PROOF OF CAUCHY’S THEOREM

KEITH CONRAD

The converse of Lagrange’s theorem is false in general: when d|#G, G doesn’t have to
contain a subgroup of size d. The most basic valid converse to Lagrange’s theorem occurs
for prime divisors. This is Cauchy’s theorem.

Theorem 1 (Cauchy, 1845). Let G be a finite group and p be a prime factor of #G. Then
G contains an element of order p. Equivalently, G contains a subgroup of size p.

The equivalence of the existence of an element of order p and a subgroup of size p is easy:
an element of order p generates a subgroup of size p, while conversely a subgroup of size p
contains elements of order p since p is prime.

Before treating the general case, let’s see that the case p = 2 of Cauchy’s theorem can
be proved in a simple way. If #G is even, consider the set of pairs {g,¢g~ '}, where g # g~ 1.
This takes into account an even number of elements of G. Those ¢g’s which are not part of
such a pair are the ones satisfying g = ¢!, i.e., g> = e. One such element is e. If it was
the only one, then G would have odd size (why?). Since we are told G has even size, there
must be gy # e such that go = g, 1 so g3 = e and go has order 2.

Although there is always a subgroup of order p when p|#G, there need not be a subgroup
of index p. For example, A4 has order 12 but no subgroup of index 2.

Now we prove Cauchy’s theorem.

Proof. We will prove Cauchy’s theorem by induction on #G, treating separately abelian G
(using quotient groups) and non-abelian G (using the class equation).

Let n = #G. Since p|n, n > p. The base case is n = p. When #G = p, any non-identity
element of G has order p because p is prime.

Now suppose n > p, p|n, and the theorem is true for all groups with size less than n and
divisible by p. Let G be a group of size n.

Case 1: G is abelian. Since p|n and n > p, #G is not prime. Therefore G has a proper
non-trivial subgroup, say H. Since G is abelian, G/H is a group. Since

#H - #(G/H) = #G =n,

the prime p divides either #H or #(G/H) (we don’t know which). Therefore, by induction,
H or G/H has an element with order p. If H does, then so does G. If G/H has an element
with order p, say g, then what can we say about the order of g (in G)? Let m be the order
of g. Then

¢g"=ein G=g" =e€in G/H = p|m.

Thus, ¢ has order divisible by p, so ¢™/? is an element of G with order p.

Case 2: G is non-abelian. Since #G is not a prime, G has a non-trivial proper subgroup,
say H. Since #G = #H - |G : H], p divides either H or [G : H]. If p divides H, we’re done
by induction. In other words, if G has a proper subgroup with size divisible by p, we’re

done by induction.
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But if, instead, p|[G : H] for every non-trivial proper subgroup H, then the argument
from the abelian case breaks down since H need not be a normal subgroup of GG, so we can’t
apply induction with the smaller group G/H.

Happily, we can take advantage of the non-commutativity to show that this problem does
not arise: when G is a non-abelian group and p|#G, there is always a non-trivial proper
subgroup with size divisible by p. That is what the rest of the proof will demonstrate.

Since G is non-abelian, its center Z(G) is a proper subgroup. For each g € G, the
centralizer of g

Z(g) ={h € G:hg =gh}
is a subgroup of G, and this is a proper subgroup when g ¢ Z(G). If p|#Z(g) for some
g & Z(QG), then Z(g) is a proper subgroup of G and its size is divisible by p so we’re done.
If p|#Z(G), then again we’re done. We will use the class equation to show one of these
possibilities (p|#Z(g) for some g € Z(G) or p|#Z(G)) must happen.

Let the conjugacy classes in G with size greater than 1 be represented by g1, ¢go, ..., gr.
Then the class equation for G says

#G =H#Z(G) + Z[G 1 Z(g9i)] = #Z(G) + Z ##Z(Gg)
i=1 i=1 t

We look at p-divisibility of the terms in this equation. The left side is divisible by p. If
some Z(g;) has size divisible by p, we’d be done. On the other hand, if each Z(g;) has size
not divisible by p, then each index [G : Z(g;)] is divisible by p. Therefore the remaining
term, #Z(G), must be divisible by p. O

It is worthwhile reading and re-reading this proof until you see how it hangs together.
For instance, notice that in the proof for abelian G, the smaller groups which we used are
subgroups H and quotient groups G/H. Both of these are abelian when G is abelian, so
inductively we did not need the non-abelian case to treat the abelian case. In fact, quite a
few books prove Cauchy’s theorem for abelian groups before they develop suitable material
(like the class equation) to handle Cauchy’s theorem for non-abelian groups.



