- Order:
- Duration: 3:06
- Published: 22 Apr 2008
- Uploaded: 11 May 2011
- Author: makemagazine
In a strict sense, recycling of a material would produce a fresh supply of the same material—for example, used office paper would be converted into new office paper, or used foamed polystyrene into new polystyrene. However, this is often difficult or too expensive (compared with producing the same product from raw materials or other sources), so "recycling" of many products or materials involves their reuse in producing different materials (e.g., paperboard) instead. Another form of recycling is the of certain materials from complex products, either due to their intrinsic value (e.g., lead from car batteries, or gold from computer components), or due to their hazardous nature (e.g., removal and reuse of mercury from various items). Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with virgin production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling. Proponents of recycling dispute each of these claims, and the validity of arguments from both sides has led to enduring controversy.
In pre-industrial times, there is evidence of scrap bronze and other metals being collected in Europe and melted down for perpetual reuse.
Governments have used their own purchasing power to increase recycling demand through what are called "procurement policies". These policies are either "set-asides", which earmark a certain amount of spending solely towards recycled products, or "price preference" programs which provide a larger budget when recycled items are purchased. Additional regulations can target specific cases: in the United States, for example, the Environmental Protection Agency mandates the purchase of oil, paper, tires and building insulation from recycled or re-refined sources whenever possible.
Initially, the commingled recyclates are removed from the collection vehicle and placed on a conveyor belt spread out in a single layer. Large pieces of corrugated fiberboard and plastic bags are removed by hand at this stage, as they can cause later machinery to jam. |- !Material !Energy savings !Air pollution savings |- | Aluminium || 95% |- | Cardboard || 24% || — |- | Glass || 5-30% || 20% |- | Paper || 40% A study conducted by the Technical University of Denmark found that in 83% of cases, recycling is the most efficient method to dispose of household waste. However, a 2004 assessment by the Danish Environmental Assessment Institute concluded that incineration was the most effective method for disposing of drink containers, even aluminium ones.
Fiscal efficiency is separate from economic efficiency. Economic analysis of recycling includes what economists call externalities, which are unpriced costs and benefits that accrue to individuals outside of private transactions. Examples include: decreased air pollution and greenhouse gases from incineration, reduced hazardous waste leaching from landfills, reduced energy consumption, and reduced waste and resource consumption, which leads to a reduction in environmentally damaging mining and timber activity. About 4,000 minerals have been identified, of these around 100 can be called common, another several hundred are relatively common, and the rest are rare. At current rates, current known reserves of phosphorus will be depleted in the next 50 to 100 years. Without mechanisms such as taxes or subsidies to internalize externalities, businesses will ignore them despite the costs imposed on society. To make such non-fiscal benefits economically relevant, advocates have pushed for legislative action to increase the demand for recycled materials.
Certain countries trade in unprocessed recyclates. Some have complained that the ultimate fate of recyclates sold to another country is unknown and they may end up in landfills instead of reprocessed. According to one report, in America, 50-80% of computers destined for recycling are actually not recycled. There are reports of illegal-waste imports to China being dismantled and recycled solely for monetary gain, without consideration for workers' health or environmental damage. Though the Chinese government has banned these practices, it has not been able to eradicate them. In 2008, the prices of recyclable waste plummeted before rebounding in 2009. Cardboard averaged about £53/tonne from 2004–2008, dropped to £19/tonne, and then went up to £59/tonne in May 2009. PET plastic averaged about £156/tonne, dropped to £75/tonne and then moved up to £195/tonne in May 2009. Certain regions have difficulty using or exporting as much of a material as they recycle. This problem is most prevalent with glass: both Britain and the U.S. import large quantities of wine bottled in green glass. Though much of this glass is sent to be recycled, outside the American Midwest there is not enough wine production to use all of the reprocessed material. The extra must be downcycled into building materials or re-inserted into the regular waste stream.
can recycling logo. The USA, UK and Italy have several aluminium recycling schemes in operation.]]
bottle recycling logo. The UK openly encourages plastic recycling schemes and has many under way already.]]
Much of the difficulty inherent in recycling comes from the fact that most products are not designed with recycling in mind. The concept of sustainable design aims to solve this problem, and was laid out in the book "" by architect William McDonough and chemist Michael Braungart. They suggest that every product (and all packaging they require) should have a complete "closed-loop" cycle mapped out for each component—a way in which every component will either return to the natural ecosystem through biodegradation or be recycled indefinitely.
The following are criticisms of many popular points used for recycling.
It is difficult to determine the exact amount of energy consumed or produced in waste disposal processes. How much energy is used in recycling depends largely on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite."
Economist Steven Landsburg has suggested that the sole benefit of reducing landfill space is trumped by the energy needed and resulting pollution from the recycling process. Others, however, have calculated through life cycle assessment that producing recycled paper uses less energy and water than harvesting, pulping, processing, and transporting virgin trees. When less recycled paper is used, additional energy is needed to create and maintain farmed forests until these forests are as self-sustainable as virgin forests.
Other studies have shown that recycling in itself is inefficient to perform the “decoupling” of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development. When global consumption of a natural resource grows by more than 1% per annum, its depletion is inevitable, and the best recycling can do is to delay it by a number of years. Nevertheless, if this decoupling can be achieved by other means, so that consumption of the resource is reduced below 1% per annum, then recycling becomes indispensable – indeed recycling rates above 80% are required for a significant slowdown of the resource depletion.
The amount of money actually saved through recycling depends on the efficiency of the recycling program used to do it. The Institute for Local Self-Reliance argues that the cost of recycling depends on various factors around a community that recycles, such as landfill fees and the amount of disposal that the community recycles. It states that communities start to save money when they treat recycling as a replacement for their traditional waste system rather than an add-on to it and by "redesigning their collection schedules and/or trucks."
In many cases, the cost of recyclable materials also exceeds the cost of raw materials. Virgin plastic resin costs 40% less than recycled resin. Additionally, a United States Environmental Protection Agency (EPA) study that tracked the price of clear glass from July 15 to August 2, 1991, found that the average cost per ton ranged from $40 to $60, while a USGS report shows that the cost per ton of raw silica sand from years 1993 to 1997 fell between $17.33 and $18.10.
In a 1996 article for The New York Times, John Tierney argued that it costs more money to recycle the trash of New York City than it does to dispose of it in a landfill. Tierney argued that the recycling process employs people to do the additional waste disposal, sorting, inspecting, and many fees are often charged because the processing costs used to make the end product are often more than the profit from its sale. Tierney also referenced a study conducted by the Solid Waste Association of North America (SWANA) that found in the six communities involved in the study, "all but one of the curbside recycling programs, and all the composting operations and waste-to-energy incinerators, increased the cost of waste disposal."
Tierney also points out that "the prices paid for scrap materials are a measure of their environmental value as recyclables. Scrap aluminum fetches a high price because recycling it consumes so much less energy than manufacturing new aluminum."
Recycling proponents counter that the jobs involved in recovery of an equal amount of virgin material creates worse jobs. Timber harvesting and ore mining are more dangerous than paper recycling and metal recycling.
When foresting companies cut down trees, more are planted in their place. Most paper comes from pulp forests grown specifically for paper production. Many environmentalists point out, however, that "farmed" forests are inferior to virgin forests in several ways. Farmed forests are not able to fix the soil as quickly as virgin forests, causing widespread soil erosion and often requiring large amounts of fertilizer to maintain while containing little tree and wild-life biodiversity compared to virgin forests. Also, the new trees planted are not as big as the trees that were cut down, and the argument that there will be "more trees" is not compelling to forestry advocates when they are counting saplings.
The recycling of paper should not be confused with saving the tropical forest. Many people have the misconception that paper-making is what's causing deforestation of tropical rain forests but rarely any tropical wood is harvested for paper. Deforestation is mainly caused by population pressure such as demand of more land for agriculture or construction use. Therefore, the recycling paper, although reduces demand of trees, doesn't greatly benefit the tropical rain forests.
Because the social support of a country is likely less than the loss of income to the poor doing recycling, there is a greater chance that the poor will come in conflict with the large recycling organizations. This means fewer people can decide if certain waste is more economically reusable in its current form rather than being reprocessed. Contrasted to the recycling poor, the efficiency of their recycling may actually be higher for some materials because individuals have greater control over what is considered “waste.” that recycling behaviour is not natural because it requires a focus and appreciation for long term planning, whereas humans have evolved to be sensitive to short term survival goals; and that to overcome this innate predisposition, the best solution would be to use social pressure to compel participation in recycling programmes. However, recent studies have concluded that social pressure is unviable in this context. One reason for this is that social pressure functions well in small group sizes of 50 to 150 indiviudals (common to nomadic hunter-gatherer peoples) but not in communities numbering in the millions, as we see today. Another reason is that individual recycling does not take place in the public view. In a study done by social psychologist Shawn Burn , it was found that personal contact with individuals within a neighborhood is the most effective way to increase recycling within a community. In his study, he had 10 block leaders talk to their neighbors and convince them to recycle. A comparison group was sent fliers promoting recycling. It was found that the neighbors that were personally contacted by their block leaders recycled much more than the group without personal contact. As a result of this study, Shawn Burn believes that personal contact within a small group of people is an important factor in encouraging recycling. Another study done by Stuart Oskamp examines the effect of neighbors and friends on recycling. It was found in his studies that people who had friends and neighbors that recycled were much more likely to also recycle than those who didn’t have friends and neighbors that recycled.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.