
PROOF OF CAUCHY’S THEOREM

KEITH CONRAD

The converse of Lagrange’s theorem is false in general: when d|#G, G doesn’t have to
contain a subgroup of size d. The most basic valid converse to Lagrange’s theorem occurs
for prime divisors. This is Cauchy’s theorem.

Theorem 1 (Cauchy, 1845). Let G be a finite group and p be a prime factor of #G. Then
G contains an element of order p. Equivalently, G contains a subgroup of size p.

The equivalence of the existence of an element of order p and a subgroup of size p is easy:
an element of order p generates a subgroup of size p, while conversely a subgroup of size p
contains elements of order p since p is prime.

Before treating the general case, let’s see that the case p = 2 of Cauchy’s theorem can
be proved in a simple way. If #G is even, consider the set of pairs {g, g−1}, where g 6= g−1.
This takes into account an even number of elements of G. Those g’s which are not part of
such a pair are the ones satisfying g = g−1, i.e., g2 = e. One such element is e. If it was
the only one, then G would have odd size (why?). Since we are told G has even size, there
must be g0 6= e such that g0 = g−1

0 , so g2
0 = e and g0 has order 2.

Although there is always a subgroup of order p when p|#G, there need not be a subgroup
of index p. For example, A4 has order 12 but no subgroup of index 2.

Now we prove Cauchy’s theorem.

Proof. We will prove Cauchy’s theorem by induction on #G, treating separately abelian G
(using quotient groups) and non-abelian G (using the class equation).

Let n = #G. Since p|n, n ≥ p. The base case is n = p. When #G = p, any non-identity
element of G has order p because p is prime.

Now suppose n > p, p|n, and the theorem is true for all groups with size less than n and
divisible by p. Let G be a group of size n.

Case 1: G is abelian. Since p|n and n > p, #G is not prime. Therefore G has a proper
non-trivial subgroup, say H. Since G is abelian, G/H is a group. Since

#H ·#(G/H) = #G = n,

the prime p divides either #H or #(G/H) (we don’t know which). Therefore, by induction,
H or G/H has an element with order p. If H does, then so does G. If G/H has an element
with order p, say g, then what can we say about the order of g (in G)? Let m be the order
of g. Then

gm = e in G =⇒ gm = e in G/H =⇒ p|m.

Thus, g has order divisible by p, so gm/p is an element of G with order p.
Case 2: G is non-abelian. Since #G is not a prime, G has a non-trivial proper subgroup,

say H. Since #G = #H · [G : H], p divides either H or [G : H]. If p divides H, we’re done
by induction. In other words, if G has a proper subgroup with size divisible by p, we’re
done by induction.
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But if, instead, p|[G : H] for every non-trivial proper subgroup H, then the argument
from the abelian case breaks down since H need not be a normal subgroup of G, so we can’t
apply induction with the smaller group G/H.

Happily, we can take advantage of the non-commutativity to show that this problem does
not arise: when G is a non-abelian group and p|#G, there is always a non-trivial proper
subgroup with size divisible by p. That is what the rest of the proof will demonstrate.

Since G is non-abelian, its center Z(G) is a proper subgroup. For each g ∈ G, the
centralizer of g

Z(g) = {h ∈ G : hg = gh}
is a subgroup of G, and this is a proper subgroup when g 6∈ Z(G). If p|#Z(g) for some
g 6∈ Z(G), then Z(g) is a proper subgroup of G and its size is divisible by p so we’re done.
If p|#Z(G), then again we’re done. We will use the class equation to show one of these
possibilities (p|#Z(g) for some g 6∈ Z(G) or p|#Z(G)) must happen.

Let the conjugacy classes in G with size greater than 1 be represented by g1, g2, . . . , gr.
Then the class equation for G says

#G = #Z(G) +
r∑

i=1

[G : Z(gi)] = #Z(G) +
r∑

i=1

#G

#Z(gi)
.

We look at p-divisibility of the terms in this equation. The left side is divisible by p. If
some Z(gi) has size divisible by p, we’d be done. On the other hand, if each Z(gi) has size
not divisible by p, then each index [G : Z(gi)] is divisible by p. Therefore the remaining
term, #Z(G), must be divisible by p. �

It is worthwhile reading and re-reading this proof until you see how it hangs together.
For instance, notice that in the proof for abelian G, the smaller groups which we used are
subgroups H and quotient groups G/H. Both of these are abelian when G is abelian, so
inductively we did not need the non-abelian case to treat the abelian case. In fact, quite a
few books prove Cauchy’s theorem for abelian groups before they develop suitable material
(like the class equation) to handle Cauchy’s theorem for non-abelian groups.


