Bromine ( or ; from , meaning "stench (of he-goats)"), is a chemical element with the symbol Br, an atomic number of 35, and an atomic mass of 79.904. It is in the halogen element group. The element was isolated independently by two chemists in 1825-26. Elemental bromine is a fuming red-brown liquid at room temperature, corrosive and toxic, with properties between those of chlorine and iodine. Free bromine does not occur in nature, but occurs as colorless soluble crystalline mineral halide salts, analogous to table salt.
Bromine is rarer than about three-quarters of elements in the Earth's crust, however the high solubility of bromide ion has caused its accumulation in the oceans, and commercially the element is easily extracted from brine pools, mostly in the United States, Israel, and China. About 556,000 metric tons were produced in 2007, an amount similar to the far more abundant element magnesium.
At high temperatures, organobromine compounds are easily converted to free bromine atoms, a process which acts to terminate free radical chemical chain reactions. This makes such compounds useful fire retardants and this is bromine's primary industrial use, consuming more than half of world production of the element. The same property allows volatile organobromine compounds, under the action of sunlight, to form free bromine atoms in the atmosphere which are highly effective in ozone depletion. This unwanted side-effect has caused many common volatile brominated organics like methyl bromide, a pesticide that was formerly a large industrial bromine consumer, to be abandoned. Remaining uses of bromine compounds are in well-drilling fluids, as an intermediate in manufacture of organic chemicals, and in film photography.
Bromine has no essential function in mammals, though it is preferentially used over chloride by one antiparasitic enzyme in the human immune system. Organobromides are needed and produced enzymatically from bromide by some lower life forms in the sea, particularly algae. As a pharmaceutical, simple bromide ion, Br-, has inhibitory effects on the central nervous system, and bromide salts were once a major medical sedative, before being replaced by shorter-acting drugs. They retain niche uses as antiepileptics.
At a pressure of 55 GPa bromine converts to a metal. At 75 GPa it converts to a face centered orthorhombic structure. At 100 GPa it converts to a body centered orthorhombic monoatomic form.
: Br2 2 Br·
It bonds easily with many elements and has a strong bleaching action.
Bromine is slightly soluble in water, but it is highly soluble in organic solvents such as carbon disulfide, aliphatic alcohols, and acetic acid.
Balard found bromide chemicals in the ash of seaweed from the salt marshes of Montpellier in 1826. The seaweed was used to produce iodine, but also contained bromine. Balard distilled the bromine from a solution of seaweed ash saturated with chlorine. The properties of the resulting substance resembled that of an intermediate of chlorine and iodine; with those results he tried to prove that the substance was iodine monochloride (ICl), but after failing to do so he was sure that he had found a new element and named it muride, derived from the Latin word muria for brine.) Other sources claim that the French chemist and physicist Joseph-Louis Gay-Lussac suggested the name brôme for the characteristic smell of the vapors. Bromine was not produced in large quantities until 1860.
The first commercial use, besides some minor medical applications, was the use of bromine for the daguerreotype. In 1840 it was discovered that bromine had some advantages over the previously used iodine vapor to create the light sensitive silver halide layer used for daguerreotypy.
Potassium bromide and sodium bromide were used as anticonvulsants and sedatives in the late 19th and early 20th centuries, until they were gradually superseded by chloral hydrate and then the barbiturates.
The diatomic element Br2 does not occur naturally. Instead, bromine exists exclusively as bromide salts in diffuse amounts in crustal rock. Owing to leaching, bromide salts have accumulated in sea water (65 ppm), but at a lower concentration than chloride. Bromine may be economically recovered from bromide-rich brine wells and from the Dead Sea waters (up to 50000 ppm). It exists in the Earth's crust at 0.4 ppm, making it the 62nd most abundant element. The bromine concentration in soils varies normally between 5-40 ppm, but some volcanic soils can contain up to 500 ppm. The concentration of bromine in the atmosphere is extremely low, at only a few ppt. A large number of organobromine compounds are found in small amounts in nature.
China's bromine reserves are located in the Shandong Province and Israel's bromine reserves are contained in the waters of the Dead Sea. The largest bromine reserve in the United States is located in Columbia County and Union County, Arkansas, U.S.
Bromide-rich brines are treated with chlorine gas, flushing through with air. In this treatment, bromide anions are oxidized to bromine by the chlorine gas. :2 Br− + Cl2 → 2 Cl− + Br2
Similar alternatives, such as the use of dilute hydrochloric acid with sodium hypobromite, are also available. The most important thing is that the anion of the acid (in the above examples, sulfate and chloride, respectively) be more electronegative than bromine, allowing the substitution reaction to occur.
Reactions involving a strong oxidizing agent, such as potassium permanganate, on bromide ions in the presence of an acid also gives bromine. An acidic solution of bromate ions and bromide ions will also comproportionate slowly to give bromine.
Like iodine, bromine is soluble in chloroform but only slightly soluble in water. In water, the solubility can be increased by the presence of bromide ions. Concentrated solutions of bromine are rarely prepared in the lab because of hazards. Also as with iodine sodium thiosulphate (or any soluble thiosulphate) is an effective reagent for reducing bromine to colorless odorless bromide, thus dealing with stains and odor from the element in unwanted places. For the same reason, thiosulfate is used in photography to deal with free bromine in emulsions.
Bromine, sometimes with a catalytic amount of phosphorus, easily brominates carboxylic acids at the α-position. This method, the Hell-Volhard-Zelinsky reaction, is the basis of the commercial route to bromoacetic acid. N-Bromosuccinimide is commonly used as a substitute for elemental bromine, being easier to handle, and reacting more mildly and thus more selectively. Organic bromides are often preferable relative to the less reactive chlorides and more expensive iodide-containing reagents. Thus, Grignard and organolithium compound are most often generated from the corresponding bromides.
Certain bromine-related compounds have been evaluated to have an ozone depletion potential or bioaccumulate in living organisms. As a result, many industrial bromine compounds are no longer manufactured, are being restricted, or scheduled for phasing out. The Montreal Protocol mentions several organobromine compounds for this phase out.
: Br2 + 2 I− → 2 Br− + I2
Bromine will also oxidize metals and metalloids to the corresponding bromides. Anhydrous bromine is less reactive toward many metals than hydrated bromine, however. Dry bromine reacts vigorously with aluminium, titanium, mercury as well as alkaline earths and alkali metals.
Dissolving bromine in alkaline solution gives a mixture of bromide and hypobromite:
:Br2 + 2 OH− → Br− + OBr− + H2O This hypobromite is responsible for the bleaching abilities of bromide solutions. Warming of these solutions causes the disproportion reaction of the hypobromite to give bromate, a strong oxidising agent very similar to chlorate.
: 3 → + 2
In contrast to the route to perchlorates, perbromates are not accessible through electrolysis but only by reacting bromate solutions with fluorine or ozone.
: BrO3− + H2O + F2 → + 2 HF : BrO3− + O3 → + O2
Bromine reacts violently and explosively with aluminium metal, forming aluminium bromide:
:2 Al + 3 Br2 → 2 AlBr3
Bromine reacts with hydrogen in gaseous form and gives hydrogen bromide:
Bromine reacts with alkali metal iodides in a displacement reaction. This reaction forms alkali metal bromides and produces elemental iodine:
:2 NaI + Br2 → 2 NaBr + I2 :2 KI + Br2 → 2 KBr + I2
Brominated flame retardants represent a commodity of growing importance, and represent the largest use of bromine. When the brominated material burns, the flame retardant produces hydrobromic acid which interferes in the radical chain reaction of the oxidation reaction of the fire. The mechanism is that the highly reactive hydrogen oxygen and hydroxy radicals react with hydrobromic acid and form less reactive bromine radicals (free bromine atoms). These also react with radicals in the first to help terminate the reaction.
The bromine-containing compounds can be placed in the polymers either during polymerization if a small amount of brominated monomer is added or the bromine containing compound is added after polymerization. Tetrabromobisphenol A can be added to produce polyesters or epoxy resins. Epoxy used in printed circuit boards (PCB) are normally made from flame retardant resins, indicated by the FR in the abbreviation of the products (FR-4 and FR-2. Vinyl bromide can be used in the production of polyethylene, polyvinylchloride or polypropylene. Decabromodiphenyl ether can be added to the final polymers.
The bromides of calcium, sodium, and zinc account for a sizable part of the bromine market. These salts form dense solutions in water that are used as drilling fluids sometimes called clear brine fluids. Bromine is also used in the production of brominated vegetable oil, which is used as an emulsifier in many citrus-flavored soft drinks (for example, Mountain Dew). After the introduction in the 1940s the compound was extensively used until the UK and the US limited its use in the mid 1970s and alternative emulsifiers were developed.Soft drinks containing brominated vegetable oil are still sold in the US (2011).
Marine organisms are the main source of organobromine compounds. Over 1600 compounds were identified by 1999. The most abundant one is methyl bromide (CH3Br) with an estimated 56,000 metric tonnes produced by marine algae each year. The essential oil of the Hawaiian alga Asparagopsis taxiformis consists of 80% methyl bromide. In fact, most organobromine compounds in nature arise in the sea, via the action of a unique algal enzyme, vanadium bromoperoxidase. Though this enzyme is the most prolific creator of organic bromides by living organisms, other bromoperoxidases exist in nature that do not use vanadium.
A famous example of a bromine-containing organic compound that has been used by humans since ancient times is the fabric dye Tyrian purple. The brominated indole indigo dye is produced by a medium-sized predatory sea snail, the marine gastropod Murex brandaris. The organobromine nature of the compound was not discovered until 1909 (see Paul Friedländer).
Bromine can also be substituted for the methyl substituent in the nitrogenous base thymine of DNA, creating the base analog 5-bromouracil. When this base is incorporated into DNA its different hydrogen bonding properties may cause mutation at the site of that base pair.
Elemental bromine is toxic and causes burns. As an oxidizing agent, it is incompatible with most organic and inorganic compounds. Care needs to be taken when transporting bromine; it is commonly carried in steel tanks lined with lead, supported by strong metal frames.
When certain ionic compounds containing bromine are mixed with potassium permanganate (KMnO4) and an acidic substance, they will form a pale brown cloud of bromine gas.
: 6Br- + 2MnO4- + 8H+ → 3Br2 + 2MnO2 + 4H2O
This gas smells like bleach and is very irritating to the mucous membranes. Upon exposure, one should move to fresh air immediately. If symptoms of bromine poisoning arise, medical attention is needed.
Category:Chemical elements Category:Halogens * Category:Oxidizing agents
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.