDMA such as mephedrone, or methylone, is also thought to have contributed to its decrease in popularity.
In 2000, the UK Police Foundation issued the Runciman Report, which reviewed the medical and social harms of MDMA and recommended: "Ecstasy and related compounds should be transferred from Class A to Class B." In 2002, the Home Affairs Committee of the UK House of Commons, issued a report, The Government's Drugs Policy: Is it working?, which also recommended that MDMA should be reclassified to a Class B drug. The UK government rejected both recommendations, saying that re-classification of MDMA would not be considered without a recommendation from the Advisory Council on the Misuse of Drugs, the official UK scientific advisory board on drug abuse issues.
In February 2009, the UK Advisory Council on the Misuse of Drugs issued A review of MDMA ('ecstasy'), its harms and classification under the Misuse of Drugs Act 1971, which recommended that MDMA be re-classified in the UK from a class A drug to a class B drug.
The government's veto was criticized in scientific publications. Colin Blakemore, Professor of Neuroscience, Oxford, stated in the British Medical Journal, "The government's decisions compromise its commitment to evidence based policy". Also in response, an editorial in the New Scientist noted "A much larger percentage of people suffer a fatal acute reaction to peanuts than to MDMA.... Sadly, perspective is something that is generally lacking in the long and tortuous debate over illegal drugs."
The decision to recommend scheduling of MDMA was not unanimous:
Category:Entactogens and Empathogens Category:Entheogens Category:Amphetamines Category:German inventions Category:Euphoriants Category:Benzodioxoles
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.