- Order:
- Duration: 1:02
- Published: 2007-10-18
- Uploaded: 2010-12-16
- Author: chichin85
these configurations will be saved for each time you visit this page using this browser
(adrenaline), a catecholamine-type hormone]] A hormone (from Greek ὁρμή - "impetus") is a chemical released by a cell in one part of the body that sends out messages that affect cells in other parts of the organism. Only a small amount of hormone is required to alter cell metabolism. In essence, it is a chemical messenger that transports a signal from one cell to another. All multicellular organisms produce hormones; plant hormones are also called phytohormones. Hormones in animals are often transported in the blood. Cells respond to a hormone when they express a specific receptor for that hormone. The hormone binds to the receptor protein, resulting in the activation of a signal transduction mechanism that ultimately leads to cell type-specific responses.
Endocrine hormone molecules are secreted (released) directly into the bloodstream, whereas exocrine hormones (or ectohormones) are secreted directly into a duct, and, from the duct, they flow either into the bloodstream or from cell to cell by diffusion in a process known as paracrine signalling.
Hormone cells are typically of a specialized cell type, residing within a particular endocrine gland, such as thyroid gland, ovaries, and testes. Hormones exit their cell of origin via exocytosis or another means of membrane transport. The hierarchical model is an oversimplification of the hormonal signaling process. Cellular recipients of a particular hormonal signal may be one of several cell types that reside within a number of different tissues, as is the case for insulin, which triggers a diverse range of systemic physiological affects. Different tissue types may also respond differently to the same hormonal signal. Because of this, hormonal signaling is elaborate and hard to dissect.
For hormones such as steroid or thyroid hormones, their receptors are located intracellularly within the cytoplasm of their target cell. To bind their receptors, these hormones must cross the cell membrane. They can do so because they are lipid-soluble. The combined hormone-receptor complex then moves across the nuclear membrane into the nucleus of the cell, where it binds to specific DNA sequences, effectively amplifying or suppressing the action of certain genes, and affecting protein synthesis. However, it has been shown that not all steroid receptors are located intracellularly. some are associated with the plasma membrane.
An important consideration, dictating the level at which cellular signal transduction pathways are activated in response to a hormonal signal, is the effective concentration of hormone-receptor complexes that are formed. Hormone-receptor complex concentrations are effectively determined by three factors:
# The number of hormone molecules available for complex formation # The number of receptor molecules available for complex formation # The binding affinity between hormone and receptor.
The number of hormone molecules available for complex formation is usually the key factor in determining the level at which signal transduction pathways are activated, the number of hormone molecules available being determined by the concentration of circulating hormone, which is in turn influenced by the level and rate at which they are secreted by biosynthetic cells. The number of receptors at the cell surface of the receiving cell can also be varied, as can the affinity between the hormone and its receptor.The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors that influence the metabolism and excretion of hormones. Thus, higher hormone concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone.
Hormone secretion can be stimulated and inhibited by:
One special group of hormones is the tropic hormones that stimulate the hormone production of other endocrine glands. For example, thyroid-stimulating hormone (TSH) causes growth and increased activity of another endocrine gland, the thyroid, which increases output of thyroid hormones.
A recently identified class of hormones is that of the "hunger hormones" - ghrelin, orexin, and PYY 3-36 - and "satiety hormones" - e.g., leptin, obestatin, nesfatin-1.
To release active hormones quickly into the circulation, hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre- or prohormones. These can then be quickly converted into their active hormone form in response to a particular stimulus.
* stimulation or inhibition of growth
A hormone may also regulate the production and release of other hormones. Hormone signals control the internal environment of the body through homeostasis.
* Amine-derived hormones are derivatives of the amino acids tyrosine and tryptophan. Examples are catecholamines and thyroxine.
A "pharmacologic dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful. An example is the ability of pharmacologic doses of glucocorticoid to suppress inflammation.
* Category:Physiology Category:Endocrinology Category:Cell signaling Category:Signal transduction Category:Greek loanwords
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.