
- Order:
- Duration: 1:52
- Published: 08 Feb 2011
- Uploaded: 28 Apr 2011
- Author: theindependent
A submarine is a watercraft capable of independent operation below the surface of the water. It differs from a submersible, which has only limited underwater capability. The term submarine most commonly refers to large crewed autonomous vessels; however, historically or colloquially, submarine can also refer to medium sized or smaller vessels (midget submarines, wet subs), remotely operated vehicles or robots.
The word submarine was originally an adjective meaning "under the sea"; consequently other uses such as "submarine engineering" or "submarine cable" may not actually refer at all to the vessel. Submarine was in fact shortened from the proper term, "submarine boat", and is often further shortened to "sub" when the word is employed informally. Submarines should always be referred to as "boats" rather than as "ships", regardless of their size. The English term U-boat for a German submarine comes from the German word for submarine, U-Boot, itself an abbreviation for Unterseeboot ("undersea boat").
Although experimental submarines had been built before, submarine design took off during the 19th century, and they were adopted by several different navies. Submarines were first widely used during World War I (1914–1918) and now feature in many large navies. Military usage includes attacking enemy surface ships or submarines, aircraft carrier protection, blockade running, ballistic missile submarines as part of a nuclear strike force, reconnaissance, conventional land attack (for example using a cruise missile), and covert insertion of special forces. Civilian uses for submarines include marine science, salvage, exploration and facility inspection/maintenance. Submarines can also be modified to perform more specialized functions such as search-and-rescue missions or undersea cable repair. Submarines are employed, too, in tourism and for undersea archaeology.
Most large submarines comprise a cylindrical body with hemispherical (and/or conical) ends and a vertical structure, usually located amidships, which houses communications and sensing devices as well as periscopes. In modern submarines this structure is the "sail" in American usage, and "fin" in European usage. A "conning tower" was a feature of earlier designs: a separate pressure hull above the main body of the boat that allowed the use of shorter periscopes. There is a propeller (or pump jet) at the rear and various hydrodynamic control fins as well as ballast tanks. Smaller, deep diving and specialty submarines may deviate significantly from this traditional layout.
Submarines have one of the largest ranges of capabilities in any vessel, ranging from small autonomous examples to one- or two-person vessels operating for a few hours, to vessels which can remain submerged for 6 months such as the Russian Typhoon class. Submarines can work at greater depths than are survivable or practical for human divers. Modern deep diving submarines are derived from the bathyscaphe, which in turn was an evolution of the diving bell.
The first submersible with reliable information on its construction was built in 1620 by Cornelius Jacobszoon Drebbel, a Dutchman in the service of James I of England. It was created to the standards of the design outlined by English mathematician William Bourne. It was propelled by means of oars. The precise nature of the submarine type is a matter of some controversy; some claim that it was merely a bell towed by a boat. Two improved types were tested in the Thames between 1620 and 1624. In 2002 a two-person version of Bourne's design was built for the BBC TV programme Building the Impossible by Mark Edwards, and successfully rowed under water at Dorney Lake, Eton.
Though the first submersible vehicles were tools for exploring under water, it did not take long for inventors to recognize their military potential. The strategic advantages of submarines were set out by Bishop John Wilkins of Chester, England, in Mathematicall Magick in 1648:
# Tis private: a man may thus go to any coast in the world invisibly, without discovery or prevented in his journey. # Tis safe, from the uncertainty of Tides, and the violence of Tempests, which do never move the sea above five or six paces deep. From Pirates and Robbers which do so infest other voyages; from ice and great frost, which do so much endanger the passages towards the Poles. # It may be of great advantages against a Navy of enemies, who by this may be undermined in the water and blown up. # It may be of special use for the relief of any place besieged by water, to convey unto them invisible supplies; and so likewise for the surprisal of any place that is accessible by water. # It may be of unspeakable benefit for submarine experiments.
on display at the Royal Navy Submarine Museum, Gosport]]
(1800)]]
In 1800, France built a human-powered submarine designed by American Robert Fulton, the Nautilus. The French eventually gave up on the experiment in 1804, as did the British when they later considered Fulton's submarine design.
During the War of 1812, in 1814, Silas Halsey lost his life while using a submarine in an unsuccessful attack on a British warship stationed in New London harbor.
The Submarino Hipopótamo was the first submarine in South America built and tested in Ecuador on September 18, 1837. It was designed by Jose Rodriguez Lavandera, who successfully crossed the Guayas River in Guayaquil accompanied by Jose Quevedo. Rodriguez Lavandera had enrolled in the Ecuadorian Navy in 1823, becoming a Lieutenant by 1830. The Hipopotamo crossed the Guayas on two more occasions, but it was then abandoned because of lack of funding and interest from the government. Today, few engravings and a scale model of the original design is preserved by the Maritime Museum of the Ecuadorian Navy.
In 1851, a Bavarian artillery corporal, Wilhelm Bauer, took a submarine designed by him called the Brandtaucher (incendiary-diver), which sank on its first test dive in Kiel Harbour—but its three crewmen managed to escape, after flooding the vessel, which allowed the inside pressure to equalize. This submarine was built by August Howaldt and powered by a treadwheel. The submarine was re-discovered during a dredging operation 1887, and was raised sixteen years later. The vessel is on display in a museum in Dresden.
The submarine Flach was commissioned in 1865 by the Chilean government during the war of Chile and Peru against Spain (1864–1866). It was built by the German engineer Karl Flach. The submarine sank during tests in Valparaiso bay on May 3, 1866, with the entire eleven-man crew.
====Submarines in the American Civil War==== , first submarine of the US Navy, was developed in conjunction with the French]]
During the American Civil War, the Union was the first to field a submarine. The French-designed Alligator was the first U.S. Navy sub and the first to feature compressed air (for air supply) and an air filtration system. Initially hand-powered by oars, it was converted after 6 months to a screw propeller powered by a hand crank. With a crew of 20, it was larger than Confederate submarines. Alligator was 47 feet (14.3 m) long and about 4 feet (1.2 m) in diameter. It was lost in a storm off Cape Hatteras on April 1, 1863 with no crew and under tow to its first combat deployment at Charleston.
The Confederate States of America fielded several human-powered submarines. The first Confederate submarine was the long Pioneer which sank a target schooner using a towed mine during tests on Lake Pontchartrain, but was not used in combat. It was scuttled after New Orleans was captured and in 1868 was raised and sold for scrap. The Bayou St. John Confederate Submarine was also scuttled without seeing combat, and is now on display at the Louisiana State Museum.
The Confederate submarine H. L. Hunley (named for one of its financiers, Horace Lawson Hunley) was intended for attacking the North's ships, which were blockading the South's seaports. The submarine had a long pole with an explosive charge in the bow, called a spar torpedo. The sub had to approach an enemy vessel, attach an explosive, move away, and then detonate it. The sub was extremely hazardous to operate, and had no air supply other than what was contained inside the main compartment. On two occasions, the sub sank. On the first occasion half the crew died during an experimental voyage. The second occasion, February 17, 1864, the salvaged and renovated vessel, now named CSS Hunley, sank the USS Housatonic off Charleston Harbor. Soon after signaling its success the submarine sank due to unknown cause; the entire eight-man crew (including Hunley himself) drowned. Submarines did not have a major impact on the outcome of the war, but did portend their future importance to naval warfare and increased interest in their use in naval warfare. The location of Hunley was unknown until it was officially found in 1995, and was then recovered in 2000. The sinking of the USS Housatonic by CSS Hunley was the first successful submarine attack on a warship.
The first submarine not relying on human power for propulsion was the French Plongeur (meaning diver), launched in 1863, and using compressed air at 180 psi (1241 kPa).
The first combustion-powered submarine was Ictineo II, designed in Spain by Narcís Monturiol. Originally launched in 1864 as human-powered, propelled by 16, Nordenfelt's efforts culminated in 1887 with Nordenfelt IV which had twin motors and twin torpedoes. It was sold to the Russians, but proved unstable, ran aground, and was scrapped.
Two submarines, both launched in September 1888, marked the maturing of naval submarine technology.
One was the Peral Submarine, launched by the Spanish Navy. It had two torpedoes, new air systems, hull shape, propeller, and cruciform external controls anticipating much later designs. After two years of trials the project was scrapped by naval officialdom that cited concerns over the short range permitted by its batteries.
The other was the Gymnote, launched by the French Navy. Gymnote was also an electrically powered and fully functional military submarine. It completed over 2,000 successful dives using a 204-cell battery. Although she was scrapped for her limited range her side hydroplanes became the standard for future submarine designs.
Many more designs were built at this time by various inventors, but submarines were not put into service by navies until 1900.
In 1896, the Irish-American inventor John Philip Holland (1841–1914, born in Liscannor, County Clare, Ireland) designed submarines that, for the first time, made use of internal combustion engine power on the surface and electric battery power for submerged operations. The 'Fenian Ram', in 1881, was the launching the world's first successful submarine. The Holland VI was launched on May 17, 1897 at Navy Lt. Lewis Nixon's Crescent Shipyard of Elizabeth, New Jersey. On April 11, 1900 the United States Navy purchased the revolutionary Holland VI and renamed it the , America's first commissioned submarine. (John P. Holland's company, the Holland Torpedo Boat Company/Electric Boat Company became General Dynamics "Cold War" progeny and is arguably the builder of the world's most technologically advanced submarines today).
The first mechanically powered series of submarines to be put into service by navies, which included Great Britain, Japan, Russia, and the United States, were the Holland submersibles built by Irish designer John Philip Holland in 1900. Several of each of them were retained in both the Imperial Russian and Japanese Navies during the Russo-Japanese War in 1904-1905.
Although both warring nations possessed some Holland submarines, with the Imperial Japanese Navy (IJN) purchasing at least 5 from the United States, the Russian navy preferred the German constructed submersibles built by the Germaniawerft shipyards out of Kiel. In 1903 Germany successfully completed its first fully functional engine-powered submarine, the Forelle (Trout). This vessel was sold to Russia in 1904 and shipped via the Trans-Siberian Railway to the combat zone during the Russo-Japanese War.
A prototype version of the Plunger-class or A-class submarines, the Fulton, was developed at Nixon's Crescent Shipyard for the United States Navy before the construction of the A-class submarines there in 1901. A naval architect and shipbuilder from the United Kingdom, Arthur Leopold Busch, superintended the development of these first submarines for Holland's company. However the Fulton was never purchased by the U.S. Navy and was eventually sold to the Imperial Russian Navy during the Russo-Japanese War of 1904-1905. Two other A-class vessels were built on the West Coast of (USA) at Mare Island Naval Shipyard/Union Iron Works circa 1901. In 1902, Holland received a patent for his persistent pursuit to perfect the underwater naval craft. By this time, Holland was no longer in control of the day-to-day operations at Electric Boat, as others were now at the helm of the company he once founded. The acumen of business were now in control of these operations as Holland was forced to step down. His resignation from the company was to be effective as of April 1904.
In 1904, the Imperial Russian Navy ordered several more submersibles from the Kiel shipyard, submarines from the Karp class. One sample of which was modified and improved, and commissioned into the Imperial German Navy in 1906 as its first U-Boat, the .
Many other countries became interested in Holland's products around this time. Holland's innovations and ideas were considered to be the most technologically advanced at the time and were universally acknowledged as such. From 1901 onwards some of Holland's vessels were purchased by the United States Navy and other governments including the United Kingdom, the Imperial Russian Navy, Imperial Japanese Navy and the Royal Netherlands Navy.
Commissioned in June 1900, the French steam and electric submarine Narval introduced the classic double-hull design, with a pressure hull inside the outer light hull. These 200-ton ships had a range of over on the surface, and over underwater. The French submarine Aigrette in 1904 further improved the concept by using a diesel rather than a gasoline engine for surface power. Large numbers of these submarines were built, with seventy-six completed before 1914.
Military submarines first made a significant impact in World War I. Forces such as the U-boats of Germany saw action in the First Battle of the Atlantic, and were responsible for the sinking of Lusitania, which was sunk as a result of unrestricted submarine warfare and is often cited among the reasons for the entry of the United States into the war.
In August 1914, a flotilla of ten U-boats sailed from their base in Heligoland to attack Royal Navy warships in the North Sea in the first submarine war patrol in history. Their aim was to sink capital ships of the British Grand Fleet, and so reduce the Grand Fleet's numerical superiority over the German High Seas Fleet. With much depending more on luck than strategy, the first sortie was not a success. Only one attack was carried out, when U-15 fired a torpedo (which missed) at HMS Monarch, while two of the ten U-boats were lost. The U-9 had better luck. On 22 September 1914 while patrolling the Broad Fourteens, a region of the southern North Sea, U-9 found a squadron of three obsolescent British Cressy-class armoured cruisers (HMS Aboukir, HMS Hogue, and HMS Cressy), which were assigned to prevent German surface vessels from entering the eastern end of the English Channel. She fired all six of her torpedoes, reloading while submerged, and sank all three in less than an hour.
The U-boats' ability to function as practical war machines relied on new tactics, their numbers, and submarine technologies such as combination diesel-electric power system developed in the preceding years. More submersibles than true submarines, U-boats operated primarily on the surface using regular engines, submerging occasionally to attack under battery power. They were roughly triangular in cross-section, with a distinct keel to control rolling while surfaced, and a distinct bow. During World War I more than 5,000 Allied ships had been sunk by U-boats.
Germany had the largest submarine fleet during World War II. Due to the Treaty of Versailles limiting the surface navy, the rebuilding of the German surface forces had only begun in earnest a year before the outbreak of World War II. Expecting to be able to defeat the Royal Navy through underwater warfare, the German High Command pursued commerce raiding and immediately stopped all construction on capital surface ships save the nearly completed Bismarck-class battleships and two cruisers, switching its resources to submarines, which could be built more quickly. Though it took most of 1940 to expand the production facilities and get the mass production started, more than a thousand submarines were built by the end of the war.
Germany put submarines to devastating effect in the Second Battle of the Atlantic in World War II, attempting but ultimately failing to cut off Britain's supply routes by sinking more merchant ships than Britain could replace. The supply lines were vital to Britain for food and industry, as well as armaments from the US. Although the U-boats had been updated in the intervening years, the major innovation was improved communications, encrypted using the famous Enigma cipher machine. This allowed for mass-attack tactics or "wolf packs" (Rudeltaktik), but was also ultimately the U-boats' downfall.
After putting to sea, U-boats operated mostly on their own, trying to find convoys in areas assigned to them by the High Command. If a convoy was found, the submarine did not attack immediately, but shadowed the convoy to allow other submarines in the area to find the convoy. These were then grouped into a larger striking force to attack the convoy simultaneously, preferably at night while surfaced.
From September 1939 to the beginning of 1943, the Ubootwaffe ("U-boat force") scored unprecedented success with these tactics, but were too few to have any decisive success. By the spring of 1943, German U-boat construction was at full capacity, but this was more than nullified by increased numbers of convoy escorts and aircraft, as well as technical advances like radar and sonar. Huff-Duff and Ultra allowed the Allies to route convoys around wolf packs when they detected them from their radio transmissions. The results were devastating: from March to July of that year, over 130 U-boats were lost, 41 in May alone. Concurrent Allied losses dropped dramatically, from 750,000 tons in March to only 188,000 in July. Although the Second battle of the Atlantic would continue to the last day of the war, the U-boat arm was unable to stem the tide of personnel and supplies, paving the way for Operation Torch, Operation Husky, and ultimately, D-Day. Winston Churchill wrote that the U-boat "peril" was the only thing that ever gave him cause to doubt the Allies' eventual victory.
By the end of the war, almost 3,000 Allied ships (175 warships; 2,825 merchant ships) were sunk by U-boat torpedoes. Of the 40,000 men in the U-boat service, 28,000 (or 70%) lost their lives.
's I-400-class submarine, the largest submarine type of WWII]]
The Imperial Japanese Navy started their submarine service with five Holland Type VII submarines purchased from the Electric Boat Company in 1904. Japan had the most varied fleet of submarines of World War II; including Kaiten crewed torpedoes, midget submarines (Ko-hyoteki and Kairyu), medium-range submarines, purpose-built supply submarines and long-range fleet submarines. They also had submarines with the highest submerged speeds during World War II (I-200-class submarines) and submarines that could carry multiple aircraft (I-400-class submarine). They were also equipped with one of the most advanced torpedoes of the conflict, the oxygen-propelled Type 95.
Nevertheless, despite their technical prowess, Japan had chosen to utilize its submarines for fleet warfare, and consequently were relatively unsuccessful, as warships were fast, maneuverable and well-defended compared to merchant ships. In 1942, a Japanese submarine sank one aircraft carrier, damaged one battleship, and damaged one destroyer (which sank later) from one torpedo salvo; and during the Battle of Midway were able to deliver the coup de grace to another fleet aircraft carrier. With the lack of fuel oil and air supremacy, Imperial submarines were not able to sustain those kind of results afterwards. By the end of the war, submarines were instead often used to transport supplies to island garrisons.
The United States Navy used its submarine force to attack both warships and merchant shipping; and destroyed more Japanese shipping than all other weapons combined. This feat was considerably aided by the Imperial Japanese Navy's failure to provide adequate escort forces for the nation's merchant fleet.
Whereas Japan had the finest submarine torpedoes of the war, the U.S. Navy had the worst: the Mark 14 torpedo that ran ten feet too deep, tipped with a Mk VI exploder that was based on an unimproved version of the Mark V contact exploder but with an additional magnetic exploder, neither of which was reliable. The faulty depth control mechanism of the Mark 14 was corrected in August 1942, but field trials for the exploders were not ordered until mid-1943, when tests in Hawaii and Australia confirmed the flaws. Fully operational Mark 14 torpedoes were not put into service until September 1943. The Mark 15 torpedo used by US surface combatants had the same Mk VI exploder and was not fixed until late 1943. One attempt to correct the problems resulted in a wakeless, electric torpedo being placed in submarine service, but USS Tang and Tullibee were lost to self-inflicted hits by these torpedoes.
During World War II, 314 submarines served in the United States Navy, of which nearly 260 were deployed to the Pacific. On December 7, 1941, 111 boats were in commission; 203 submarines from the Gato, Balao, and Tench classes were commissioned during the war. During the war, 52 US submarines were lost to all causes, with 48 lost directly to hostilities; 3,505 sailors were lost, the highest percentage killed in action of any US service arm in World War II. US submarines sank 1,560 enemy vessels, the majority of all losses, (42), being in the Mediterranean.
The German Navy also experimented with engines that would use hydrogen peroxide to allow diesel fuel to be used while submerged, but technical difficulties were great. The Allies experimented with a variety of detection systems, including chemical sensors to "smell" the exhaust of submarines.
Cold-war diesel-electric submarines, such as the Oberon class, used batteries to power their electric motors in order to run silently. They recharged the batteries using the diesel engines without ever surfacing.
In the 1950s, nuclear power partially replaced diesel-electric propulsion. Equipment was also developed to extract oxygen from sea water. These two innovations gave submarines the ability to remain submerged for weeks or months, and enabled previously impossible voyages such as USS Nautilus' crossing of the North pole beneath the Arctic ice cap in 1958 and the USS Tritons submerged circumnavigation of the world in 1960. Most of the naval submarines built since that time in the United States and the Soviet Union/Russia have been powered by nuclear reactors. The limiting factors in submerged endurance for these vessels are food supply and crew morale in the space-limited submarine.
In 1959–1960, the first ballistic missile submarines were put into service by both the United States (George Washington class) and the Soviet Union (Hotel class) as part of the Cold War nuclear deterrent strategy.
While the greater endurance and performance from nuclear reactors makes nuclear submarines better for long-distance missions or the protection of a carrier battle group, their reactor cooling pumps have traditionally made them noisier, and thus easier to detect, than conventional diesel-electric submarines. Diesel-electrics have continued to be produced by both nuclear and non-nuclear powers as they lack this limitation, except when required to run the diesel engine to recharge the ship’s battery. Recent technological advances in sound damping, noise isolation, and cancellation have made nuclear subs quieter and substantially eroded this disadvantage. Though far less capable regarding speed and weapons payload, conventional submarines are also cheaper to build. The introduction of air-independent propulsion boats, conventional diesel-electric submarines with some kind of auxiliary air-independent electricity generator, have led to increased sales of such types of submarines.
Los Angeles-class submarines form the backbone of the United States submarine fleet.]]
During the Cold War, the United States and the Soviet Union maintained large submarine fleets that engaged in cat-and-mouse games. The Soviet Union suffered the loss of at least four submarines during this period: K-129 was lost in 1968 (which the CIA attempted to retrieve from the ocean floor with the Howard Hughes-designed ship Glomar Explorer), K-8 in 1970, K-219 in 1986, and Komsomolets in 1989 (which held a depth record among military submarines—1000 m). Many other Soviet subs, such as K-19 (the first Soviet nuclear submarine, and the first Soviet sub to reach the North Pole) were badly damaged by fire or radiation leaks. The US lost two nuclear submarines during this time: USS Thresher due to equipment failure during a test dive while at its operational limit, and USS Scorpion due to unknown causes.
During the Indo-Pakistani War of 1971, the Pakistan Navy's Hangor sank the Indian frigate INS Khukri. This was the first kill by a submarine since World War II, and the only one until the United Kingdom employed nuclear-powered submarines against Argentina in 1982 during the Falklands War. The Argentine cruiser General Belgrano was sunk by HMS Conqueror (the first sinking by a nuclear-powered submarine in war). The PNS Ghazi, a Tench-class submarine on loan to Pakistan from the US, was sunk in the Indo-Pakistani War. It was the first submarine casualty since World War II during war time.
More recently, Russia has had three high profile submarine accidents. The Kursk went down with all hands in 2000; the K-159 sank while being towed to a scrapyard in 2003, with nine lives lost; and the Nerpa had an accident with the fire-extinguishing system resulting in twenty deaths in late 2008.
India launched its first locally built nuclear-powered submarine, the INS Arihant, on July 26, 2009.
A North Korean submarine's torpedo allegedly sank the South Korean navy ship ROKS Cheonan on 26 March 2010.
1903 - Simon Lake submarine Protector surfaced through ice off Newport, Rhode Island. 1930 - USS O-12 operated under ice near Spitsbergen. 1971 - HMS Dreadnought reached the North Pole.
A semi-civilian use was the adaptation of U-boats for cargo transport during World War I and World War II.
Submarines with a crush depth in the range of are operated in several areas worldwide, typically with bottom depths around , with a carrying capacity of 50 to 100 passengers. In a typical operation (for example, Atlantis submarines), a surface vessel carries passengers to an offshore operating area, where passengers are exchanged with those of the submarine. The submarine then visits underwater points of interests, typically either natural or artificial reef structures. To surface safely without danger of collision the location of the submarine is marked with an air release and movement to the surface is coordinated by an observer in a support craft.
Self-Propelled Semi-Submersibles used by drug smugglers are not true submarines. A portion of the craft remains above water at all times.
All surface ships, as well as surfaced submarines, are in a positively buoyant condition, weighing less than the volume of water they would displace if fully submerged. To submerge hydrostatically, a ship must have negative buoyancy, either by increasing its own weight or decreasing its displacement of water. To control their weight, submarines have ballast tanks, which can be filled with outside water or pressurized air.
For general submersion or surfacing, submarines use the forward and aft tanks, called Main Ballast Tanks or MBTs, which are filled with water to submerge, or filled with air to surface. Under submerged conditions, MBTs generally remain flooded, which simplifies their design, and on many submarines these tanks are a section of interhull space. For more precise and quick control of depth, submarines use smaller Depth Control Tanks or DCTs, also called hard tanks due to their ability to withstand higher pressure. The amount of water in depth control tanks can be controlled either to reflect changes in outside conditions or change depth. Depth control tanks can be located either near the submarine's center of gravity, or separated along the submarine body to prevent affecting trim.
When submerged, the water pressure on submarine's hull can reach for steel submarines and up to for titanium submarines like Komsomolets, while interior pressure remains relatively unchanged. This difference results in hull compression, which decreases displacement. Water density also increases with depth, as the salinity and pressure are higher, but this incompletely compensates for hull compression, so buoyancy decreases as depth increases. A submerged submarine is in an unstable equilibrium, having a tendency to either fall or float to the surface. Keeping a constant depth requires continual operation of either the depth control tanks or control surfaces.
Submarines in a neutral buoyancy condition are not intrinsically trim-stable. To maintain desired trim, submarines use forward and aft trim tanks. Pumps can move water between these, changing weight distribution, creating a moment pointing the sub up or down. A similar system is sometimes used to maintain stability.
of the French nuclear submarine Casabianca; note the diving planes, camouflaged masts, periscope, electronic warfare masts, door and windows.]]
The hydrostatic effect of variable ballast tanks is not the only way to control the submarine underwater. Hydrodynamic maneuvering is done by several surfaces, which can be moved to create hydrodynamic forces when a submarine moves at sufficient speed. The stern planes, located near the propeller and normally horizontal, serve the same purpose as the trim tanks, controlling the trim, and are commonly used, while other control surfaces may not be present on many submarines. The fairwater planes on the sail and/or bow planes on the main body, both also horizontal, are closer to the centre of gravity, and are used to control depth with less effect on the trim.
When a submarine performs an emergency surfacing, all depth and trim methods are used simultaneously, together with propelling the boat upwards. Such surfacing is very quick, so the sub may even partially jump out of the water, potentially damaging submarine systems.
Modern submarines are cigar-shaped. This design, visible in early submarines (see below) is sometimes called a "teardrop hull". It reduces the hydrodynamic drag when submerged, but decreases the sea-keeping capabilities and increases drag while surfaced. Since the limitations of the propulsion systems of early submarines forced them to operate surfaced most of the time, their hull designs were a compromise. Because of the slow submerged speeds of those subs, usually well below 10 kt (18 km/h), the increased drag for underwater travel was acceptable. Late in World War II, when technology allowed faster and longer submerged operation and increased aircraft surveillance forced submarines to stay submerged, hull designs became teardrop shaped again to reduce drag and noise. On modern military submarines the outer hull is covered with a layer of sound-absorbing rubber, or anechoic plating, to reduce detection.
The occupied pressure hulls of deep diving submarines such as DSV Alvin are spherical instead of cylindrical. This allows a more even distribution of stress at the great depth. A titanium frame is usually affixed to the pressure hull, providing attachment for ballast and trim systems, scientific instrumentation, battery packs, syntactic flotation foam, and lighting.
A raised tower on top of a submarine accommodates the periscope and electronics masts, which can include radio, radar, electronic warfare, and other systems including the snorkel mast. In many early classes of submarines (see history), the control room, or "conn", was located inside this tower, which was known as the "conning tower". Since then, the conn has been located within the hull of the submarine, and the tower is now called the "sail". The conn is distinct from the "bridge", a small open platform in the top of the sail, used for observation during surface operation.
"Bathtubs" are related to conning towers but are used on smaller submarines. The bathtub is a metal cylinder surrounding the hatch that prevents waves from breaking directly into the cabin. It is needed because surfaced submarines have limited freeboard, that is, they lie low in the water. Bathtubs help prevent swamping the vessel.
Modern submarines and submersibles, as well as the oldest ones, usually have a single hull. Large submarines generally have an additional hull or hull sections outside. This external hull, which actually forms the shape of submarine, is called the outer hull (casing in the Royal Navy) or light hull, as it does not have to withstand a pressure difference. Inside the outer hull there is a strong hull, or pressure hull, which withstands sea pressure and has normal atmospheric pressure inside.
As early as World War I, it was realized that the optimal shape for withstanding pressure conflicted with the optimal shape for seakeeping and minimal drag, and construction difficulties further complicated the problem. This was solved either by a compromise shape, or by using two hulls; internal for holding pressure, and external for optimal shape. Until the end of World War II, most submarines had an additional partial cover on the top, bow and stern, built of thinner metal, which was flooded when submerged. Germany went further with the Type XXI, the general predecessor of modern submarines, in which the pressure hull was fully enclosed inside the light hull, but optimized for submerged navigation, unlike earlier designs that were optimized for surface operation. U-Boat, late WWII, with pressure hull almost fully enclosed inside the light hull]]
After World War II, approaches split. The Soviet Union changed its designs, basing them on German developments. All post-World War II heavy Soviet and Russian submarines are built with a double hull structure. American and most other Western submarines switched to a primarily single-hull approach. They still have light hull sections in the bow and stern, which house main ballast tanks and provide a hydrodynamically optimized shape, but the main cylindrical hull section has only a single plating layer. The double hulls are being considered for future submarines in the United States to improve payload capacity, stealth and range.
The dive depth cannot be increased easily. Simply making the hull thicker increases the weight and requires reduction of onboard equipment weight, ultimately resulting in a bathyscaphe. This is acceptable for civilian research submersibles, but not military submarines.
WWI submarines had hulls of carbon steel, with a maximum depth. During WWII, high-strength alloyed steel was introduced, allowing depths. High-strength alloy steel remains the primary material for submarines today, with depths, which cannot be exceeded on a military submarine without design compromises. To exceed that limit, a few submarines were built with titanium hulls. Titanium can be stronger than steel, lighter, and is not ferromagnetic, important for stealth. Titanium submarines were built by the Soviet Union, which developed specialized high-strength alloys. It has produced several types of titanium submarines. Titanium alloys allow a major increase in depth, but other systems need to be redesigned to cope, so test depth was limited to for the Soviet submarine Komsomolets, the deepest-diving combat submarine. An Alfa-class submarine may have successfully operated at , though continuous operation at such depths would produce excessive stress on many submarine systems. Titanium does not flex as readily as steel, and may become brittle during many dive cycles. Despite its benefits, the high cost of titanium construction led to the abandonment of titanium submarine construction as the Cold War ended. Deep diving civilian submarines have used thick acrylic pressure hulls.
The deepest Deep Submergence Vehicle (DSV) to date is Trieste. On October 5, 1959 Trieste departed San Diego for Guam aboard the freighter Santa Maria to participate in Project Nekton, a series of very deep dives in the Mariana Trench. On January 23, 1960, Trieste reached the ocean floor in the Challenger Deep (the deepest southern part of the Mariana Trench), carrying Jacques Piccard (son of Auguste) and Lieutenant Don Walsh, USN. This was the first time a vessel, manned or unmanned, had reached the deepest point in the Earth's oceans. The onboard systems indicated a depth of , although this was later revised to and more accurate measurements made in 1995 have found the Challenger Deep to be slightly shallower, at .
The building a pressure hull is difficult, as it must withstand pressures at its required diving depth. When the hull is perfectly round in cross-section, the pressure is evenly distributed, and causes only hull compression. If the shape is not perfect, the hull is bent, with several points heavily strained. Inevitable minor deviations are resisted by stiffener rings, but even a one inch (25 mm) deviation from roundness results in over 30 percent decrease of maximal hydrostatic load and consequently dive depth. The hull must therefore be constructed with high precision. All hull parts must be welded without defects, and all joints are checked multiple times with different methods, contributing to the high cost of modern submarines. (For example, each Virginia-class attack submarine costs US$2.6 billion, over US$200,000 per ton of displacement.)
=== Propulsion === , a Victoria-class diesel-electric hunter-killer submarine]]
Originally, submarines were human propelled. The first mechanically driven submarine was the 1863 French Plongeur, which used compressed air for propulsion. Anaerobic propulsion was first employed by the Spanish Ictineo II in 1864, which used a solution of zinc, manganese dioxide, and potassium chlorate to generate sufficient heat to power a steam engine, while also providing oxygen for the crew. A similar system was not employed again until 1940 when the German Navy tested a hydrogen peroxide-based system, the Walter turbine, on the experimental V-80 submarine and later on the naval U-791 and type XVII submarines.
Until the advent of nuclear marine propulsion, most 20th century submarines used batteries for running underwater and gasoline (petrol) or diesel engines on the surface, and for battery recharging. Early submarines used gasoline, but this quickly gave way to kerosene (paraffin), then diesel, because of reduced flammability. Diesel-electric became the standard means of propulsion. The diesel or gasoline engine and the electric motor, separated by clutches, were initially on the same shaft driving the propeller. This allowed the engine to drive the electric motor as a generator to recharge the batteries and also propel the submarine. The clutch between the motor and the engine would be disengaged when the submarine dived, so that the motor could drive the propeller. The motor could have multiple armatures on the shaft, which could be electrically coupled in series for slow speed and in parallel for high speed. (These connections were called "group down" and "group up", respectively.)
In 1928 the United States Navy's Bureau of Engineering proposed a diesel-electric transmission; instead of driving the propeller directly while running on the surface, the submarine's diesel would drive a generator which could either charge the submarine's batteries or drive the electric motor. This meant that motor speed was independent of the diesel engine's speed, and the diesel could run at an optimum and non-critical speed, while one or more of the diesel engines could be shut down for maintenance while the submarine continued to run using battery power. The concept was pioneered in 1929 in the S-class submarines S-3, S-6, and S-7 to test the concept. No other navy adopted the system before 1945, apart from the Royal Navy's U-class submarines, though some submarines of the Imperial Japanese Navy used separate diesel generators for low speed running.
Other advantages of such an arrangement were that a submarine could travel slowly with the engines at full power to recharge the batteries quickly, reducing time on the surface or on snorkel. It was then possible to insulate the noisy diesel engines from the pressure hull, making the submarine quieter. Additionally, diesel-electric transmissions were more compact.
s, also known as "Elektroboote", were the first submarines designed to operate submerged for extended periods]]
Type 212 submarine with AIP propulsion in dock at HDW/Kiel]]
Today several navies use air-independent propulsion. Notably Sweden uses Stirling technology on the Gotland-class and Södermanland-class submarines. The Stirling engine is heated by burning diesel fuel with liquid oxygen from cryogenic tanks. A newer development in air-independent propulsion is hydrogen fuel cells, first used on the German Type 212 submarine, with nine 34 kW or two 120 kW cells and soon to be used in the new Spanish S-80 class submarines.
Steam power was resurrected in the 1950s with a nuclear-powered steam turbine driving a generator. By eliminating the need for atmospheric oxygen, the length of time that a modern submarine could remain submerged was limited only by its food stores, as breathing air was recycled and fresh water distilled from seawater. Nuclear-powered submarines have a relatively small battery and diesel engine/generator powerplant for emergency use if the reactors must be shut down.
Nuclear power is now used in all large submarines, but due to the high cost and large size of nuclear reactors, smaller submarines still use diesel-electric propulsion. The ratio of larger to smaller submarines depends on strategic needs. The US Navy, French Navy, and the British Royal Navy operate only nuclear submarines, which is explained by the need for distant operations. Other major operators rely on a mix of nuclear submarines for strategic purposes and diesel-electric submarines for defence. Most fleets have no nuclear submarines, due to the limited availability of nuclear power and submarine technology.
Diesel-electric submarines have a stealth advantage over their nuclear counterparts. Nuclear submarines generate noise from coolant pumps and turbo-machinery needed to operate the reactor, even at low power levels. Some nuclear submarines such as the American Ohio class can operate with their reactor coolant pumps secured, making them quieter than electric subs. A conventional submarine operating on batteries is almost completely silent, the only noise coming from the shaft bearings, propeller, and flow noise around the hull, all of which stops when the sub hovers in mid water to listen, leaving only the noise from crew activity. Commercial submarines usually rely only on batteries, since they never operate independently of a mother ship.
Toward the end of the 20th century, some submarines, such as the British Vanguard class, began to be fitted with pump-jet propulsors instead of propellers. Although these are heavier, more expensive, and less efficient than a propeller, they are significantly quieter, giving an important tactical advantage.
Magnetohydrodynamic drive (MHD) was portrayed as the operating principle behind the titular submarine's nearly silent propulsion system in the film adaptation of The Hunt for Red October. However, in the novel, the Red October did not use MHD. Although experimental surface ships have used this system, speeds have been below expectations. In addition, the drive system can induce bubble formation, compromising stealth, and the low efficiency requires high powered reactors. These factors make it unlikely for military usage.
The success of the submarine is inextricably linked to the development of the torpedo, invented by Robert Whitehead in 1866. His invention is essentially the same now as it was 140 years ago. Only with self propelled torpedoes could the submarine make the leap from novelty to a weapon of war. Until the perfection of the guided torpedo, multiple "straight running" torpedoes were required to attack a target. With at most 20 to 25 torpedoes stored onboard, the number of attacks was limited. To increase combat endurance most World War I submarines functioned as submersible gunboats, using their deck guns against unarmed targets, and diving to escape and engage enemy warships. The importance of guns encouraged the development of the unsuccessful Submarine Cruiser such as the French Surcouf and the Royal Navy's X1 and M-class submarines. With the arrival of ASW aircraft, guns became more for defense than attack. A more practical method of increasing combat endurance was the external torpedo tube, loaded only in port.
The ability of submarines to approach enemy harbours covertly led to their use as minelayers. Minelaying submarines of World War I and World War II were specially built for that purpose. Modern submarine-laid mines, such as the British Mark 6 Sea Urchin, are designed to be deployed by a submarine's torpedo tubes.
After World War II, both the US and the USSR experimented with submarine launched cruise missiles such as the SSM-N-8 Regulus and P-5 Pyatyorka. Such missiles required the submarine to surface to fire its missiles. They were the forerunners of modern submarine launched cruise missiles, which can be fired from the torpedo tubes of submerged submarines, for example the US BGM-109 Tomahawk and Russian RPK-2 Viyuga and versions of surface to surface anti-ship missiles such as the Exocet and Harpoon, encapsulated for submarine launch. Ballistic missiles can also be fired from a submarine's torpedo tubes, for example missiles such as the anti-submarine SUBROC. With internal volume as limited as ever and the desire to carry heavier warloads, the idea of the external launch tube was revived, usually for encapsulated missiles, with such tubes being placed between the internal pressure and outer streamlined hulls.
The strategic mission of the SSM-N-8 and the P-5 were taken up by submarine-launched ballistic missile beginning with the US Navy's Polaris missile, and subsequently the Poseidon and Trident missiles.
Germany is working on the short-range IDAS (missile) which is launched from a torpedo tube and can be used against ASW helicopters as well as surface ships and coastal targets.
Submarines also carry radar equipment for detection of surface ships and aircraft. Sub captains are more likely to use radar detection gear rather than active radar to detect targets, as radar can be detected far beyond its own return range, revealing the submarine. Periscopes are rarely used, except for position fixes and to verify a contact's identity.
Civilian submarines, such as the DSV Alvin or the Russian Mir submersibles, rely on small active sonar sets and viewing ports to navigate. Sunlight does not penetrate below about underwater, so high intensity lights are used to illuminate the viewing area.
Early submarines had few navigation aids, but modern subs have a variety of navigation systems. Modern military submarines use an inertial guidance system for navigation while submerged, but drift error unavoidably builds up over time. To counter this, the Global Positioning System will occasionally be used to obtain an accurate position. The periscope - a retractable tube with prisms allowing a view to the surface - is only used occasionally in modern submarines, since the range of visibility is short. The Virginia-class submarines and Astute-class submarines have photonics masts rather than hull-penetrating optical periscopes. These masts must still be hoisted above the surface, and employ electronic sensors for visible light, infrared, laser range-finding, and electromagnetic surveillance. One benefit to hoisting the mast above the surface is that while the mast is above the water the entire sub is still below the water and is much harder to detect visibly or by radar.
Military submarines have several systems for communicating with distant command centers or other ships. One is VLF(Very Low Frequency) radio, which can reach a submarine either on the surface or submerged to a fairly shallow depth, usually less than . ELF(Extremely Low Frequency) can reach a submarine at much greater depths, but has a very low bandwidth and are generally used to call a submerged sub to a shallower depth where VLF signals can reach. A submarine also has the option of floating a long, buoyant wire antenna to a shallower depth, allowing VLF transmissions to be made by a deeply submerged boat.
By extending a radio mast, a submarine can also use a "burst transmission" technique. A burst transmission takes only a fraction of a second, minimizing a submarine's risk of detection.
To communicate with other submarines, a system known as Gertrude is used. Gertrude is basically a sonar telephone. Voice communication from one submarine is transmitted by low power speakers into the water, where it is detected by passive sonars on the receiving submarine. The range of this system is probably very short, and using it radiates sound into the water, which can be heard by the enemy.
Civilian submarines can use similar, albeit less powerful systems to communicate with support ships or other submersibles in the area.
The British Royal Navy does not permit women to serve on its submarines because of "medical concerns for the safety of the foetus and hence its mother" due to the potentially compromised air quality onboard submarines. Similar dangers to the pregnant woman and her fetus barred females from submarine service in Sweden 1983, when all other positions were made available for them in the Swedish Navy. Pregnant women are still not allowed to serve on submarines in Sweden. However, the policy makers thought that it was discriminatory with a general ban and demanded that females should be tried on their individual merits and have their suitability evaluated and compared to other candidates. Further, they noted that a female complying with such high demands is unlikely to become pregnant unawares. Starting in 2012, a small number of female officers will be allowed to serve on submarines.
Both the U.S. and British navies operate nuclear-powered submarines which deploy for periods of six months or longer, whereas the other navies that do permit women to serve on submarines operate conventionally powered submarines, which deploy for much shorter periods, usually only for one or two months. Prior the recent change by the U.S., no nation using nuclear submarines permitted women to serve onboard them.
Fresh water is produced by either an evaporator or a reverse osmosis unit. The primary use for fresh water is to provide feed water for the reactor and steam propulsion plants. It is also available for showers, sinks, cooking and cleaning once propulsion plant needs have been met. Seawater is used to flush toilets, and the resulting "black water" is stored in a sanitary tank until it is blown overboard using pressurized air or pumped overboard by using a special sanitary pump. The method for blowing sanitaries overboard is difficult to operate, and the German Type VIIC boat U-1206 was lost with casualties because of a mistake with the toilet. Water from showers and sinks is stored separately in "grey water" tanks, which are pumped overboard using the drain pump.
Trash on modern large submarines is usually disposed of using a tube called a Trash Disposal Unit (TDU), where it is compacted into a galvanized steel can. At the bottom of the TDU is a large ball valve. An ice plug is set on top of the ball valve to protect it, the cans atop the ice plug. The top breech door is shut, and the TDU is flooded and equalized with sea pressure, the ball valve is opened and the cans fall out assisted by scrap iron weights in the cans. The TDU is also flushed with seawater to ensure it is completely empty and the ball valve is clear before shutting the valve.
;General history
;World War II
;Cold War
- Submarine boat
Category:1620 introductions Category:Electric vehicles Category:English inventions Category:Pressure vessels Category:Ship types
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Name | Yasmin Paige |
---|---|
Birthname | Yasmin Paige |
Birthdate | June 1991 |
Birthplace | London , England , UK |
Occupation | Actress |
Yearsactive | 2003-present |
Website | }} |
Yasmin Paige is an English actress who is best known for her role as Maria in The Sarah Jane Adventures, a spin-off from the BBC science fiction television programme Doctor Who. She had a reduced involvement with the second series because of her GCSEs exam work.
Paige appeared in Ballet Shoes, in which she plays one of the leads, Petrova Fossil.
Category:British film actors Category:British television actors Category:British child actors Category:1991 births Category:Living people
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Name | Thomas Dolby |
---|---|
Background | solo_singer |
Birth name | Thomas Morgan Robertson |
Born | October 14, 1958London, England, UK |
Genre | SynthpopNew wavePop rock |
Occupation | Singer-songwriterMusicianRecord ProducerEntrepreneur |
Years active | 1981–present |
Instrument | Keyboards, synthesizers, guitar, vocals |
Label | ArmageddonVenice In PerilEMICapitol RecordsVirgin RecordsInvisible Hands Music |
Url | http://www.thomasdolby.com/ |
Thomas Dolby (born 14 October 1958) is an English musician and producer. Best known for his 1982 hit single "She Blinded Me with Science", 1982 track "One Of Our Submarines" and 1984 single "Hyperactive!", he has also worked extensively in production and as a session musician.
After the release of "She Blinded Me With Science," Dolby Laboratories expressed concern regarding the musician's stage name. Dolby's record label refused to make him change his name, and Dolby Labs didn't raise the issue again until later, presumably when the musician's soundtrack work came too close to Dolby Labs' noise-reduction involvement that was prominently credited on virtually every motion picture release. After a lengthy legal battle, the court decided that Dolby Labs had no right to restrict the musician from using the name. It was agreed that the musician wouldn't release any electronic equipment using the name. (Coincidentally, inventor /founder Dr. Ray Dolby has a son named Thomas ).
Dolby's debut album peaked at #13 on the Billboard Album Chart, juxtaposed themes of radio technology, aircraft, and naval submarines with those of relationships and nostalgia. While much of the album's instrumentation is synthesizers and samplers, the album credits a long list of guest musicians as well, with instruments ranging from harmonica and violin to guitar and percussion.
"She Blinded Me with Science" included sound samples from Dr. Magnus Pyke. The song reached #5 on the U.S. Hot 100. It was featured very shortly in the "Treehouse of Horror XIV" episode of The Simpsons, where Professor Frink was winning an award at a science convention. It was also sampled at a slower speed by the group Mobb Deep in the 2006 song Got it Twisted. "She Blinded Me With Science" was also used as the theme song for the pilot episode of broadcast television sitcom The Big Bang Theory though it wasn't used for later episodes (it was, however, later used in that show as Howard's cell phone ringtone in the season 3 episode "The Creepy Candy Coating Corollary."
"Hyperactive!," originally written for Michael Jackson, was the first and most successful single from the album, peaking at #17 on the UK Singles Chart, making it Dolby's highest-charting single in his home country.
Two other songs on the album, "I Love You Goodbye," and "Silk Pyjamas" employed Zydeco-influences, courtesy of Crowley, Louisiana and guest musicians Michael Doucet of BeauSoleil on violin, Wayne Toups on accordion, and even banjo. Even though some recording for the album was done in remote locations, the bulk of "Astronauts And Heretics" was recorded at NRG Recording Studios with input from trusted Dolby co-producer Bill Bottrell, and mixed down at Smoke Tree Studios in Chatsworth, California.
The US leg of the "Sole Inhabitant Tour 2006" was captured on a "live" CD and DVD. The CD represents a recording of two gigs played by Dolby at Martyrs in Chicago, while the DVD was filmed at the Berklee Performance Center at Berklee College of Music. The DVD also includes a 30-minute interview, and a lecture by Dolby at the Berklee College Of Music. Both the CD and DVD were released in November 2006, and are distributed through CD Baby and iTunes. Dolby autographed and numbered the first 1,000 copies of the CD and DVD.
A show at the 800 capacity Scala club in London was booked for July 3, 2006 as a warm-up for Dolby's Hyde Park set opening for Depeche Mode. The show sold out in a matter of days and prompted Dolby to reprioritise the UK, resulting in him moving with his family from California back to England, and a nine-date Sole Inhabitant tour of the UK in October 2007, coinciding with the release of a lavish box set of the Sole Inhabitant CD and DVD by UK independent label Invisible Hands Music.
Thomas toured throughout the months of November and December 2006 with electronic musician BT. This tour included a version of "Airwaves" that BT added his own technique to, which was the opening song on the UK leg of the Sole Inhabitant tour (sans BT).
Thomas Dolby's March 15, 2007 performance at the SxSW festival was released as the live EP "Thomas Dolby & The Jazz Mafia Horns, Live at SxSW" (with musicians from San Francisco's Jazz Mafia collective, through iTunes and on CD Baby.
The 2007 UK Sole Inhabitant tour included three new songs previously played on the US tour, one called "Your Karma Hit My Dogma" another called "Jealous Thing" and a cover version of The Special AKA's "What I Like Most About You Is Your Girlfriend". "Your Karma Hit My Dogma" was inspired by Kevin Federline's unauthorised use of a sample from Mobb Deep's Got It Twisted which in turn had used an authorised sample of She Blinded Me with Science. The tag-line from that story became the title of the song. The wording was lifted by Thomas from a bumper sticker on a car that he saw whilst living in the San Francisco Bay area. In a move close to performance art, Dolby tried to post a 'cease and desist' legal letter on Kevin Federline's MySpace page when other attempts to contact him proved fruitless. The song is on the Live at SxSW EP.
The second new song, "Jealous Thing" was performed at least at The Graduate in Cambridge and London's Islington Academy on the UK tour in Summer 2007 and features a Bossa-Nova type rhythm.
"The Golden Age Of Wireless" and "The Flat Earth" were reissued and remastered later that year with numerous previously unreleased bonus tracks. The former was a two disc set including a DVD of the complete "Live Wireless" video.
The final album will contain the contents of the three EP records and additional tracks elsewhere unavailable. Possible additional tracks are songs performed on the Sole Inhabitant tour called "Your Karma Hit My Dogma" and "Jealous Thing". Known contributors to the album so far include Kevin Armstrong, Matthew Seligman (both had played together with him on "The Flat Earth" and as part of David Bowie's Live Aid appearance), Bruce Woolley, drummer Liam Genockey, guitarist Mark Knopfler of Dire Straits, Regina Spektor, Natalie MacMaster, Eddi Reader, and Imogen Heap.
In a 2010 press release he was quoted as saying: Category:1958 births Category:Living people Category:English male singers Category:English songwriters Category:Video game composers Category:English bloggers Category:Old Westminsters Category:Keytarists Category:1980s New Wave acts
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
While in Footlights, Ayoade acted in and wrote many shows. He and Footlights vice-president John Oliver wrote two pantomimes together: Sleeping Beauty, and Grimm Fairy Tales. Ayoade acted in both Footlights' 1997 and 1998 touring shows: Emotional Baggage and Between a Rock and a Hard Place (directed by Cal McCrystal).
On 8 September 2007 he married the actress Lydia Fox. They live in Gipsy Hill, in South London.
In 2004 Ayoade and Holness took the Marenghi character to Channel 4, creating the spoof horror comedy series Garth Marenghi's Darkplace. He directed and also appeared as Dean Learner, Garth's publisher, who plays Thornton Reed, a camp hospital administrator who bears a trademark shotgun and answers to Hospital boss "Won Ton".
Ayoade's Darkplace character, Dean Learner, was resurrected in 2006 to host a comedy chat show, Man to Man with Dean Learner, on Channel 4. The different guests were played each week by Holness.
In 2007 he directed a live Arctic Monkeys DVD entitled At the Apollo, which was recorded in Manchester. It was previewed at Vue cinemas across the UK during October 2008 and was released on DVD the following month, winning the "Best DVD" title at the NME Awards that year.
Ayoade also directed, co-wrote and co-starred (with fellow Darkplace and IT Crowd cast member Matt Berry) in , and has appeared on T4.
He helped write The Mighty Book of Boosh, along with Noel Fielding, Julian Barratt, Rich Fulcher, Dave Brown and Michael Fielding.
Ayoade's directorial debut is a film adaptation of Joe Dunthorne's book Submarine, for which he wrote the screenplay, and stars Sally Hawkins and Paddy Considine. The film premiered at the Toronto International Film Festival in September 2010 to positive reviews.
He also features in Paul King's film, Bunny and the Bull, where he plays the role of an extremely boring museum tour guide.
On January 3rd 2011, Richard appeared on The Big Fat Quiz of the Year 2010.
On January 13th 2011, Dan Harmon announced via his twitter account that Richard would be directing an episode of Community.
Category:1977 births Category:Garth Marenghi's Darkplace Category:Comedians from London Category:English television actors Category:English film actors Category:English television writers Category:English voice actors Category:Living people Category:People from Ipswich Category:Alumni of St Catharine's College, Cambridge Category:English people of Nigerian descent Category:English people of Norwegian descent Category:English music video directors Category:Black British actors Category:Fox family
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Name | Craig Roberts |
---|---|
Birth date | January 21, 1991 |
Birth place | Maesycwmmer, Wales, UK |
Occupation | actor |
Craig Roberts (born 21 January 1991) is a young British actor. He has appeared in The Story of Tracy Beaker—where he played Rio 'Wellard' (brother to Chantal and Roxy), Young Dracula—where he played an ordinary but vampire mad boy called Robin who befriended the main character Vlad, who is unfortunately the unwilling "Chosen One ", Care and Casualty—where he played a confused child who had a bus accident. Craig recently appeared in the pantomime 'Snow White' in Worthing, where he played the evil queen's sidekick 'Drax' in January '09. In 2008 he worked with Y Touring Theatre Company where he played the part of 'Ryan' in a UK national tour of 'Full Time' which was a play that explores issues of racism, sexism and homophobia in football. He has just finished working on a film called Submarine which also stars Paddy Considine.
Category:1991 births Category:British child actors Category:Welsh actors Category:Living people
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.